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Abstract Cable-based technologies have been a back-

bone for harvesting on steep slopes. The layout of a single

cable road is challenging because one must identify inter-

mediate support locations and heights that guarantee

structural safety and operational efficiency while mini-

mizing set-up and dismantling costs. Our study objectives

were to (1) develop an optimization approach for designing

the best possible intermediate support layout for a given

ground profile, (2) compare optimization procedures

between linearized and nonlinear analyses of a cable

structure and (3) investigate the effect of simplifying a

multi-span representation. Our results demonstrate that the

computational effort is 30–60 times greater for an optimi-

zation approach based on nonlinear cable mechanical

assumptions than when considering linear assumptions.

Those nonlinear assumptions also stipulate lower heights

for intermediate supports and a larger span length. Finally,

compared with the unloaded case, tensile force in the

skyline is increased by as much as 80% under load for a

single-span skyline configuration. Our approach provides

additional value for cable operations because it ensures

greater structural safety at a lower cost for installation.

Improvements are still needed in developing a stand-alone

application that can be easily distributed. Moreover, our

rather simple assumptions regarding set-up and dismantling

costs must be refined.

Keywords Cable yarding � Cable mechanics � Standing

skyline � Intermediate support layout � Graph theory

Introduction

Cable-based technologies have been the backbone of steep-

slope harvesting in mountainous regions of the world, such

as the Alps in central Europe, the Pacific Northwest of the

United States, and Japan. From an operational point of

view, the spatially explicit layout of a set of cable roads

over a given area is a challenging task. Efforts toward set-

up and dismantling must be regarded as part of the fixed

cost that is assigned when estimating the total expense of

extracting a particular volume of timber. Two factors must

be considered in the layout of a single cable road—struc-

tural safety and the minimum number of intermediate

supports.

Structural analysis of a cable structure is challenging

due to the nonlinearity of the problem. The approach

associated with European cable road design has been based

on linearized analyses along with strong assumptions, for

example, constants that represent the tensile forces in a

skyline for both loaded and unloaded configurations. The

North American approach has focused on ‘‘exact’’ catenary

solutions, primarily layouts for single-span skylines.

Our research goal was to develop a method that incor-

porates ‘‘close-to-reality’’ structural analysis and a mini-

mum number of intermediate supports, resulting in greater

structural safety as well as lower set-up and dismantling

costs. Our aims were to (1) identify an optimum layout

for intermediate supports, (2) compare the optimization
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procedure for two cable mechanics approaches—linearized

versus close-to-catenary—and (3) investigate the effect of

multi-span simplifications. For experimental purposes, we

assumed that both head and tail spar anchors were exter-

nally given and that the geometry of the ground profile

between those two anchors was available at reasonable

accuracy. We first reviewed current methods of structural

analysis and those for locating intermediate supports. After

developing our representation and optimization model, we

evaluated the configuration mass of multiple span skylines

for real-world cable road in a specific geographical area.

Background

Mechanical behaviour of cable structures

An exact analysis of a single cable span that utilizes cat-

enary equations is constrained because it is impossible to

obtain an explicit solution due to nonlinearity. Simplifica-

tions, such as (1) linear distribution of the self-weight of

the cable along a span, (2) a constant horizontal component

of the tensile forces in the cable and (3) an inelastic cable,

result in an equation with six parameters:

• one mid-span deflection (ym),

• two geometric properties of the cable span (a, horizon-

tal span between anchor points; and c, chord distance

between anchor points),

• two load characteristics (Q, moving load; and qs, self-

weight of the skyline) and

• one force component (H, horizontal component of the

tensile force in the skyline).

ym ¼
qsca

8H
þ Qa

4H
ð1Þ

Equation 1, originally used for cable-way design (Findeis

1923), was then introduced by Hauska (1933) for the

analysis of forest cable systems. Later known as the Pestal

(1961) equation, it is still computed for cable engineering

in European forestry operations. Here, we use the LIN

acronym to refer to the linear Pestal version.

The North American approaches to skyline engineering

developed along a different path. Lysons and Mann (1967)

devised a ‘‘graphic-tabular handbook’’ technique or ‘‘chain

and board’’ method. This consisted of a board inscribed

with the manually drawn ground profile and a small chain

that was used as a physical model for the skyline. Another

technique, introduced by Suddarth (1970), provided a

mathematical solution utilizing mainframe computers. The

emergence of desktop computers and plotters at the

beginning of the 1970s triggered the development of

computer-aided methods, the first of which was presented

by Carson et al. (1971). Desktop computer solutions were

continuously improved, eventually leading to the ‘‘logger

PC’’ program (Sessions 2002).

These approaches are valid for only single-span skyline

configurations. Although that type of design is predominant

among North American operations, the European practice

has a long tradition of multiple span configurations, such

that we must consider additional boundary conditions for

skyline length. Whereas the total length is held constant for

a specific configuration, that of a single span varies

according to the location of the load. If a load is moving

from one span to the next, the skyline is feeding over the

support, shortening the skyline in the first span and

lengthening it in the second span. To our knowledge, this

effect has not yet been included in analyses of forest cable

systems. Zweifel (1960) introduced a ‘‘close-to-catenary’’

approach for multiple span configurations of cable ways.

There, one assumes that (1) anchoring is fixed at the head

and tail spars, (2) the cable has elastic properties, and (3)

the skyline is freely fed over supports as the load moves

from one span to the next. Zweifel approximated catenary

equations through a Taylor series and developed an algo-

rithm for manually solving the system of equations. This

algorithm delivered a design value for the horizontal

component of the tensile force of a loaded cable, which

allowed one to calculate mid-span deflections for all spans.

Although this approach (herein referred to as ‘‘close-to-

catenary’’ or CTC) has been widely taken in the cable

industry, it is only occasionally used for the analysis of

forest cable systems.

Location of intermediate supports

For multi-span skyline configurations, an additional design

issue must be addressed, that is, the location of interme-

diate supports over a given ground profile. This problem

has historically been solved by intuition or trial and error.

Pestal (1961) described some rules of thumb that are fol-

lowed to this day. First, one must start with a single span

between the head spar and tail spar and then draw the shape

of the unloaded skyline over the ground profile. Second,

the distance between the ground profile and the shape of

the skyline must be minimal, or even negative, when

examining those ground profile points. Third, intermediate

support locations should eventually be placed into the

profile, and each cable span should be evaluated for min-

imum ground clearance.

The automatic search for alternative procedures to

locate intermediate supports began with research by

Sessions (1992), who instituted the design that placed

intermediate supports at all protruding profile points. Ses-

sions then used a heuristic algorithm that eliminated the

second of three consecutive intermediate supports if
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ground clearance was greater than the minimum required

(Chung and Sessions 2003). This process continued until

the number of supports was smaller than the user-defined

maximum. Although the solutions that resulted from this

approach were likely to be good, they did not prove to be

optimum.

Leitner et al. (1994) presented a solution for identifying

both the best location of intermediate supports over a

ground profile and their optimum height. If f locations were

possible for intermediate supports and each had g possible

heights, there were f times g possible support points. When

the head and tail spars were introduced, all possible spans

and, therewith, all potential solutions could be illustrated

by a directed graph (Fig. 1) in which the nodes indicated

possible support points and the arcs, possible spans. The

weight of the arcs was a quadratic function of the end-

support height of the span. However, a subset of all pos-

sible spans was infeasible because a minimum ground

clearance was not achieved.

For this current research, we opted for the problem

representation of Leitner et al. (1994), which includes a

directed graph to identify the optimum support configura-

tion using a shortest path algorithm. Here, it was adequate

to adopt the LIN assumptions of Findeis (1923) to describe

the mechanical behaviour of the cable system when

defining our problem.

Model development

The purpose of our study was to develop an approach that

minimizes the number and height of intermediate supports

required for a cable road. In doing so, we considered both

the minimum ground clearance for the carriage and the

capacity to keep tensile forces within acceptable limits. We

made the following assumptions: a standing skyline

configuration, nonlinear behaviour of the cable structure

under load, a multi-span configuration and frictionless

movement of the skyline over supports. Our solution

comprised four components. First, we presented the prob-

lem as a directed mathematical graph. Second, we devised

a scheme to solve the problem with cable mechanics.

Third, we developed a procedure to construct that mathe-

matical graph, while also considering mechanical feasi-

bility. Finally, we created optimization procedures to

operate on that mathematical graph.

Representation of the solution space

A multi-span skyline structure has a head spar and a tail

spar, with nf intermediate support locations in between,

each with ng possible support heights. This solution space

can be presented as a directed graph with support locations

as nodes and spans as edges. The related mathematical

structure is an adjacency matrix. Such a representational

approach was first described by Leitner et al. (1994).

Cable mechanics

When assuming a standing skyline configuration, the sky-

line is fixed to anchors at both the head and tail spars. This

means that the unstretched skyline length remains constant

for any load configuration. The response by such a cable

structure is four-fold: (1) it changes the shape of the skyline

along the single spans, (2) it feeds skyline length from

adjacent unloaded spans into the loaded span, (3) it

increases the tensile forces in the skyline, and (4) it elas-

tically stretches its total length. By contrast, the widely

used Pestal approach considers only changes in shape and

neglects those three other factors. Therefore, to ensure that

the improved mechanical model is close to reality, thereby

encompassing all four responses, our new approach
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included features used for cable-way design. As stated

earlier, this is known as the CTC approach because Zweifel

(1960) approximated the catenary equations with a Taylor

series. This numerical procedure iteratively identifies the

increase in a skyline’s tensile force for a load moving over

a span as follows:

• start with a basic tensile force (H0: horizontal compo-

nent of the tensile force for the unloaded skyline) and

calculate the unstretched, unloaded skyline length;

• put load Q at the mid-span position of the largest span;

• increase that basic tensile force of the cable by one unit

(?DH);

• calculate the unstretched length for the loaded span

with this enhanced tensile force; and

• continue to increase the basic tensile force until the

unstretched length of the loaded skyline equals the

unstretched length of the unloaded skyline.

This procedure can be used to calculate two critical

values for the horizontal component of the basic tensile

force—the maximum allowed, H0
max, which guarantees that

the design strength is not exceeded; and the minimum,

H0
min, which ensures the lowest ground clearance.

Construction of the mathematical graph

Our solution to the problem of laying out an optimum

design of intermediate supports started with gathering

information about terrain conditions between head and tail

spars, as described in a longitudinal section. Afterward, we

stated the technical specifications of the yarding system,

such as type and self-weight of the skyline (qS), its coef-

ficients of elasticity (E) and cross-sectional area (A), and

the load weight (Q). The set of possible intermediate

support locations F was then defined. Here, x and y rep-

resented the horizontal and vertical coordinates of the

profile. We selected the x-coordinate of the base of the

headspar and added multiples of dl to this to obtain the x-

coordinates of possible intermediate support locations. The

y-coordinate of a possible base was the y-coordinate of the

terrain line corresponding to the x-coordinate of the pos-

sible base. Certain support locations were neglected that

would never be selected, for example, those for concave

terrain points. Those points were defined with the follow-

ing logic. For each possible support location i, the height

coordinate was yi. Heights of the neighbouring points (both

with distance dl) were yi-1 and yi?1. If (yi-1 ? yi?1)/

2 [ yi, then location i was defined as concave and excluded

as a potential location. To reduce the number of potential

combinations, we defined minimum and maximum hori-

zontal lengths of a span as lmin and lmax. To fit the hori-

zontal length of the profile lp, the last element of F, fn, was

placed at a lower distance than dl from fn-1, if lp was not a

multiple value of dl. The set (G) of possible intermediate

support heights (difference in elevation from the base of

the support to the top) was described by three parameters—

minimum height (hmin), maximum height (hmax) and the

height interval (dh) between two consecutive height

options at a specific support. This set included all values

gx = hmin ? x* dh where gx B hmax and x was an integer.

If the last element of G, gn = hmin ? n* dh \ hmax, then

hmax was set to gn. Assuming that hmin = 8 m,

hmax = 14 m and dh = 1 m, there are 7 height options (8,

9 …14 m). For dh = 2 m, we have 4 height options (8, 10,

12, 14 m). When dh = 4 m, we have height options of 8

and 12 m, where hmax = 14 m is no longer possible. So,

there are parameter values of dh, for which hmax is exclu-

ded as a height option. By following this procedure for

location and height identification, we could determine all

the nodes for the graph {f,g}, where f [ F and g [ G.

The next step was to analyse all potential paths between

the head spar and the tail spar for structural safety and

serviceability (i.e. minimum ground clearance, minimum

gradient of the load path for gravity-affect carriages, and

maximum allowable tensile stress; Fig. 2). Although quite

time-consuming, this had to be done for all possible con-

secutive span sequences. To minimize calculation efforts,

we found a ‘‘three-span representation’’ to be useful

because it simplified potential, consecutive sequences as

follows: head spar—intermediate support node i (fB,gB) at

the beginning of the observed span—intermediate support

node j (fE,gE) at the end of the observed span—tail spar.

Two critical values were then calculated for the horizontal

component of the tensile force—H0
min and H0

max. The for-

mer was the basic tensile force required to guarantee

minimum ground clearance; the latter, the basic force that

resulted in maximum allowable tensile stress. The

min. clearance

 gradient

Tmax

i

j

Fig. 2 Feasibility analysis of a single cable span ij, defined through

nodes i and j. The range of basic tensile forces H0
min to H0

max

� �
was

evaluated for which the span fulfilled the constraints of minimum

clearance, gradient (optional) and maximum cable breaking strength

(Tmax)
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minimum ground clearance was checked by default over 1-

m horizontal intervals. If H0
min was greater than H0

max, then

span i (fB,gB) - j (fE,gE) was deemed non-feasible and its

weight was set to infinity. However, if H0
min proved smaller

than H0
max, then span i (fB,gB) - j (fE,gE) was feasible. Its

weight was then set to a value representing the cost for

rigging and taking-down the intermediate support j (fE,gE).

After performing this ‘‘feasibility analysis’’, we obtained a

range of H0 values for each span to become feasible. To

consider all possible configurations, we varied the basic

tensile force H0 between H0
absmin (0 kN) and H0

absmax (hor-

izontal component of the design strength) in increments of

1 kN. When feasibility was checked for each span, the

result was an adjacency matrix for each H0.

Finding the optimum solution

Optimization aims at minimizing the installation costs for a

cable system. Because real-cost functions were not avail-

able in this example, we sought a solution that contained a

minimum number of intermediate supports (1st priority)

and a minimum square sum of the heights (2nd priority).

This led to the following objective function (Eq. 2):

MinV ¼
X

f2F

X

g2G

gþ 100ð Þ2xfg

� �
ð2Þ

where MinV optimized objective value, G set of heights for

intermediate support nodes, F set of possible intermediate

support locations, xfg = 1, if the span that ends in the node

at location f with support height g is selected for the

solution; =0, otherwise.

The term ‘‘?100’’ was introduced to find, as a first

priority, a solution with the fewest intermediate supports

and, as the second priority, a solution with a minimum sum

of support heights. The quadratic term was used when

assuming that the cost of rigging an intermediate support

would increase disproportionately to its height.

Identifying the optimum solution required two main

steps. First, we calculated the shortest path for the entire set

of adjacency matrices. Second, we looked for the entire set

of shortest paths and selected the path with the minimum

value. The graph was topologically sorted and could be

solved by Bellmann’s (1958) shortest path algorithm. The

corresponding basic tensile force of the optimum solution

was named T0,opt, while the best horizontal component was

labelled H0,opt.

Graph parameters

Changing the parameters that defined the graph (dl, dh) was

always a trade-off between accuracy of the results and

calculation time. The latter increased with the number of

arcs in the graph. If all of our terrain points were assumed

to be convex, we determined the number of arcs (NA) per

Eq. 3, as derived by Näsberg (1985).

NA � Nl � zmax þ
Dz� 1

2

� �� �
� N2

h � Dz ð3Þ

where

Nh ¼
hmax � hmin

dh
þ 1;

Nl ¼ ceil
lP

dl

� �
þ 1; ceil: round toward infinity

Dz ¼ zmax � zmin þ 1;

zmax ¼
lmax

dl
;

zmin ¼
lmin

dl

Here, default values for graph parameters were assumed to

be the following: dl = 10 m, lmin = 30 m, lmax = 400 m,

hmin = 8 m, hmax = 14 m and dh = 1 m. Term lP was the

horizontal length of the profile.

The process of modifying the parameters that defined a

longitudinal section (lmin, lmax, and dl) demonstrated that

term dl had the greatest influence on the number of spans.

In the range of dl = 1–10 m, that number of spans varied

by a factor of 100; for range dl = 1–30 m, by a factor of

1,000 (Fig. 3c). By comparison, the influence of lmin and

lmax was negligible, especially if one considered that the

values of these parameters also depended on technical

constraints. Therefore, dl was the focus here.

For experimental purposes, we ran an optimization

procedure with LIN assumptions along a randomly selected

profile. The length profile was generated from a DEM

(digital elevation model), with a 2-m by 2-m horizontal

resolution, as well as from a 10-m by 10-m DEM that was

generated by the 2-m version. Because that profile did not

run in the orientation of the coordinate system, but rather in

a diagonal orientation, the resolution of the DEM did not fit

with the resolution of the length profile. For example, if we

assumed the DEM had a resolution of 10 m and we set

dl = 1, then the first 10 potential support locations would

not all have the same elevation coordinate and, indeed, the

grade breaks would have been more frequent.

Fluctuations for the 10-m DEM in dl indicated that, for a

range of dl = 1–15 m, the objective value varied only

marginally, whereas for dl C 15 m that value increased

(Fig. 3d). This meant that a better objective value could be

achieved by reducing dl. To illustrate the influence of the

resolution of the DEM, we also calculated the MinV

depending on dl on a 2-m DEM (Fig. 3e). In this case, we

observed only a marginal variation for dl \ 10. For that,

Eur J Forest Res (2012) 131:1439–1448 1443
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we would have recommended choosing dl B 10 m to

arrive at suitable results for practical applications. The

corresponding support heights for Fig. 3d were for the

dl = 10-m resolutions 13, 9, 11, 12, and 8 m, whereas for

dl = 1 m, those heights were 13, 8, 12, 10, or 8 m.

If we wanted to achieve the absolutely minimum

objective value, we applied the following consideration

when selecting dl. Assuming that the length profile ran in

the orientation of the coordinate system (not diagonally),

we could then expect similar MinV if the resolution of the

terrain model divided by dl was an integer. This was

because, over short intervals, the critical locations for the

intermediate supports fell on the data points (i.e. where

peaks and grade breaks occurred). For example, if dl was

1 m and the horizontal resolution was 10 m, then the

possible critical point at 10 m from the headspar could

serve as a potential intermediate support. This was also true

for dl = 2, 5 and 10 m, which provided the same MinV. In

our case, we predicted a diagonal cable line that would

cross 505 raster cells within a horizontal distance of 400 m

(based on a 10-m DEM resolution). The average horizontal

length of cable line per cell was 7.9 m (or, in the worst

case,
ffiffiffi
2
p 	

2 m). Because we found variation in the length of

cable line per cell, it was difficult to make general

recommendations for choosing dl. However, as shown in

Fig. 3d and e, if we chose a dl that was less than the

resolution of the DEM/2, then we achieved the absolute

minimal objective value.

The height of intermediate supports was defined by

parameters hmin, hmax and dh. Whereas the first two were

specified through the characteristics of the cable system, dh

could vary. Here, the influence of dh on calculation speed

proved comparable to that of dl described above (Fig. 3b). If

dh was altered (cf., Fig. 3a), the objective became minimal

for small values of dh and became substantially worse for

larger dh. Term dh also had to be sufficiently small to pro-

duce support heights with an overall minimum MinV.

Therefore, we could recommend that dh be less than 1 m in

order to acquire suitable results for practical applications.

Implementation

We evaluated our approach in Matlab by considering first-

and second-order elements of Zweifel’s Taylor series

procedure for catenary equations. Our implementation

featured an interface to import a longitudinal section

between head and tail spars for a specific cable road, as

obtained from a GIS system.
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Model application

The purpose of our model application was to (1) compare

the CTC and LIN approaches for a real-world cable layout

in a test area and (2) investigate the effect of a three-span

simplification.

Test area

The test area was located on the northern slopes of the

Swiss Alps in the region of Einsiedeln (central Switzer-

land; UTM Coordinates, 47.127557/8.846569). We ran-

domly chose an area typical for cable yarding that is

characterized by a low soil-bearing capacity and slopes

between 25 and 50%. The design of the cable required

geometric information about the longitudinal profile, which

could be obtained in three ways—field survey, manual

extraction with a contour map, or output from a digital

terrain model. We determined the geometry of the longi-

tudinal sections from the DEM via SwissTopo, which

covers all of Switzerland at a 2 m by 2 m resolution. We

then generated the 10 m by 10 m resolution through

extrapolation to get a smoother ground profile. Table 1

presents the properties for the five longitudinal sections for

our mobile application. Profile lengths varied between 230

and 990 m, while the average slope was 18–45%. Table 2

lists the engineering design values used here, which are

typical for the type of cable system usually applied.

The following graph parameter values were used for our

optimization: dl = 10 m, lmin = 30 m, lmax = 1,000 m,

hmin = 8 m, hmax = 14 m and dh = 1 m.

Comparison between LIN and CTC approaches

Figure 4 illustrates the differences between CTC and LIN

approaches for a two-span skyline structure. Here, the

horizontal component of the tensile force was assumed to

be 90 kN. Positioning a 20-kN load at the two mid-span

positions resulted in an increase in tensile force of about

30% for the short span and about 60% for the large span

(Fig. 4, upper part). At the same time, our CTC approach

resulted in a smaller mid-span deflection of the load path,

by approximately 10% for span 1 and 30% for span 2. This

comparison demonstrated that the CTC approach was more

appropriate.

We optimized the intermediate support layout and

studied the configuration values for the optimized solution

(Tables 3, 4). Values for length profile 1 are shown in

Fig. 5. To calculate the LIN solution, we assumed the same

basic tensile force (T0 = T0,opt) that was achieved via CTC.

With CTC, fewer intermediate supports were necessary

to cover a particular length, especially for long profiles.

The average length of a span increased from 122 to 159 m

(?30%) for Q = 25 kN and from 164 to 182 m (?11%)

for Q = 20 kN. If the number of intermediate supports was

not reduced, the heights of the intermediate supports had to

be decreased. In general, the longer the length profile, the

greater the impact of the CTC approach on heights and

numbers of intermediate supports.

The optimum basic tensile (T0,opt) for the best solution

varied from 98 to 148 kN for load Q = 25 kN and from

119 to 144 kN for Q = 20 kN. For all cases, the maximum

acting tensile force (Tmax) in the system ranged from 167 to

178 kN, that is, an increase in basic tensile force of about

20–80% while the load was moving over the span.

Therefore, the greater the length of the longest span, the

higher the tensile force tended to be.

Because equations associated with the CTC approach

are nonlinear, they are solved numerically through an

iterative method. Although this is implemented efficiently

with the bi-section algorithm (Forsythe et al. 1976), cal-

culation times are about 30–60 times higher compared with

Table 1 Properties of the

longitudinal sections
Line nr. 1 2 3 4 5

Length (m) 570 470 990 800 230

Height difference (dm) 2,508 1,600 -2,568 1,464 -1,040

Average slope (0..1) 0.44 0.34 -0.26 0.18 -0.45

Table 2 Engineering design

values of the cable system
Property Abbreviation Unit Value

Load weight Q kN 20; 25

Self-weight of the skyline qS kN/m 0.0228

Self-weight of the mainline qm kN/m 0.0058

Cross-sectional area of the skyline A mm2 380

Design strength Ta kN 179

E module E kN/mm2 100

Height of the head spar hHS m 11
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the linear method. Nevertheless, we were able to solve all

of our CTC applications in less than 1 min.

Effect of three-span representations

To assess how a ‘‘three-span representation’’ can affect

results, we calculated the mid-span deflection (ym) of a load

path, for examples, shown in Table 5. Generally, the

variations were small, just a few centimetres. However, for

a long cable line (e.g. cable road nr. 3), fluctuations in

deflection were slightly higher, ranging from 9 to 22 cm

(max. difference 4%). Furthermore, the ‘‘three-span

representation’’ deflection was always larger than that

calculated when using the ‘‘all-span representation’’ due to

the incorporation of an additional safety factor.

Discussion and conclusions

Our research was aimed at (1) developing a method for

identifying the optimum intermediate support layout for a

cable-yarding harvest operation, (2) comparing the optimi-

zation procedures for two approaches to cable mechanics—

linearized versus close-to-catenary—and (3) investigating
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Fig. 4 Effect of two

mechanical methods. The linear

approach (LIN) assumed

constant tensile forces, whereas

the close-to-catenary (CTC)

method mapped nonlinear

behaviour. The main gaps were

nonlinear behaviour of the

tensile force, resulting in less

mid-span deflection and

increased tensile force when the

load was moving over the span

Table 3 Configuration values for tested length profiles (Q = 25 kN)

Line nr. 1 2 3 4 5

T0,opt lower bound (kN) 98 124 127 148 127

T0,opt upper bound (kN) 99 128 128 149 128

Calculation time optimization (s)

CTC 68.6 35.8 150.2 78.5 10.2

LIN 1.1 0.6 3.5 2.8 0.1

Heights of supports (m), intermeidate supports in bold letters

CTC [11, 14, 10, 11] [11, 14, 10, 10] [11, 10, 12, 14, 12, 10] [11, 12, 10, 9, 12, 9, 12] [11, 11, 11]

LIN [11, 9, 12, 13, 13, 9] [11, 13, 14, 11, 10] [11, 11, 12, 13, 14, 13, 10] [11, 13, 9, 8, 9, 12, 8, 9, 12] [11, 14, 13]

Average length of a span (m)

CTC 190 157 198 133 115

LIN 114 118 165 100 115

Tmax (kN)

CTC 178.0 173.0 177.3 178 173.3

LIN 160.3 168.7 160.5 173.1 173.4

Cable mechanics assumptions are LIN for linearized and CTC for close-to-catenary
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the effect of simplifications on the result (three-span

representation).

This study produced the following major findings. First,

combining these mechanical approaches with a layout

representation of intermediate supports (mathematical

graph) led to optimality in less than 3 min of calculation

time. Second, the CTC approach resulted in larger spans

and fewer intermediate supports being required. Here, the

average length of a span increased up to 60% for a single

cable corridor and by about 10–30% over all tested cable

corridors. In most cases, both the number and height of

those intermediate supports decreased. Third, simplifica-

tion via a three-span representation had only a marginal

influence on the accuracy of the load path for a skyline.

Hence, the deflection was always overestimated, resulting

in a ‘‘hidden’’ structural safety. Fourth, the basic tensile

force increased significantly (by up to 80%) when the load

was located at the mid-span position of the largest span.

To our knowledge, the approach presented here is the first

to optimize the intermediate support layout while concur-

rently considering CTC cable mechanics for multi-span

cable road configurations. Although the procedure outlined

by Leitner et al. (1994) is based on an exact optimization

procedure, it lacks adequate cable mechanics, using the

formula of Pestal (1961). There, the outcome is always

shorter spans and more intermediate supports. By contrast,

the method described by Sessions (1992) and Chung and

Sessions (2003) is based on exact cable mechanics (catenary

analysis), but relies on simple heuristics that do not identify

the real, optimum layout for intermediate support.

Our findings have important implications. First, opera-

tions practitioners could benefit from this smarter cable

Table 4 Configuration values for tested length profiles (Q = 20 kN)

Line nr. 1 2 3 4 5

T0,opt lower bound [kN] 119 129 137 143 143

T0,opt upper bound [kN] 120 142 139 144 144

Calculation time optimization (s)

CTC 74.6 39.3 177.7 100.9 10.4

LIN 1.1 0.7 3.5 2.1 0.1

Heights of supports (m), intermeidate supports in bold letters

CTC [11, 10, 9, 8] [11, 12, 9, 10] [11, 13, 11, 11, 9] [11, 11, 12, 11, 10] [11, 10, 10]

LIN [11, 11, 12, 13] [11, 12, 10, 9, 10] [11, 9, 14, 12, 12, 9] [11, 11, 14, 13, 14] [11, 11, 11]

Average length of a span (m)

CTC 190 157 248 200 115

LIN 190 118 198 200 115

Tmax (kN)

CTC 177.7 167.0 176.2 177.1 173.3

LIN 177.0 158.7 172.2 176.1 173.3

Cable mechanics assumptions are LIN for linearized and CTC for close-to-catenary

0 100 200 300 400 500 600
0

50

100

150

200

250

300

14m

10m

11m

9m

13m

13m

12m

9m
Head 
Spar

Length [m]

H
ei

gt
h 

[m
]

Int. supports LIN [n = 4]

Int. supports CTC [n = 2]

load path CTC
load path LIN

convex terrain

Fig. 5 Effect of applying the
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versus the linear (LIN) approach

(Length profile nr. 1). More

intermediate supports were

required when implementing the

latter
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road layout that requires lower set-up and dismantling

costs. Second, safety codes for skyline systems should be

checked for consistency with our findings. Standing skyline

configurations typically have fixed anchoring at the head

and tail spars. There, tensile force is usually controlled only

for the unloaded configuration, and it is assumed that the

design considers that this force increases upon loading.

However, that heavily depends on the geometric layout of

the system, whereas some codes provide only rules of

thumb to account for that effect.

Further research is needed to resolve the following tasks.

1. For our objective function, we did not use real costs

and did not distinguish between intermediate supports

that are artificial or natural (e.g. trees), although that

selection of material will lead to completely different

optimum solutions. This is important because con-

structing an artificial support is much more expensive

than using an existing tree. Future evaluations should

involve the formulation of a real-cost function and a

differentiation between artificial and natural supports.

2. The calculation time associated with implementing the

CTC approach is about 30 to 60 times longer than for

LIN. Nevertheless, that period is sufficient when

running a single application. However, to use our

model as a component when optimizing for large

areas, that speed must be increased.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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transporte. Wien und München, Georg Fromme & Co

Sessions J (1992) Unpublished software developed for educational

use. Oregon State University, Corvallis, OR

Sessions J (2002) LOGGERPC V. 4.0. Department of Forest

Engineering, Oregon State University, Corvallis, OR, USA

Suddarth SK (1970) Analysis of cable systems—the grapple-rigged

running skyline. Skyline Logging Symp. Proc., Oregon State

University

Zweifel O (1960) Seilbahnberechnung bei beidseitig verankerten

Tragseilen. Schweizerische Bauzeitung 78(1/2):11

Table 5 Differences in deflection between the ‘‘three-span representation’’ and the ‘‘all-span approach’’ for several cable roads (design

parameters: Q = 20 kN, qS = 0.02 kN/m, qM = 0 kN/m, T0 = 100 kN, E = 160 kN/mm2, A = 209 mm2)

Cable road nr. Span nr. Mid-span deflection (ym) (m) Difference (%) Difference (m) Span length a (m) Span height b (m)

3-Span All-span

3 1 5.13 4.96 3.3 0.16 100 -28

2 7.75 7.54 2.8 0.21 160 -34

3 20.00 19.91 0.5 0.09 440 -119

4 8.91 8.70 2.4 0.21 180 -51

5 5.74 5.52 4.0 0.22 110 -36
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