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Abstract Let S be a set of at least five points in the plane, not all on a line. Suppose
that for any three points a, b, c ∈ S the nine-point center of triangle abc also belongs
to S. We show that S must be dense in the plane. We also consider several problems
about partitioning the plane into two sets containing their triangle centers.
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1 Introduction

According to Ambrus and Bezdek (2007), the investigation of geometric iterative pro-
cesses was initiated by L.F. Tóth. The main idea is as follows: start with a certain
subset of a Euclidean space and then add to it at each step new points according to
a prescribed geometric rule. The problem is to describe the structure of the limit set,
or just to prove that it has a specific property, usually that it is dense. Many problems
stemming from this general idea have been considered (e.g. Bezdek and Pach 1985;
Cooper and Walters 2010; Grüne and Kamali 2008; Ismailescu and Radoičić 2004).

Iorio et al. (2005) proposed the following version of iterative processes: at each step
add the circumcenters (incenters, orthocenters, centroids, respectively) of all non-
degenerate triangles determined by three points from the existing set. They proved
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that in the case of the circumcenters the iterative process results in a dense sub-
set of the plane, while for the incenters and centroids they found that the limit set
must be dense in its convex hull. The corresponding problem for the orthocenters
turned out to be more difficult and it was solved only later by Ambrus and Bezdek
(Ambrus and Bezdek 2006; Ambrus 2006). They showed that any subset of the plane
containing its orthocenters must be either a subset of a rectangular hyperbola or every-
where dense in the plane. Concerning higher dimensions, analogous theorems for the
incenter and circumcenter versions of the problem were shown in Ambrus and Bezdek
(2006, 2007).

In the first part of this paper we consider a similar problem based on the nine-point
center iterations. The nine-point center of a triangle abc is the center of the circle
that passes through the midpoints of the sides of abc (Johnson 1960). We prove the
following result.

Theorem 1 (Nine-point center) Let S be a set of at least five points in the plane, not
all on a line, such that for every three non-collinear points in S, the nine-point center
of the triangle determined by these three points is also in S. Then S is everywhere
dense in the plane.

The method we use in the proof shows an interesting combination of calculus and
plane geometry. Theorem 1 gives an answer analogous to that of the circumcenter
problem. We explain this by the fact that the circumcenter and the nine-point center
are triangle centers that can lie outside of the triangle, unlike the centroid and the
incenter which are always strictly inside the triangle.

While working on this paper we also tried to deduce a similar result which would
strengthen the previous results about the circumcenters and incenters, but we did not
get to a final conclusion. Instead we can offer the following problem.

Problem 1 Let S be a set of at least three points in the plane, not all on a line, such
that for every three non-collinear points in S, either the circumcenter or the incenter
of the triangle determined by these three points is also in S. Is S necessarily dense in
its convex hull?

In the second part of the paper we introduce a new variant of the problems, by
asking whether it is possible to partition the plane in a nontrivial way into two sets
satisfying the above properties (i.e., containing their triangle centers). First we prove
that there is no nontrivial partition in the case of the orthocenters. We learned about
this problem from M. Treml.

Theorem 2 (Orthocenter) Suppose that the plane is colored in two colors so that for
any three non-collinear points a, b, c of the same color the orthocenter of triangle
abc has the same color. Then the whole plane is colored in one color.

It seems to be more difficult to decide whether the same conclusion holds for an
arbitrary (finite or countable) number of colors.

Problem 2 Suppose that the plane is colored in finitely (countably) many colors so
that for any three non-collinear points a, b, c of the same color the orthocenter of
triangle abc has the same color. Does it necessarily follow that the whole plane is
colored in one color?
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We show an analogous theorem for the circumcenters in an arbitrary dimension.

Theorem 3 (Circumcenter) Suppose that R
n (n ≥ 2) is colored in two colors so that

for any set A = {a1, . . . , an+1} of n + 1 affinely independent points of the same color
the circumcenter of the simplex spanned by A has the same color. Then the whole
space R

n is colored in one color.

It can seem plausible that similar statements are also true for other triangle/simplex
centers. However, it is easy to see that for the centroids and incenters a simple partition
into two halfspaces (with some freedom on the boundary hyperplane) constitutes a
counterexample. The question is whether this is basically the only counterexample.
We show that in the case of the centroids the answer is no, if we assume the axiom of
choice.

Theorem 4 (Centroid) (AC assumed) There exists a partition of R
n into two every-

where dense sets such that for any n + 1 affinely independent points from one set the
centroid of the simplex spanned by them belongs to the same set.

Finally, we are left with the following two problems.

Problem 3 Is it possible to partition the plane into two parts in a nontrivial way so
that for any three non-collinear points a, b, c from one part the incenter of triangle
abc also belongs to the same part? An analogous question can be also asked for R

n .

Problem 4 Suppose that the plane is colored in two colors so that for any three non-
collinear points a, b, c of the same color the nine-point center of triangle abc has the
same color. Is the whole plane necessarily colored in one color?

2 Sets containing their nine-point centers

In this section we prove Theorem 1.

Calculus lemma. First, we show a calculus lemma, which is used in the proof. The
lemma can be viewed as a version of the Banach fixed point theorem.

Let I ⊂ R be a closed interval. Recall that a function f : I → I is called a
contraction with constant k (where k < 1) if

| f (x) − f (y)| ≤ k|x − y|, for all x, y ∈ I.

Lemma 5 Let I ⊂ R be a closed interval and f : I → I a contraction with con-
stant k. Consider a sequence (xn)n≥1, such that x1 ∈ I and

xn+1 = f (xn) + εn (n ≥ 1),

where (εn)n≥1 is a given sequence (it is assumed that xn ∈ I for all n). If
limn→∞ εn = 0, then xn converges to c, a unique fixed point of f in I .
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Proof By the Banach fixed point theorem we know that function f has a unique fixed
point c ∈ I . By using induction (and triangle inequality) it is easy to deduce the
inequality:

|xn − c| ≤
n−1∑

i=1

|εi | · kn−1−i + kn−1|x1 − c|, for n ≥ 2. (1)

Let ε > 0 be arbitrary. Since εn converges, there is an M such that |εn| ≤ M for all n.
We can choose an n0 such that for all n ≥ n0 we have |εn| ≤ ε, (again, since εn → 0)
and, at the same time, kn M ≤ ε and kn−1|x1 − c| ≤ ε. Going back to (1), for n ≥ 2n0
we have

|xn − c| ≤
n−1∑

i=1

|εi | · kn−1−i + kn−1|x1 − c|

≤ ε(1 + k + · · · + kn−1−n0) + kn−n0 M(1 + k + · · · + kn0−2) + kn−1|x1 − c|
≤ 2ε

1 − k
+ ε.

Since ε was arbitrary, we conclude that limn→∞ xn = c. �	
Technical lemmas. We state several geometric lemmas, omitting their proofs, which
are straightforward and a bit technical (e.g., one can use the method of coordinates).

Lemma 6 If a, b, c are points lying on a line l and x is a point not lying on line l,
then the nine-point center of at least one of the triangles abx, acx, bcx does not lie
on l.

Lemma 7 Let abc be a triangle with 
 bac = π
6 . If the nine-point center of �abc lies

on line ab, then abc is an isosceles triangle with base ac.

Lemma 8 Let abc be a triangle with 
 bac = π
6 and 
 cba > π

2 . If n is the nine-point
center of �abc, then 
 ban /∈ {π

6 , π
3 }.

Lemma 9 Let abc be a triangle with 
 bac = π
3 . If n is the nine-point center of �abc,

then 
 ban = 
 can = π
6 .

Main lemmas. We introduce two definitions which will be useful throughout the
proof. An isosceles triangle with an angle of 2π/3 is called a nice triangle. We say
that a point c is excellent for ab if abc is a non-degenerate triangle with non-obtuse
angles at vertices a and b.

In order to prove Theorem 1 without loss of generality we can assume that the set
S is closed, since from the fact that S satisfies the conditions of the theorem it follows
that S satisfies them as well. So, throughout this section we assume that S is a closed
set satisfying the conditions of the theorem and the goal is to prove that S = R

2.
The following lemma is the heart of the proof of Theorem 1.
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(a) (b)

Fig. 1 a Lemma 10, case 1, the sequence of iterated nine-point centers converging to c; b Lemma 10, case
2.1, sequence of iterated nice triangle vertices eventually becomes excellent

Lemma 10 For any two points a, b ∈ S, there is some c ∈ S such that �abc is nice
with base ab.

Proof WLOG we can assume that a = (−1, 0) and b = (1, 0). We distinguish two
cases.

1. There is a point c0 ∈ S that is excellent for ab. Define recursively the sequence of
points (ck)k≥0 as follows: ck+1 is the nine-point center of �ckab for k ≥ 1 (see
Fig. 1a). Let c0 = (p, q). Note that p ∈ [−1, 1], since c0 is excellent for ab. It is
easy to get the following recursive formula for ck = (xk, yk):

ck =
(

xk−1

2
,

1 − x2
k−1

4yk−1
+ yk−1

4

)
.

Hence,

xk = p

2k
and yk+1 = yk

4
+ 22k − p2

22k+2 yk
for k ≥ 0.

Obviously, all yk have the same sign as y0 = q. WLOG suppose that they are
positive. We have that

yk+1 ≥ 2

√
yk

4
· 22k − p2

22k+2 yk
= 1

2

√

1 − p2

22k
≥

√
15

8
,

for k ≥ 2. Let I = [
√

15
8 ,∞). Function f given by f (x) = 1

4 (x + 1
x ) maps I to I

and is a contraction with constant 49/60, since

| f ′(x)| =
∣∣∣∣
1

4
− 1

4x2

∣∣∣∣ ≤ 49

60
.
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On the other hand,

lim
k→∞

p2

22k+2 yk
= 0,

so we can apply Lemma 5 to conclude that limk→∞ yk = 1/
√

3 (a unique fixed
point of f in I ). Also, limk→∞ xk = 0, and putting this together we get that
limk→∞ ck = (0, 1/

√
3), i.e., the sequence (ck) converges to the point c such that

�abc is nice. Since S is closed, c ∈ S and we are done in this case.
2. No point in S is excellent for ab. It turns out that this case cannot happen. For the

sake of obtaining a contradiction we assume the contrary. Let S′ (resp. S′′) be the
set of points p ∈ S such that π/2 < 
 pba < π (resp. π/2 < 
 pab < π ). By
assumption all points from S lie either in S′ ∪ S′′ or on line ab. WLOG we may
assume that S′ is non-empty. Again we split the analysis into several subcases.
2.1 There is a point c0 ∈ S such that 0 < 
 bac0 < π/6. Clearly, c0 ∈ S′, i.e.,


 c0ba > π/2. Hence, point b is excellent for ac0 and from the previous
case we know that c1 ∈ S, where c1 is a point such that �ac0c1 is nice with
base ac0 and b and c1 are on the same side of ac0 (see Fig. 1b). Since c1 is
not excellent for ab, we conclude that b is excellent for c1, so c2 lies in S,
where c2 is a point such that �ac1c2 is nice with base ac1 and b and c2 are
on the same side of ac1. By proceeding in this manner we get an infinite
sequence of points c0, c1, c2, . . . lying on segments ac0 and ac1. Obviously,
limk→∞ ack = 0, and all points ck for large enough k are excellent for ab,
which is a contradiction.

2.2 There is a point c0 ∈ S such that π/6 < 
 bac0 < π/2 and 
 bac0 
= π/3.
Similarly as in the previous case we can get a point c1 ∈ S such that 0 <

 bac1 < π/6, so this case reduces to the previous one.

2.3 There is a point c0 ∈ S such that 
 bac0 = π/6. Let c1 be the nine-point
center of �abc0. If 
 bac1 
= 0, then c1 ∈ S′ and 
 bac1 /∈ {π/6, π/3}
(by Lemma 8), so we are done by cases 2.1 and 2.2. Let us suppose that

 bac1 = 0, i.e., c1 lies on line ab. By Lemma 7 this is possible only if
�abc0 is nice (with base ac0) and c1 = b. Therefore, there are two possible
positions for point c0. WLOG we can assume that c0 lies in the upper half-
plane. Denote by c0 the point symmetric to c0 with respect to line ab. Since
there are at least five points in S, there is at least one point x ∈ S different
from a, b, c0, c0.

2.3.1 x ∈ S′′. We are done, unless 
 xba ∈ {π
6 , π

3 }.
If 
 xba = π

6 , then we are done, unless �abx is nice with base bx .
So in this case there are two possible positions for x , but in any case
point a is excellent for c0x (see Fig. 2a, b). Hence, the point y that
forms with c0 and x a nice triangle (with base c0x) also belongs to S.
One can check that y is excellent for ab. Contradiction.
If 
 xba = π

3 , then by Lemma 9 the nine-point center of �abx is a
point that brings us back to the previous case.
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(a) (b)

Fig. 2 Lemma 10, case 2.3, for any of two different positions of x point y is excellent for ab, in the second
case 
 bay = π/2

2.3.2 x lies on line ab. By Lemma 6 the nine-point center of at least one
of the triangles xac0 and xbc0 does not lie on line ab. Moreover, it
is easy to see that at least one of them does not coincide with c0 or c0
and also does not lie on line ab. This returns us to one of the already
considered cases.

2.4 There is a point c0 ∈ S such that 
 bac0 = π/3. By Lemma 9 the nine-point
center of �abc0 must be a point satisfying the condition of the previous case.

�	
Having Lemma 10, it is easy to prove the following lemma, from which Theorem 1

will follow immediately.

Lemma 11 For any two points a, b ∈ S, there is a point c ∈ S, such that c lies on
segment ab and ca/cb ∈ { 1

2 , 2}.
Proof By Lemma 10 there is n ∈ S such that �abn is nice with base ab. Consider the
points x and x ′ such that �bnx and �bnx ′ are nice (with base bn) and x ′ lies on ab,
while x is on the other side of bn (see Fig. 3). By Lemma 10 applied to bn we conclude
that either x or x ′ must be in S. If x ′ ∈ S, then we are done, so let us assume that
x ∈ S. Let u be a point on segment bn such that bu : nu = 2. Since u is the nine-point

Fig. 3 Lemma 11, iterated nice triangles
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center of abx , it must be in S. Let y be a point symmetric to x w.r.t. n. Analogously,
we can assume that y ∈ S. Now u is excellent for xy, and therefore w ∈ S, where w

is symmetric to x w.r.t. u. Finally, w is excellent for bn and therefore x ′ ∈ S. �	
Proof of Theorem 1 Recall that we are proving Theorem 1 under the additional con-
dition that S is a closed set. Once we are done with this proof, it is enough to apply
the theorem to set S to conclude that it holds in full generality.

By Lemma 11 we have that S = conv(S), which implies that S contains a disc D.
Let a be an arbitrary point in the plane. Consider a circle C with center a which
intersects the interior of D. Let x, y, z be three arbitrary points in C ∩ int (D). If
we choose x, y, z to be close enough to each other, then the unique triangle x ′y′z′,
which has x, y, z as the midpoints of its sides, must be contained in int (D). Therefore,
x ′, y′, z′ ∈ S and a is the nine-point center of triangle x ′y′z′. Thus, a ∈ S and, since a
was arbitrary, we conclude that S = R

2. �	
Remark It is easy to see from the proof that the only exceptional configuration of three
points is a triangle with angles π/6, π/6, 2π/3 and the only exceptional configuration
of four points is the vertex set of an equilateral triangle with its center.

3 Partitioning the Euclidean space into sets containing their simplex centers

Here we prove Theorems 2, 3 and 4.

Proof of Theorem 2 Suppose the contrary. Then there exists a line l which contains
points of different colors. We can find four points m, n, p, q in that order on line l
such that m and n have the same color, while p and q have different colors.

Choose line l to be the x-axis and let m = (0, 0), n = (a, 0), p = (b, 0), q = (c, 0).
Without loss of generality we assume that a < b < c. Consider the points

r =
(

bc

b + c − a
,

bc

b + c − a
− a

)
and s =

(
bc

b + c − a
,− bc

b + c − a

)
.

It is easy to check that points m, n, r, s form an orthocentric system as well as points
p, q, r, s (Fig. 4a). Now, no matter how the points r and s are colored, we have an
orthocentric system with three points of one color and the fourth point of different
color, which is a contradiction. �	
Proof of Theorem 3 Let us denote the colors by 1 and −1. The proof is based on the
following two simple observations.

(1) Any (n − 2)-sphere contains n affinely independent points of the same color.
(2) If S is an (n − 1)-sphere with center of color i , then for any hyperplane H there

is at most one hyperplane H ′ parallel to H such that H ∩ S contains n affinely
independent points of color −i .

In order to prove (1) it is enough to notice that we can choose 2n − 1 points on the
(n −2)-sphere so that any n of them are affinely independent. Then by the pigeonhole
principle we can find n points of the same color. As for the claim (2), suppose that there
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(a) (b)

Fig. 4 a Proof of Theorem 2; b proof of Theorem 3

are two such hyperplanes H ′ and H ′′. Then we can find affinely independent points
a1, . . . , an of color −i in H ′ ∩ S that span H ′ and by taking a point an+1 ∈ H ′′ ∩ S
of the same color we get a simplex a1 . . . an+1 whose all vertices have color −i and
whose circumcenter, center of S, has color i , which is a contradiction.

Now we prove the theorem by contradiction. Suppose that there are two points of
different colors: a of color 1 and b of color −1. For simplicity assume that |ab| = 1.
Consider spheres S′ and S′′ centered at a with radii 1

2 and 1
3 . Let H be a hyperplane

orthogonal to ab. For any r ∈ (0, 1) let Sr be a (n − 1)-sphere with center b and
radius r (Fig. 4b). It is easy to see that Sr ∩ S′ and Sr ∩ S′′ are (n − 2)-spheres lying in
hyperplanes parallel to H . By (2) we can choose r ∈ (0, 1) so that Sr ∩ S′ as well as
Sr ∩S′′ does not contain n affinely independent points of color −1. By (1) we conclude
that Sr ∩ S′ and Sr ∩ S′′ contain n affinely independent points of color 1. But now (2)
applied to the sphere Sr gives a contradiction. �	

The following proof of Theorem 4 is largely inspired by the discussion that we had
on MathOverflow (2010) forum (the idea of the proof is due to Thomas Kragh).

Proof of Theorem 4 First, we prove that there exists a basis Bn = {vα} for R
n , con-

sidered as a vector space over the rationals Q, which is everywhere dense in R
n . Let

I1, I2, . . . be the list of all open balls with rational centers and radii. We construct
inductively a set {v1, v2, . . . } of linearly independent vectors such that vk ∈ Ik for
all k. Let v1 ∈ I1 be arbitrary. Suppose we have already chosen v1 ∈ I1, . . . , vk ∈ Ik

that are linearly independent. Now there are only countably many vectors in Ik+1
that are equal to a linear combination of vectors v1, . . . , vk with rational coefficients.
Hence, we can pick vk+1 ∈ Ik+1 so that v1, . . . , vk, vk+1 are linearly independent. The
inductive step is done and, therefore, we have a countable set of linearly independent
vectors, which is everywhere dense in R

n . By the well-known theorem we can extend
this set to a basis Bn of R

n .
Now we can finish the proof of the theorem. We partition R

n into two parts A
and B by using the basis Bn in the following way. For an arbitrary v ∈ R

n , let
v = r1vα1 +· · ·+rkvαk be its unique representation in the basis Bn . If r1+· · ·+rk ≥ 0,
we put v in the set A, otherwise, we put it in B. It is easy to check that this partition
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satisfies the centroid-condition and also both A and B are clearly everywhere dense,
since the basis is everywhere dense. �	
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