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Introduction

Essentially all cellular functions rely on the correct
spatial organization of proteins. In epithelial cells,
this is manifested by a separation of the plasma
membrane into an apical and a basolateral area,
which is required for vectorial transport of solutes,
and by the formation of junctional complexes to
guarantee barrier function. In this article, we sum-
marize the current knowledge of PDZ protein-based
multimeric protein complexes in renal proximal
tubular (PT) cells (for definition of the PDZ domain,
see below), which are involved in the organization of
the brush border membrane, the basolateral mem-
brane and the tight junction of PT cells. In addition,
we also consider a fourth subcellular structure, the
subapical compartment (SAC). This compartment
has been ascribed to the recycling of endocytosed
proteins and also to the routing of endocytosed
material to the lysosomes.

In renal proximal tubules, the majority of filtered
solutes and water are reabsorbed by transepithelial
transport processes and by paracellular pathways
[68]. In addition, PT-cells exhibit an exceptionally
high rate of endocytosis to recover small peptides and
hormones. On a morphological basis, three different
distinct epithelial cells can be distinguished along the
proximal tubules. In the S1 segment, brush borders
are formed by long microvilli, whereas the appear-
ance of the microvilli in the S2 and S3 segments is less
pronounced and varies among different species [37].
Although this longitudinal morphological heteroge-
neity of PT cells is also reflected by functional dif-
ferences, in this article, we will not distinguish among
proximal tubular segments, i.e., the PDZ-based pro-
tein complexes discussed below are assumed to be of
uniform nature along the entire proximal tubule.

The PDZ module

Numerous protein domains have been described that
are implicated in protein-protein interactions (see e.g.,
www.mshri.on.ca). Based on sequence similarities be-
tween the post-synaptic density protein PSD-95, the
Drosophila junctional protein Disc-large and the tight
junctional protein ZO1, one such domain was defined
as PDZ. PDZ proteins, among other functions, are
primarily thought to organize large functional units
such as synapses [55] or tight junctions [19]. The
characteristics of PDZ domains have been reviewed
recently [14, 15, 28, 55] and are summarized as follows:

In mammals, over 400 different PDZ proteins
have been identified and grouped into three major
families according to their domain organization: A
first family encompasses proteins, which only contain
PDZ domains. The second, MAGUK family (mem-
brane-associated guanylate kinases), contains one or
more PDZ domains besides a GuK domain (gua-
nylate kinase domain) and a SH3 domain. A third
family was defined containing proteins of multiple
PDZ domains together with a variable number of
other protein domains.

The PDZ domain comprises between 80 and 90
amino-acid residues of which the three-dimensional
structure has been basically resolved (see http://
smart.enbl-heidelberg.de). The building principle is a
sandwich structure of 6 b-strands and two a-helices
that form a hydrophobic cleft into which a short pep-
tide can be accommodated. As an example, the struc-
tural aspect of the CFTR-NHERF interaction has
been discussed in detail [38]. In most cases, PDZ
domains bind to a C-terminal amino-acid motif. Three
different classes of PDZ binding motifs have been
recognized. They all include the last four C-terminal
amino acids, whose characteristics of interaction can
be modulated by more upstream amino acids [55].
Besides the classical canonical determinants, addi-
tional PDZ binding motifs have been described and
therefore an extended classification has been proposedCorrespondence to: J. Biber; email: JuergBiber@access.unizh.ch
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[29]. Despite the fact that PDZ domains exhibit high
sequence similarities, PDZ-mediated interactions are
extremely specific. Based on the nature of the residues
residing in helix B1 and the bB strand, a classification
into 25 different subgroups was proposed [3]. In con-
trast to many other protein-protein interactions, PDZ-
based interactions are generally regarded as being
constitutive and independent of secondary modifica-
tions. However, there are no general rules. For exam-
ple, the association of the b2-receptor or of the
multidrug resistance protein MRP2 with PDZ proteins
has been shown to be regulated by phosphorylation
reactions [22, 24]. In addition to the binding of PDZ
domains to C-termini of proteins, the formation of
hetero- and homodimers of PDZ proteins via direct
PDZ-PDZ domain interactions has been reported.
Furthermore, binding of PDZ domains to lipids, such
as phosphatidylinositol-4,5-bisphosphate, was dem-
onstrated as well (for review see Ref. 55).

PDZ Proteins Expressed in Renal Proximal Tubules

For clarity, we shall assign PDZ proteins of PT-cells
to four subcellular regions: the brush border, the
subapical compartment, the tight junctional complex
and the basolateral membrane (Fig. 1). However, we
do not claim that there is no interchange of PDZ
proteins between the different regions, e.g., between
the brush border and the subapical compartment.

BRUSH BORDER

A number of PDZ proteins have been shown to reside
within the microvilli at the apical pole of PT-cells.
These PDZ proteins may act as scaffolds for a variety
of apical transporters and may provide anchoring
sites for a correct spatial arrangement of apically
localized regulatory elements such as kinases, phos-
pholipases and receptors.

NHERF1 (also named EBP50; Ref. 4), originally
identified as a regulatory factor of the Na/H-ex-
changer NHE3 [76], contains two PDZ domains and
one MERM (moesin/ezrin/radixin/merlin) binding
domain. Activated ezrin binds to the MERM domain
and so provides a link of NHERF1 to the actin net-
work [4]. There is good evidence that NHERF1 is
localized almost exclusively in the brush borders of
all proximal tubular segments [48, 60, 70]. As shown
in yeast assays, PDZ domains of NHERF1 also
interact with a number of solute transporters, such as
the Na/Pi-cotransporter NaPi-lla, the chloride-for-
mate exchanger CFEX, the urate/anion exchanger
URAT1, the organic cation transporter OCTN1 [2,
17] and the cystic fibrosis transmembrane conduc-
tance regulator CFTR [73]. In addition, interaction of
NHERF1 with several components of signalling
cascades have been reported as well (see below).

NHERF2 (also named E3KARP, Ref. 79), an
isoform of NHERF1, contains two PDZ domains in
tandem and an ezrin binding site. In heterologous
expression systems, such as yeast two-hybrid assays,
NHERF2 exhibited a similar interaction pattern with
membrane transporters and regulatory proteins as
NHERF1 [17]. A difference of the functional roles
between the NHERF isoforms may be envisaged
because apical expression of NHERF2 appears to be
species-dependent: NHERF2 was described in brush
borders of mouse renal PT�s, but has not been ob-
served in PT cells of rats [70].

PDZK1 (also named NaPi-Cap1, see Ref. 18), a
protein composed of four PDZ domains, was initially
identified by a yeast two-hybrid screen performed
against MAP17, a 17 kDa protein that is up-regu-
lated in kidney carcinomas [33, 34, 35]. Before, a
shorter version, diphor-1, which lacks the fourth
PDZ domain, had been cloned [12]. In PT cells of rats
and mice, PDZK1 is restricted to the brush borders
[18, 35, 48].

Results from yeast trap assays suggest that
PDZK1 associates with the same transporters as
NHERF1 [17]. In addition, MRP2 was reported to
interact with PDZK1 [34]. Furthermore, the finding

Fig. 1. Putative and established PDZ proteins in the renal proximal

tubular cell. PDZ proteins are assigned to the brush borders (api-

cal), to the basolateral site, to the subapical compartment (SAC)

and to the tight junction.
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that PDZK1 associates with D-AKAP2 [16], a dual
PKA binding protein [26], indicates that PDZK1
targets PKA activity to the brush border of PT cells.
A link of PDZK1 to the cytoskeletal network remains
unknown.

PDZ-RGS3 was found to interact with NaPi-lla
[18]. PDZ-RGS3 is a member of a protein family that
has the property to activate GTPases of heterotri-
meric G-proteins via RGS (regulator of G-protein
signalling) domain an [31]. Therefore, it could be
speculated that PDZ-RGS3 could provide a link be-
tween transporters and certain signalling pathways.

SUBAPICAL COMPARTMENT (SAC)

Attempts have been made to define this region as an
intracellular organelle [23]. The subapical region of
PT-cells is free of mitochondria and contains
numerous endocytotic and dense, long-shaped vesi-
cles; the latter likely deliver endocytosed and newly
synthesized material to the apical membrane [9].
Also, the SAC can be conceived of as a decision point
of membrane traffic, as demonstrated, for example, in
the case of the regulation of the NaPi-lla protein by
parathyroid hormone (PTH) [53]. Regarding PDZ
proteins residing in the SAC, only sparse information
is available.

PDZK2 (earlier referred to as NaPi-Cap2) was
identified by a yeast two-hybrid screen against the C-
terminus of NaPi-lla and has been localized to the
SAC [18]. At the amino-acid level, PDZK2 is 26%
identical to PDZK1 and contains four PDZ domains
in tandem. Thus far, there is no information about a
broader interaction palette of PDZK2. It is of interest
that the human ortholog, IKEPP, has been identified
in the context of the regulation of guanylyl cyclase C
[61], suggesting that PDZK2 may act as a similar
scaffolder for regulatory components in the PT cell.

CAL (CFTR-associated ligand), a single-PDZ-
domain protein, has been localized in the transgolgi
region and is thought to regulate the surface expres-
sion of CFTR by retention [8]. As CAL also interacts
with NaPi-lla (S. Gisler, unpublished results), it could
be hypothesized that CAL may regulate surface
expression of NaPi-lla or other apically localized
transporters as well. The cellular location of CAL in
PT cells, however, is not known.

PSD-95 (Post-Synaptic Density protein) is a
member of the MAGUK family. PSD-95 was re-
ported to interact with the multiligand endocytic
receptor megalin [40]. However, the precise cellular
distribution of PSD-95 in PT cells remains to be
determined. As megalin is constantly endocytosed
and recycled back to the apical membrane [9], this
suggests that PSD-95 could orchestrate the trafficking
of megalin through the SAC.

MAST205, a microtubule-associated serine/thre-
onine kinase, was originally cloned from testis [71].

Besides a kinase domain, MAST205 posseses one
PDZ domain at its carboxy end. A link of the dys-
trophin/utrophin network to the microtubules via an
interaction of the PDZ domain of MAST205 with 2-
syntrophin has been described [47]. Recently, an
association of MAST205 with NaPi-lla has been re-
vealed on the basis of yeast two-hybrid and bio-
chemical assays [18]. Although the cellular
localization of this protein in PT cells is not known, it
could be speculated that MAST205 may act as a
linker of the Na/Pi-cotransporter to the microtu-
bules. In fact, an involvement of microtubules in the
routing of internalized NaPi-lla proteins to lysosomes
has been descibed [46].

THE TIGHT-JUNCTIONAL COMPLEX

In epithelia, paracellular pathways are controlled by
the composition of the tight junctions. To date, 12
PDZ proteins have been associated with this macro-
molecular structure (for review, see Ref.19). In
addition to the capability to organize the tight-junc-
tional complex, tight-junctional PDZ proteins also
scaffold diverse proteins that are involved in signal-
ling pathways for cell growth and differentiation [59].
Not much is known about the expression and cellular
localization of PDZ proteins in tight junctions of PT
cells.

The MAGUK protein ZO-1 (zonula occludens
1), has been detected in PT cells [20]. ZO-1 associates
through the first PDZ domain with the tetraspan
proteins claudins. Out of 18 different claudins, clau-
din 2, 10 and 11 have been found in PT�s [1, 32]. As
ZO-2 and ZO-3 can be co-precipitated together with
ZO-1, it seems likely that ZO-2/3 are present in PT
cells as well. Tight junctional PDZ proteins are not
only determinants for the permeability characteristics
of tight junctions in PT�s, but may also be involved in
the regulation of transport functions. An example
may be the recently described association of the tight-
junctional PDZ protein MAGI-3 with frizzled-4,
which is part of the Wnt signalling pathway [78]. It is
of interest that frizzled proteins have been implicated
in the regulation of renal handling of phosphate by
the ‘‘phosphatonin’’ frizzled-related protein [56].

THE BASOLATERAL MEMBRANE

Most indications of PDZ proteins that reside at the
basolateral membrane were obtained from ‘‘non-re-
nal’’ experimental systems. Nevertheless, the PDZ
proteins mentioned below may be anticipated to be
responsible for the proper basolateral localization of
certain transporters.

a-SYNTROPHIN contains a single PDZ domain
and two PH (plekstrin homology) domains, which
confer the ability to bind lipids or phosphorylated
serine or threonine residues. This protein is expressed
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in several segments of the nephron, including proxi-
mal tubules, where it is localized at the basolateral
membrane [45]. a-Syntrophin interacts with AQP4, a
water channel that has been assigned to the S3 seg-
ment of proximal tubules [69]. In astrocytes of a-
syntrophin-deficient mice, AQP4 showed a reversed
polarization [54]. However, the impact of a-syntro-
phin on the polarized distribution of AQP4 in PT-
cells has not been analyzed in this model. In HEK
cells, it was demonstrated that deletion of the PDZ
binding motif (SSV) of AQP4 increased the rate of
degradation of the channel and, vice versa, that the
expression of a-syntrophin stabilizes the channel in
the membrane [54].

CASK (Lin2), another member of the MAGUK
family, and VEL1 (Lin7) are PDZ proteins expressed
at low levels in the basolateral membrane of PT�s [65].
A multiprotein complex containing both proteins
recruits Kir2 potassium channels (ESE/AI) in brain
[43]. Whether or not CASK and VEL1 fulfill similar
tasks in the proximal tubule is unknown.

GLUT1CBP (Glut1 C-terminal binding protein)
is a single-PDZ-domain protein expressed in kidney
but its precise nephron/subcellular distribution has
not been determined. GLUT1CBP interacts with the
C-terminal DSQV motif of Glut1, a facilitative glu-
cose transporter detected in the basolateral mem-
brane of proximal tubules, and with a-actinin-1 or
other cytoskeletal components [5]. Binding to
GLUT1CBP has been suggested to stabilize Glut-1 at
the basolateral membrane.

PICK1, a single PDZ domain protein, is able to
form homo-oligomers. PICK1 has been proposed to
bind (and cluster) several transporters involved in
fluid regulation of neurons, such as AQPs and anion
exchangers [10]. Although PICK1 was detected in
kidney [66], its precise localization and function in
renal cells is still an enigma

Functional Impacts of PDZ-mediated Protein-Protein

Interactions in PT Cells

With respect to the proximal tubule, direct experi-
mentation to elucidate the functional role of diverse
PDZ protein interactions has been difficult. Thus far,
only a few knock-out mouse models have been gen-
erated that allow one to study the impact of PDZ
proteins on proximal tubular function. Information
has also been obtained from studies performed with
cell cultures, notably OK cells, a cell line originally
derived from opossum kidney. One should note,
however, that this cell line may differ in a number of
aspects from the in-vivo situation [51].

Thus far, there is no clear information about
possible roles of PDZ proteins in the sorting
of newly synthesized proteins to the apical or ba-
solateral membrane. However, current data provide

evidence that PDZ proteins retain different trans-
porters in the different plasma membrane domains.
Furthermore, PDZ proteins may scaffold different
transporters in microdomains of membranes that
may contribute to the regulation of transport pro-
cesses such as by pH changes or alterations of the
ionic situation [52]. In addition, PDZ proteins, di-
rectly or indirectly, anchor and orchestrate compo-
nents of signalling cascades.

SPATIAL POSITIONING

At the apical and basolateral membrane of PT cells,
most of the described targets for PDZ proteins are
transporters. Elucidation of the postulated functions
of PDZ clusters became possible with recently gen-
erated PDZ protein knock-out mice and with OK
cells.

In proximal tubular brush border membranes of
NHERF1-deficient mice, the abundance of the type
IIa Na/Pi-cotransporter was reported to be decreased
[62]. In these mice, kept either on a normal or a low
Pi-diet, NaPi-lla accumulates in subapical, intracel-
lular compartments [62, 74]. This suggests that
NHERF1 is partially involved in the correct apical
localization/positioning of the NaPi-IIa protein. In
agreement, impaired apical localization of NaPi-IIa
was observed in OK-cells after truncation of its
C-terminal PDZ binding motif, TRL, or after over-
expression of single PDZ domains [25, 30]. Interest-
ingly, NHERF1 deficiency had no effect on the apical
content of NHE3, which is explained, at least in mice,
by a compensation with NHERF2 [70].

Studies performed with PDZK1-deficient mice
indicated that the apical localization of transporters
in PT cells is not dramatically affected. Initial studies
performed with PDZK1-deficient mice fed a normal
chow showed that the absence of PDZK1 does not
alter the abundance of NaPi-IIa or the urinary
excretion of phosphate [7, 36].

INVOLVEMENT OF PDZ PROTEINS IN THE REGULATION OF

PROXIMAL TUBULAR TRANSPORT

Na/H-exchange and Na/Pi-cotransport represent
paradigms for transport functions in PT cells that are
regulated by a variety of hormones and metabolic
factors (for review, see Refs. 53 and 75).

A number of proteins implicated in the hormonal
control of Na/Pi-cotransport (NaPi-IIa) and Na/H-
exchange (NHE-3) have been described to interact
with NHERF1/2: The receptor PTHR1 for PTH [49],
the adrenergic b2-receptor [6] and phospholipase b1/2
[27, 64]. The observation that NHERF1 can form
homodimers and that the formation of NHERF1
homodimers is regulated [41] indicates that NHERF1
participates in a complex way to orchestrate signal-
ling cascades required to regulate transport functions.
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A clone of OKcells, OKH cells, which expresses
low levels of NHERF1, revealed direct evidence that
NHERF1 assembles an apical, regulatory complex.
Transfection of OKH cells with NHERF1 has been
shown to restore the PTH-mediated increase of
intracellular calcium, which is compatible with the
formation of a complex consisting of NHERF1,
PTHR1 and PLC-b [50]. How NHERF1 participates
in the regulation of the NaPi-IIa protein when the
activation of the apical PTHR1 receptor [67] is im-
paired, is currently under investigation using
NHERF1-deficient mice.

Besides the signalling components mentioned
above, NHERF1 and 2 anchor protein kinase A
(PKA) indirectly via ezrin. The role of the NHERF/
ezrin/PKA complex in the regulation of NHE3 has
been extensively discussed (for review, see Refs. 63
and 75). Results from primary PT-cell cultures of
NHERF1-deficient mice are in agreement with the
concept that the NHERF/PKA/ezrin/ complex is
necessary for the regulation of NHE3 activity by
cyclic AMP [11]. In contrast, results obtained with
OK cells suggested that NHERF1 is not required for
the regulation of the NaPi-IIa protein in response to
cyclic AMP [42]. The precise role of NHERF1 in the
cyclic AMP-mediated regulation of NaPi-IIa in kid-
ney remains to be determined.

Similar to NHERF1, PDZK1 provides an indi-
rect anchor for PKA by sequestering D-AKAP2,
which binds both regulatory subunits of PKA [16,
26]. The precise functional role of the PDZK1/D-
AKAP2/PKA complex is currently not understood.
Surprisingly, in PDZK1-deficient mice, regulation of
NaPi-IIa by PTH or by activation of the PKA
pathway was normal [7].

More direct control of transporter/channel
function by PDZ proteins has been observed for the
chloride permeability of CFTR. Interaction of re-
combinant NHERF1 with CFTR increases the open
probability of CFTR and phosphorylation of
NHERF1 influences this channel modulation [57].
Similarly, a potentiation of CFTR channel activity
was reported by the interaction of CFTR with
PDZK1 [72].

Are NHERF1 or PDZK1 needed for the rapid
and/or chronic adaptation of the Na/Pi-cotransporter
NaPi-IIa? Dietary content of phosphate robustly
regulates the abundance of the NaPi-lla protein in
PT-cells, yet, the precise mechanisms are not known.
Recent data obtained with NHERF1-and PDZK1-
deficient mice indicated that neither NHERF1 nor
PDZK1 is important for the regulation of NaPi-IIa
by dietary content of Pi, albeit apical expression of
NaPi-IIa after a low Pi-diet was slightly impaired in
NHERF1-deficient mice [7, 74]. In contrast to the in-
vivo findings, up-regulation of NaPi-IIa by a low-Pi
medium was abrogated in primary cultures derived
from NHERF1-deficient mice [11].

REGULATION OF PDZ INTERACTIONS BY

PHOSPHORYLATION

Until now, only a few examples have been reported
that PDZ interactions can be modulated by phos-
phorylation reactions either of the PDZ protein itself
or of amino acids close or within the PDZ binding
motif. It may be envisaged that phosphorylation
reactions may allow an on-off mode of PDZ interac-
tions. In PT cells, the necessity for an on-off mecha-
nism of a PDZ interaction is best illustrated by the
down-regulation of the Na/Pi-cotransporter NaPi-IIa
in response to PTH. NaPi-IIa, which is localized along
the entire length (>1 lm) of the microvilli is only
internalized at the base of the microvilli, the inter-
microvillar clefts [77]. As upon a stimulation of PTH
receptors the localizations of NHERF1 and PDZK1
are not altered (N. Deliot, unpublished results), it is
assumed that the affinity of NaPi-IIa to the PDZ do-
mains is decreased by PTH in order to enable a higher
diffusional mobility of NaPi-IIa. In analogy, increased
diffusional mobility has been demonstrated for CFTR
after truncation of its PDZ binding motif [21].

NHERF1, but not NHERF2, is constitutively
phosphorylated [58]. The role of phosphorylation of
NHERF1 has been extensively studied in the context
of the PKA-mediated inhibition of NHE3 [75]. Re-
cent results obtained in the authors� laboratory by in-
vitro experiments using mouse kidney slices showed
that PTH induced an increase of NHERF1 phos-
phorylation. Augmented phosphorylation of
NHERF1 was also observed after individual activa-
tion of PKA and PKC, respectively (N. Deliot,
unpublished results). Interestingly, cyclic AMP-
dependent regulation of NHE3 in OK-cells was not
paralleled by an alteration of NHERF1 phosphory-
lation [39]. Similarly, in kidney slice experiments,
constitutive and regulated phosphorylation of
PDZK1 was observed (N. Deliot, unpublished results).

Modulations of PDZ interactions by phosphor-
ylation reactions have been demonstrated in the fol-
lowing cases: i) Phosphorylation of a serine residue
within the C-terminal PDZ binding motif SLL of the
b2-adrenergic receptor inhibits the interaction of the
receptor with NHERF1 [6]; ii) Overlay experiments
demonstrated that phosphorylation of the serine
residue from the PDZ binding motif STKF of MRP2
has a positive effect on the interaction with NHERF1
[24]; iii) Phosphorylation of the PDZ domain 2 of
NHERF1 (on Ser-162) in response to activated PKC
resulted in an inhibition of the interaction between
NHERF1 and CFTR [57].

IS THE ABUNDANCE OF PDZ PROTEINS IN PT CELLS

REGULATED?

Sparse information is available about the regulation
of the abundance of PDZ proteins in PT-cells.
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Transcriptional regulation of NHERF1 by estrogen
and up-regulation of PDZK1 in renal carcinomas
have been reported [13, 34].

The scaffolding functions of PDZ proteins dis-
cussed above may suggest that under conditions that
lead to significant up or down-regulation of a specific
transport function, the abundance of PDZ proteins
may be altered as well. One such potential situation is
the intake of a low phosphate diet, which results in
up-regulation of the NaPi-lla Na/Pi-cotransporter
[44]. However, despite the robust interaction of NaPi-
IIa with NHERF1 and PDZK1 as observed in bio-
chemical assays, a parallel up-regulation of neither
NHERF1 nor PDZK1 was observed in the authors�
laboratory [48]. In contrast, up-regulation of the
PDZK1 protein by a low Pi-diet has been reported by
others [11, 74].

Summary

Using kidney cDNA libraries and single proximal
tubular proteins as baits, the yeast two-hybrid tech-
nology resulted in the description of numerous po-
tential PDZ-based protein-protein interactions.
Many of these have been confirmed by biochemical
in-vitro assays. In order to assign cellular functions of
such proteins, it is first mandatory to define the pre-
cise distribution and localization in PT cells of each
canditate protein. This prerequisite has been assessed
only for a few of the PDZ proteins mentioned in this
article. In addition, it remains to be deciphered how
the interactions of the identified PDZ proteins are
modulated, for example, by phosphorylation reac-
tions or by other posttranslational modifications. As
mentioned in this article, PDZ knock-out mouse
models may be of help to elucidate the physiological
and pathophysiological functions of a particular PDZ
interaction. However, current data indicate that, de-
spite the robust interactions observed in in-vitro as-
says, ablation of a certain PDZ protein does not
necessarily result in an expected phenotype, probably
due to functional compensation by other PDZ pro-
teins. Therefore, it has to be assumed that a large
redundancy of known and as yet unidentified PDZ
proteins exists in proximal tubular cells.
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