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Interference screws should be shorter than the hamstring tendon
graft in the bone tunnel for best fixation
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Abstract

Purpose Interference screw fixation of hamstring tendon

grafts in bone has to overcome the challenges that tendons

have a slippery surface and viscoelastically adapt under

pressure. As the typical failure mode of the graft is to slip

past the interference screw, it was hypothesized that the

position and configuration of the graft end may be of

influence on the fixation strength.

Methods Different configurations of the graft ending and

its effect to primary fixation with interference screws after

viscoelastic adaptation were tested in six groups: I: graft and

the screw inserted at the same depth, II/III: the graft overlaps

the tip of the screw (interference screw of 28 and 19 mm in

length, respectively), IV: strengthening of the graft ending

with additional suture knots, V: Endopearl, respectively, and

VI: effect of partial retraction of the screw after excessive

insertion. In vitro tests were performed with fresh calf tendon

grafts and interference screws in bone tunnels (fresh porcine

distal femur) all of 8 mm in diameter.

Results The relative position of the graft ending to the tip

of the interference screw thereby was recognized as a

significant factor on pullout forces. Further strengthening at

the graft endings with additional suture knots or an

Endopearl device could improve primary hold as well.

Conclusions Better fixation strength is achieved if the tip

of interference screw does not extend past the end of a

tendon graft. Enforcement of the tendon end with sutures or

an implant can further improve fixation.

Keywords Hamstring graft � Viscoelastic adaptation �
Interference screw � Anterior cruciate ligament

Introduction

Tendon to bone fixation with interferential screws (IS) is

considered as the clinical standard for anterior cruciate

ligament reconstruction with soft tissue grafts [1, 6, 14].

Thereby, primary fixation strength was recognized an

important goal to allow patients to proceed to early reha-

bilitation [4, 7, 20]. With insertion of the IS, which is

usually of the same diameter as graft and bone tunnel, the

tendon graft is viscoelastically deformed, loses up to 30 %

of its volume and can enlarge the bone tunnel [18]. The

tendon–bone–screw interface has been described as the

weakest link in this construction [9, 21, 24], and with pure

tendon grafts (e.g. hamstrings), slippage past the IS is the

most likely failure mechanism at early stages [3, 15, 28].

To prevent this failure mode, hybrid fixations with addi-

tional devices (e.g. Endopearl) were brought to the market.

Reinforcements of the graft end with IS fixation, similar to

the bone plug (e.g. patellar tendon or quadriceps) was

shown to increase pullout force [1, 25].

Prevention from graft slippage and higher pullout

strength was hypothesized if the graft ending overlaps the

tip of the IS and therefore remains uncompressed. In this

context, mechanical behaviour of the graft end may be of

underestimated importance in the primary fixation strength.

Furthermore, correct screw placing is desirable but over

insertion of the IS may occur. If recognized intra-opera-

tively, secondary adjustment is often necessary to achieve

optimal placement of the IS at the tunnel entrance. It was

hypothesized that this manoeuver may compromise fixa-

tion strength because the effect of an uncompressed graft

ending becomes affected. Therefore, we set out to compare

mechanically different relative positions of IS and tendon

grafts in porcine femoral tunnels, all components (bone

tunnel, tendon graft and IS) being of 8 mm in diameter.
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Materials and methods

Fresh extensor tendons of 20 cm length were harvested

from young bovines, folded around Ethibond sutures size

3 (Ethicon, Somerville, NJ, USA) and quadruple bundled

to 8 mm in diameter. At one end, grafts were tubed at

5-mm intervals (Vicryl 0, Ethicon). The suitability of this

graft material has been established earlier [12]. Thirty-six

grafts were prepared so far and then divided blindly into

six groups (n = 6). In group IV, an additional suture loop

was knotted at the very end of the looped transplant or

8 mm Endopearls (Conmed, Linvatec corp. Largo, FL

33773, USA) were applied both with Ethibond sutures

(group V).

Bone preparation

Thirty-six fresh porcine distal femora were randomized

equally to six groups. After dissection from all soft tissues,

bicortical tunnels were created at the anatomical insertion

of the ACL with a conventional drill bit of 8 mm in

diameter.

Graft fixation technique

Tendon graft bundles were all positioned into the tunnel in a

defined depth creating a specific position of the grafts ending

and the tip of the IS. In groups I, IV and V: graft and IS ending

at the same level; In groups II, III and VI: graft ending

overlaps the tip of the IS of 7 mm. Consequently, 6 different

settings were created (Fig. 1I–VI). IS (Megafix, Karl Storz,

Tuttlingen, Germany Company) all of 8 mm in diameter and

28 mm in length, except group III (19 mm), were inserted

over a Nitinol guide wire (Karl Storz). In group VI, the IS was

inserted 4 full turns deeper than the cortical surface (creating

a flush position of the graft-/IS ending) and then trimmed

back to the right position after 30 s. All specimens were

tested after a delay of 60 min to achieve full viscoelastic

adaptation. Specimens were kept at room temperature

(20 �C) and moistened with NaCl solution 0.9 %.

Mechanical testing

All tests were performed on a materials testing machine

(Zwick 1456, Zwick GmbH, Ulm, Germany). Distal

Fig. 1 The schematic concept of the graft fixation within the six

groups. I The graft ending is at same level with the IS, II/III the graft

relatively overlaps the IS (28 and 19 mm in length, respectively), IV

the graft ending is enforced with a knotted suture loop, V graft with

Endopearl attached, VI the IS was trimmed back after insertion 4

turns beneath tunnel aperture
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porcine femora and tendon grafts were held on custom

made clamps at a variable angle to achieve co-axial loading

on the graft in line with the bone tunnel. Preconditioning of

the graft was achieved with 5 cyclic loads between 10 and

50 N. For the pullout test, load to failure was executed with

a speed of 20 mm/min until the graft was pulled out of the

bone. There was registration of the failure mode, maximal

load (N) and stiffness up to maximal load (N/mm).

Statistical analysis

Statistical analysis was performed using the software

PASW Statistic 18.0 (IBM Corporation, Route 100,

Somers, NY 10589, USA). Grouped data were tested for

normal distribution using the Kolmogorov–Smirnov test.

ANOVA (Bonferroni post hoc correction) was used for

normal distributed data to compare intergroup differences.

Correlations (stiffness) were assessed with the Pearson

correlation test. Values are given in mean. Level of sig-

nificance was set with a p value \0.05.

Results

In all specimens, load to failure testing resulted with an

initial elongation of the tendon graft, followed by slippage

at the screw–tendon–bone interface at higher loads, until

the graft exited the bone tunnel. In the group with addi-

tional Endopearls, graft slippage was preceded by rupture

of the Ethibond suture, leaving the Endopearl behind the

screw.

Data from pullout testing are summarized in Fig. 2.

Stiffness was within the same range in all groups 64 N/mm

and elongation at failure correlated strongly (r = 0.933)

with the corresponding peak load (Fig. 3).

In group I (graft and IS inserted at same level), the

lowest failure loads were achieved 619 N. In comparison

with this group, significantly enhanced peak loads were

measured in group II (the graft ending overlaps the screw

tip, IS of 28 mm in length) 920 N; p \ 0.001, group IV

(screw and graft at same level with suture knot) 823 N;

p = 0.008, group V (graft with additional Endopearl)

849 N; p = 0.002 and group VI (screw readjusted after

deep insertion) 804 N; p = 0.022. Fixation with a shorter

IS and overlapping graft ending (group III) increased hold

by 19 % compared with group I (ns). With group VI

(secondary readjustment of the IS), mean pullout force was

reduced by 14 % (ns) in comparison with group II.

Fig. 3 Stiffness between groups. Mean values/group (load-/graft

elongation at failure) are indicated with group numbers I–VI. Linear

regression curve was calculated (red); r = Pearson coefficient

Fig. 2 Pullout forces per group.

All values are mean ± SD.

p values show significance in

comparison with group I
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Discussion

The most important finding in the present study was the

confirmation of the hypothesis that any feature preventing

the graft from slippage may improve its fixation with an IS.

With the graft overlapping the IS, its ending is protected from

viscoelastic adaptation, and improved hold was registered.

Fixation of tendon grafts in a bone tunnel using an IS is

a straightforward and effective method but seemingly small

details, such as the insertion angle of the IS relative to the

bone tunnel [13], graft position relative to the centre of the

bone tunnel [10] or the number of graft bundles (single vs.

double bundle) [17] may significantly influence the pri-

mary stability of the construct. The inherent problem of the

method is that tendons, which are designed to glide in the

body, are difficult to grasp by compression, particularly

because they tend to dissipate hydrostatic pressure through

viscoelastic adaptation [18], and consequently, the pre-

ferred failure mechanism is slippage of the graft from the

tunnel past the IS [2]. A graft end overlapping the inserted

IS remains in its physiological state (no viscoelastic

adaptation) and therefore counters the graft from slippage.

In the literature, the enhancement of the IS length was

shown as an important factor to increase the pullout force for

the fixation of pure tendon grafts [23, 26]. Unexpectedly, we

found also increased pullout loads with a shorter screw, not

overlapping the tendon end, which achieved higher pullout

strength than a longer, overlapping screw. Particularly with

the use of bioabsorbable screws, it appears favourable to

implant as little material as possible, which also leads to

favouring shorter screws. Of course, as long as there is no

overlap, fixation strength will still increase with a longer

implant.

The observed favourable effect could be further aug-

mented if any knob-like characteristics (e.g. Endopearl)

at the graft ending were implemented and could show

increased failure loads and stiffness [22, 27]. Additional

loops around the tendon and suture knots are easy to apply

and may give the graft end resistance against deformation

during pullout. Compared with the same fixation configu-

ration without knot (group I) significant improvement of

failure loads were achieved by 25 % (p = 0.008). The

Endopearl could show a similar effect (?27 %, p = 0.002).

However, it must be considered a major limitation of this

study that we only used a single loop of Ethibond USP no. 3,

which represented the weakest link in this configuration. It

is highly likely that additional sutures would achieve higher

failure loads. Both features (suture knots and Endopearl)

seem to prevent the graft from slippage. The same effect

was shown with bone tendon grafts (e.g. patellar or quad-

riceps tendon) where the effect is achieved from the natural

bone plug. Here, different length of IS had no effect on

pullout strength [5, 19].

Misplacement (over insertion) of the IS and secondary

adjustment by trimming back was investigated in group VI.

Is hypothesized a viscoelastic adaptation of the graft end,

despite its position overlapping the IS. As hypothesized,

this appeared to impair hold by 14 % in comparison with

group II, and it is likely that longer remaining of the screw

in the deep inserted position (30 s in this study) would

show further decreased hold. Therefore, it appears prefer-

able to trim back a screw immediately until the end does

not overlap the graft rather than to leave it over inserted.

However, further investigations are needed.

A limitation of this study is the use of an animal test

surrogate for human bone, and future experiments in

human bone could better account for variations in bone

quality and anatomy. However, the porcine bone model is

well established in this context and was proven for its

similar characteristics compared with young human knee

bone [8, 11, 16].

Conclusion

Fixation strength of IS may be significantly improved by

approximately 30 %, if the screw is shorter than the graft

end in the bone for pure tendon grafts (e.g. hamstring).

Therefore, it seems of clinical relevance to correlate screw

length with the insertion depth of the graft. Further fixation

strength is achieved if there is a suture loop tied and

knotted around the tendon graft ending.
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