
LCA OF CHEMICALS

A tiered approach to estimate inventory data and impacts
of chemical products and mixtures

Gregor Wernet & Stefanie Hellweg &

Konrad Hungerbühler

Received: 28 February 2011 /Accepted: 27 February 2012 /Published online: 13 March 2012
# Springer-Verlag 2012

Abstract
Purpose Mixtures of organic chemicals are a part of virtually
all life cycles, but LCI data exist for only relatively few
chemicals. Thus, estimation methods are required. However,
these are often either very time-consuming or deliver results of
low quality. This article compares existing and new methods
in two scenarios and recommends a tiered approach of differ-
ent methods for an efficient estimation of the production
impacts of chemical mixtures.
Methods Four approaches to estimate impacts of a large
number of chemicals are compared in this article: extrapo-
lation from existing data, substitution with generic datasets
on chemicals, molecular structure-based models (MSMs, in
this case the Finechem tool), and using process-based esti-
mationmethods. Two scenarios were analyzed as case studies:
soft PVC plastic and a tobacco flavor, a mixture of 20
chemicals.

Results Process models have the potential to deliver the best
estimations, as existing information on production processes
can be integrated. However, their estimation quality suffers
when such data are not available and they are time-consuming
to apply, which is problematic when estimating large numbers
of chemicals. Extrapolation from known to unknown compo-
nents and use of generic datasets are generally not recommen-
ded. In both case studies, these two approaches significantly
underestimated the impacts of the chemicals compared to the
process models. MSMs were generally able to estimate
impacts on the same level as the more complex process
models. A tiered approach using MSMs to determine the
relevance of individual components in mixtures and applying
process models to the most relevant components offered a
simpler and faster estimation process while delivering results
on the level of most process models.
Conclusions The application of the tiered combination of
MSMs and process models allows LCA practitioners a rela-
tively fast and simple estimation of the LCIA results of chem-
icals, even for mixtures with a large number of components.
Such mixtures previously presented a problem, as the appli-
cation of process models for all components was very time-
consuming, while the existing, simple approaches were shown
to be inadequate in this study. We recommend the tiered
approach as a significant improvement over previous
approaches for estimating LCA results of chemical mixtures.

Keywords Chemical production . Finechem . Flavor .

Inventory estimation . LCA

1 Introduction

Organic chemicals are a particular concern in life cycle as-
sessment due to their presence in the life cycles of virtually all
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industrial and consumer products. Consumer goods mostly
composed of organic chemical products, such as detergents,
pigments, or plastics, are important product classes, but even
beyond the obvious importance of chemicals in these prod-
ucts, organic chemicals are vital during the manufacture of
most other goods. Life cycle inventories of organic chemicals
are therefore a part of every LCA and a feasible and accurate
approach to setting up chemical inventories are important for
the LCA community as a whole.

A range of chemical production inventories is available
from database initiatives (e.g., NREL 2008; The ecoinvent
Centre 2008a) or industry associations, e.g., the frequently used
PlasticsEurope datasets on basic chemicals (PlasticsEurope
2005). Nevertheless, the available inventories cover only a
few hundred of the many thousands of chemicals in production
today. Most of these are very basic chemicals, while only few
detailed studies on fine and advanced chemicals exist (Jiménez-
Gonzalez et al. 2004; Wernet et al. 2010). In addition to the
sheer number of chemicals that still need to be assessed, the
difficulty of acquiring production data on chemicals is also
problematic. Chemical companies are highly sensitive about
access to their production data, as these data may give com-
petitors or customers unwanted insights into a company’s core
business. Forming average datasets over several producers can
be a solution but is less practical for specialty products with few
producers.While efforts of primary data collection are ongoing,
it is therefore clear that for the vast majority of chemicals,
estimation methods for inventory data are needed.

The established method of estimating LCA results of chem-
ical productions is to model the gate-to-gate inventories of the
individual process steps to the best of the knowledge available
and to then combine those process step data into a full cradle-to-
gate inventory, possibly making use of established databases to
cover upstream processes (Geisler et al. 2004; Hischier et al.
2004; Jiménez-Gonzalez et al. 2000). If some information on
individual process steps is available, the remaining gaps are
sometimes filled with models that cover specific parts of a
process step. Models exist for parts of chemical reactions,
including steam and energy use (Szijjarto et al. 2008; Van der
Vorst et al. 2009), solvent recovery (Capello et al. 2007), and
waste water treatment (Köhler et al. 2007). Many of these
models require detailed information about the production pro-
cess. In addition, several chemical companies have in-house
tools with which they model parts of their production (Bretz
and Frankhauser 1997; Curzons et al. 2007; Saling et al. 2002).
Obviously, the more actual on-site data on the process are
available, the better. Also, some fallback solutions and standard
estimations have been proposed for individual parts of chemical
processes, such as those of Hischier et al. (2004) and Jiménez-
Gonzalez et al. (2000). On the other hand, if only the general
synthesis route is knownwithout process details, the whole LCI
has to be estimated, either by completely relying onmodels and
standard estimations or by using generic models on a process

step level (e.g., Geisler et al. 2004). This may be a valid option
if general information on production is available, e.g., through
documentation on industrial chemistry (Thieme Chemistry
1995; Ullmann’s Encyclopedia of Industrial Chemistry 2006).

All the methods mentioned above follow the fundamental
approach of creating individual process estimations and com-
bining these individual units into a full cradle-to-gate inventory.
This approach has two potential weaknesses. First of all, if
many process steps are estimated, especially if standard estima-
tions for basic chemicals are used while highly complex reac-
tions are involved, the uncertainties will increase over the
processes and may lead to prohibitively high overall uncertain-
ties in the resulting inventories. As most models and standard
estimations have been developed with data on basic chemical
production, applying these estimation procedures andmodels to
fine chemical productions, which are often more complex and
less resource and energy efficient, may introduce systematic
errors. And secondly, if the synthesis route is not known, these
approaches are not possible. In order to palliate these short-
comings, molecular structure-based models (MSMs) were re-
cently developed as an alternative approach in situations where
the process-based approach fails (Wernet et al. 2008, 2009).
These models can estimate cradle-to-gate LCA results in terms
of cumulative energy demand (CED, VDI 1997), the global
warming potential (GWP, IPCC 2007), and Ecoindicator 99
scores (EI99, Goedkoop and Spriensma 2000) based solely on
the molecular structure. They therefore allow screening LCAs
even if no data on the production of a chemical are available.
However, also this approach is not without drawbacks. For
instance, it is a little transparent and can be characterized as a
“black box” approach. Further, this is a rather new approach
and has so far not been widely applied in practice. A compar-
ison of the different methods and approaches may hence be
helpful to understand the merits and shortcomings of each of
these approaches better and to provide a guideline on which
method to use in a given situation. The objective of this article is
to compare different data estimation techniques for chemicals
and to identify an appropriate estimation procedure. Both the
quality of the results and the time and effort required will be
evaluated on two case studies of chemical products which
exemplify the many different scenarios imaginable.

2 Materials and methods

2.1 Modeling approaches

In order to illustrate the application of the various methods to
set up inventories of chemical productions, we compare them
using two very different examples: soft polyvinylchloride
(PVC) production and the production of a tobacco flavor.
Both are examples of common scenarios where detailed in-
ventory information on chemicals may be lacking. An LCA
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practitioner assessing a consumer good containing such chem-
ical mixtures therefore encounters a lack of data and needs to
estimate the LCI or the production impacts. Soft PVC for
example contains, on average, 30 % by weight plasticizers,
such as DEHP (bis(2-ethylhexyl)phthalate, EU JRC 2008).
Yet the ecoinvent database (The ecoinvent Centre 2008a), one
of the most commonly used sources of LCI data worldwide,
contains data on PVC production but not on the synthesis of the
plasticizer. A practitioner therefore faces the question of how to
assess the soft PVC with data on only 70 % of the product.

We identified several common solutions for abridging
data gaps on chemical production and applied these to the
case study. Neglecting the missing inventories completely is
not a viable option, as this would guarantee that the final
LCA underestimates the real impacts and therefore would
lead to questionable results.

2.1.1 Extrapolation

The practitioner may neglect the chemical with no produc-
tion data when determining the composition. In the PVC
example, for instance, the PVC dataset of ecoinvent could
be used to describe the soft PVC. In practice, this means
using 1 kg of PVC as an approximation for the 0.7-kg PVC
and 0.3-kg DEHP which are actually present in the soft
PVC. This way, the missing inventories are not completely
neglected but are substituted by the inventory which exists.

2.1.2 Approximation with similar chemicals

The practitioner may use another dataset to approximate the
missing inventory data. This is a common solution for non-
chemical products, but since small changes in the molecular
structure may have drastic impacts on the synthesis route
required, it can be very difficult to apply to chemicals. Often,
it is not possible to identify a product with an existing LCI
where productions are similar enough to be a good substitute.
The ecoinvent database provides a dataset called “chemicals
organic, at plant” to alleviate this problem. This dataset rep-
resents a production mix of 20 common basic chemicals. The
practitioner may use this dataset to describe, for instance, the
production of DEHP by creating a soft PVC inventory com-
prised of 0.7 kg PVC and 0.3 kg “chemicals organic.”

2.1.3 Molecular structure-based models

The practitioner may use an MSM, e.g., the Finechem tool
(available at http://www.sust-chem.ethz.ch/tools/finechem;
Wernet et al. 2009), to estimate the impacts of DEHP pro-
duction. This option is quite novel, as Finechem was re-
leased only in the autumn 2009.

The Finechem tool is based on artificial neural networks
(ANN), a computational model structure that is based on the

principles of neuron interaction in the brain (Swingler
1996). ANN models are useful for nonlinear regression
and pattern recognition. They are adaptive systems, mean-
ing that an ANN model needs to be trained with training
data to learn about the underlying correlations and patterns
between a given input and output. In the case of the Fine-
chem models, the input is a set of molecular parameters
based on the molecular structure called descriptors, e.g.,
the presence and number of various functional groups and
elements, the molecular weight, etc. In this approach, the
molecular structure is thus used as a basis to gain some
insight on the conditions of the necessary production pro-
cesses. The Finechem models were trained on a set of
inventory data compiled from industry sources and the
ecoinvent database. It is important to note that during the
creation of the Finechem models, only inventories based on
actual process data for individual chemical productions were
used. The ecoinvent database also contains datasets based
on the process models described below under IV, but these
data were not used during the creation of the Finechem
models. They are therefore no hidden links or correlations
between the results of approaches III and IV. To avoid a
training bias, a technique called cross-validation was used
(Swingler 1996), so that the model quality was actually
determined on the ability to accurately predict new chem-
icals, not chemicals that were included in the training set.
Therefore, the available data were split into training sets and
test sets (Wernet et al. 2009).

ANNs trained in such a way have acquired the ability to
make predictions about chemicals that were not included in
the training data. The application of the Finechem tool then
works along the following steps: First, the user determines
the descriptors for the chemical to be assessed. The Fine-
chem tool uses ten descriptors. Then, the models calculate
the output (e.g., the CED) based on the input of the descrip-
tors. The underlying calculations of a neural network model
can be followed in real time, but since the interactions
between the individual neurons are very complex and usu-
ally too complex for a rational analysis, they are usually
considered to be black box models. Each Finechem model is
actually a set of 30 individual models that were trained in
slightly different ways, and the result is based on the distri-
bution of the 30 individual predictions.

Molecular structure-based models based on ANNs can be
a very powerful tool to determine complex correlations
between features of the molecular structure and production
requirements of chemicals. The Finechem models represent
the first implementation of this modeling approach in LCA.
Their current limitations are mostly due to the lack of
available training data for more capable models (Wernet et
al. 2009). Due to their black box nature, the estimation
uncertainty needs to be handled differently than in the case
of process models (see Section 4 below).
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2.1.4 Process models

The practitioner may choose to invest the time to generate
an LCI using process models. If details of production tech-
niques are available, detailed process models on the level of
individual process steps and equipment usage such as
(Szijjarto et al. 2008) may be used. In most cases without
the cooperation of the producer, however, a simple approx-
imation based on standard estimations is used. These are
based on typical chemical productions. When applying such
standard estimations, consistency is important. In this work,
we applied the parameters suggested in Hischier et al.
(2004). These suggested, e.g., a yield of 95 % for an average
chemical reaction, the use of 2 MJ of energy in the form of
steam, and 0.333 kWh of electricity. Air emissions of vola-
tile chemicals were estimated to be 0.2 % of the input, and
water emissions were estimated with a 90 % reduction of
organic material in waste water treatment based on Köhler et
al. (2007).

2.1.5 Tiered approach

In cases where a chemical mixture is made up of many
chemicals, the process models will be very time-
consuming to apply. For such a case, we propose a tiered
approach in the form of a combination of MSMs and
process-based models. For this tiered approach, the Fine-
chem tool is applied first as a screening tool to identify

relevant chemicals for which further data refinement is
suggested. If the impact of a chemical times its fraction in
the mixture is larger than 5 % of the total impact according
to the Finechem results, a process-based approach is applied
to provide more detailed information on the most relevant
chemicals. This approach is described in the flowchart in
Fig. 1, and its application is demonstrated in the flavor case
study.

The five approaches outlined above were used in both
case studies, in order to illustrate the application and to
compare the various methods.

2.2 Case study A: soft PVC

The PCV content of soft PVC (70 %) was always
assessed using the available dataset from the ecoinvent
database. Therefore, all results only differ due to the
modeling approaches used to estimate the production
impacts of the plasticizer DEHP. To model the production
of DEHP on a process level (approach 4 above), knowl-
edge of the synthesis route was necessary. This informa-
tion was obtained from reference handbooks and chemical
encyclopedias (Thieme Chemistry 1995; Ullmann’s Ency-
clopedia of Industrial Chemistry 2006). According to
these sources, DEHP is synthesized by esterification of
phthalic anhydride with 2-ethylhexanol. Phthalic anhy-
dride is produced through the catalytic oxidation of
ortho-xylene, while 2-ethylhexanol is produced by aldol

Fig. 1 Flowchart for the tiered
approach to estimating impacts
of individual components of
chemical mixtures
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condensation of two molecules of butyraldehyde, fol-
lowed by a hydrogenation. Butyraldehyde is a product
of the hydroformylation of propylene. Some of these
chemicals were covered by the ecoinvent database, but
three reaction steps had to be estimated. The aldol reac-
tion, the hydrogenation, and the following esterification
had to be modeled using estimates. The synthesis of
DEHP is described in Fig. 2.

The propylene hydroformylation process results in buta-
nol after catalytic reduction of butyraldehyde. The dataset
was adapted by removing the final hydrogenation step to
create an LCI for butyraldehyde. Reaction stoichiometry
and some yield data were taken from Ullmann’s Encyclope-
dia of Industrial Chemistry (2006). No emission data and no
data on energy use during the production were available.
This is often the case, as even producers generally only
gather emission and energy data on a plant scale, if at all
(Szijjarto et al. 2008). Therefore, in approach 4, the method
described in Hischier et al. (2004) was used to fill the
remaining data gaps on transport, emissions, and water and
energy use. This is consistent with the approach chosen in
several data gathering projects in ecoinvent (The ecoinvent
Centre 2008b).

2.3 Case study B: tobacco flavor

In the second scenario, the production inventory of an
artificial flavor was assessed. The composition of a tobacco
flavor produced by Givaudan was extracted from a patent
application (Naegeli 1978). The flavor consisted of 20 com-
ponents, all of them organic chemicals ranging from basic to
advanced. Four of these substances were covered by the
ecoinvent database, and propyl acetate could be assessed
with the dataset of the very similar isopropyl acetate. These
five chemicals were assessed based on the process data
available in ecoinvent. Since actual production data were

available, it was therefore unnecessary to model the impacts
of these chemicals with the approaches above. For the
remaining 15 chemicals, no data were available in the
ecoinvent database. All 20 chemicals were within the appli-
cation range of the Finechem tool (Wernet et al. 2009).
According to the patent, 2–10 g of this mixture is applied
to 500 g of fresh cut tobacco. Table 1 shows the composition
of the flavor.

Several of the 15 chemicals for which no ecoinvent
inventories are available were quite complex. This case
study thus represents the rather common situation where
the LCA practitioners are faced with a potentially time-
consuming modeling task. For these 15 chemicals, the mod-
eling approaches 1–5 were applied.

3 Results

3.1 Soft PVC

Application of approaches 1–3 was simple and straightfor-
ward (Fig. 3). The data basis for the generation of the
process inventories according to approach 4 above (process
models) was quite weak: yields were available from Ull-
mann’s Encyclopedia of Industrial Chemistry (2006) for
only two of the three processes; the third was estimated with

O

O

O OH

O

OH

O

O

O

O

O

O

O

+

+ CO + H
2

2-Ethylhexenal 2-EthylhexanolButyraldehyde

ButyraldehydePropylene

2-Ethylhexanol

2 +

-H
2
O

 H
2+2

Phthalic anhydride

-H
2
O

DEHP

Fig. 2 Synthesis route of DEHP

Table 1 Composition of the tobacco flavor as described in Naegeli
(1978)

Chemical Content
(mg/g flavor)

Actual data available
in ecoinvent

Methylcyclopentenolone 2 No

Ethyl acetate 2 Yes

Ethyl anisate 4 No

Butyl formate 4 No

Theaspiran 5 No

Cinnamaldehyde 7 No

Capric aldehyde 10 No

Vanillin 10 No

Amyl salicylate 10 No

C14-aldehyde 10 No

Ethylvanillin 20 No

Heliotropin 20 No

Propyl acetate 25 Yes

Amyl formate 25 No

Isoamyl acetate 25 Yes

Coumarin 60 No

Ethyl butyrate 75 No

Benzaldehyde 110 Yes

Benzyl benzoate 250 No

Ethanol 326 Yes
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the standard estimations described in the Electronic supple-
mentary material. The reactions required no solvents, which
reduced data requirements. No data were available for emis-
sions to air and water or for electricity and steam use. The
standard estimations were therefore used for energy, waste
treatments, and emissions. As both the aldol condensation
and the esterification require sustained reaction temperatures
of 150–200°C, the standard estimations for energy use de-
scribed above were likely too low. However, determining
energy needs requires detailed information not just on the
reaction process but also on equipment and plant conditions
(Szijjarto et al. 2008). There is only a weak relationship
between thermodynamic and actual energy requirements, as
losses and equipment operation often make up the majority
of energy expenditures. Thermodynamic requirements can
therefore be a drastic underestimation of actual demands
(Wernet et al. 2010). This was thus an example where lack
of data led to a likely underestimation of the actual impacts,
as there was a high probability the reactions had higher
energy requirements than the average chemical reaction
considered for the standard estimations.

The analysis of the soft PVC scenario revealed that the
first two approaches, namely extrapolation of DEHP data
from PVC production and approximation with the generic

datasets “organic chemicals” from ecoinvent, lead to similar
results, with regard to all impact LCIA methods considered.
These results are significantly lower than the process model
approach (approach 4) and the Finechem tool (approach 3).
The scores of the latter two approaches are again compara-
ble. As this was a mixture of only two chemicals, the tiered
approach resulted in a recommendation of process models
for both chemicals, so the results of approach V are in this
case identical to the results of approach IV. The overall time
requirement for the process model approach was in the order
of a few days for data acquisition and inventory generation,
while the time requirement for the other approaches was less
than an hour.

3.2 Tobacco flavor

Again, the application of approaches 1–3 was simple and
fast. For the sake of this study, the process model approach
was applied to all 15 substances for which no ecoinvent data
were available to allow a comparison of all approaches. The
results can be seen in Fig. 4. They show that using the
generic dataset for organic chemicals (approach 2) again
leads to similar results as the extrapolation approach (ap-
proach 1), where the results for the known chemicals were

Fig. 3 Relative impact
assessment results of soft PCV
using the different inventory
modeling alternatives (soft PVC
with process model estimation
of DEHP0100 %). Tiered
approach (V) identical to
process models (IV) in this case

Fig. 4 Relative impact
assessment results of the
tobacco flavor using the
different inventory modeling
alternatives (process model
approach0100 %)
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scaled up to represent the whole mixture. The results of the
Finechem tool (approach 3), the process models (approach
4), and the tiered approach (approach 5) for the full mixture
of 20 chemicals are significantly higher. For the CED and
EI99, the Finechem tool and the process models come to
very similar conclusions, with only a few percent differ-
ences. For the GWP, the Finechem tool leads to only 70 %
of the impacts compared to the process models. In this case,
the tiered approach correctly helped to identify relevant
chemicals and to selectively apply the process models. Pro-
cess models for only five substances were necessary to
apply the tiered approach in the case of the GWP: benzyl
benzoate, ethyl butyrate, coumarin, heliotropin, and ethyl-
vanillin. Four of these five were required each for the
estimations of the CED and of the EI99 scores. The results
of the tiered approach estimation differ from the process
models by only a few percentage points. Applying the
process models for all 15 chemicals required a time effort
of about 3 weeks, so applying only the tiered approach
would have saved roughly 2 weeks of work with minimal
difference in results.

4 Discussion

In both case studies, the first two approaches of data extrap-
olation and approximation with a generic dataset lead to
comparable results. For the extrapolation, the explanation
is that in both case studies, the chemicals for which data
were available were simpler to produce than the others, so
the impacts were lower. As for the approximation, the ge-
neric dataset is in fact only a mix of a set of some of the
most basic organic chemicals for which data are present in
ecoinvent. Using this dataset to fill gaps therefore affects all
results in the same way—they are shifted towards the aver-
age, generic result for these very simple organic chemicals.
In most cases, using the generic dataset approximation will
therefore underestimate the real impacts as well.

Using such proxy datasets is surely a better procedure
than neglecting the missing inventories completely, but the
quality of the results depends on the similarity of the chem-
icals with known and unknown LCI data. For example, in
the plasticizer case study, it makes little sense from a syn-
thesis perspective to substitute DEHP with PVC, since the
production routes and emission profiles differ drastically.
Similarly, the problem of the generic dataset is that it is a
mix of very common and basic chemicals. If the chemical
that is approximated is more complex in production, as in
the cases investigated here, the generic dataset will under-
estimate the impacts of the production. The introduction of a
scaling factor might be helpful in some scenarios, but any
scaling factor will be an approximation of the complexity of
the production. Given that these approaches are usually

employed only when data on the production are scarce,
any scaling factor will be arbitrary. The generic dataset for
“organic chemicals” is therefore only of limited usefulness
as a proxy for chemicals. In specific cases, where high-
quality data are available on a very similar production,
substitution with that specific dataset may be an adequate
option, but it takes knowledge of the production routes and
in-depth knowledge of chemical synthesis to identify rea-
sonable substitution candidates. In these cases, the existing
data may be modified to describe the production of the
desired chemical, but such scenarios are rare (e.g., this was
the case for butyraldehyde in this study). It should be noted
that adequate substitution options cannot be identified by
similarity in name, structure, or application, as these are not
necessarily related to similarities in the production.

MSMs can offer a fast and simple solution for impact
estimations, and they have been shown to estimate chemical
impacts with acceptable error margins for screening purpo-
ses (Wernet et al. 2009). They are however constrained in
their application range by the training data used to create
them. Furthermore, their “black box” approach means that
introspection into the process chain and an identification of
specific impact sources along the production chain are not
possible. This may be an issue in cases where more detailed
knowledge about the processes is required. Process-based
models have the potential to accurately reflect the environ-
mental burdens of a production and to identify specific
impact sources, but they are susceptible to large errors if
too few data are available to form the basis of the estimation.
As seen in the plasticizer scenario, data on emissions and
energy use are often difficult to acquire. The standard esti-
mations of energy use and emissions recommended by
ecoinvent and used in the process models for DEHP in this
article refer to basic chemical production. Advanced and
fine chemical productions generally require more special-
ized equipment and more complex reactions, leading to
higher energy uses and more diverse emissions. The use of
more complex solvents is also common. The reliance on
standard estimations developed on basic chemical produc-
tions may thus cause process models to underestimate
impacts of chemical productions, especially in impact cate-
gories related to emissions or energy use.

Each of these methods delivers results with an inherent
uncertainty. Therefore, all methods are applicable only for
screening LCAs and should be combined with a sensitivity
analysis to determine the contribution of estimated impacts
to the overall environmental burden. Inventories with a high
relevance should not be estimated but based on actual data
gathering at a production site or data published in literature.

The time effort required for the different models is note-
worthy as well. While extrapolation and use of the generic
dataset require little preparation time, the results of these
methods are fundamentally questionable in cases where
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inventories of complex chemicals are established. The
results of high-quality process models are likely to be the
most reliable of all, but they require access to detailed
production data over the whole production chain, which
may include one or more precursor productions, and a
significant time investment. If the full production data are
not available, the results can suffer from large uncertainties
and may not be considered worth the effort compared to the
first two methods. The recent introduction of MSMs can fill
this gap by providing more reliable estimations in scenarios
where data are especially scarce. These estimated data may
then be used for screening assessments, and a sensitivity
analysis may be employed to analyze the potential impor-
tance of the chemical production to the overall life cycle
under discussion. MSMs like the Finechem tool are there-
fore valuable indicators of whether a production is important
enough to warrant the full-time effort for a process model
approach, including data gathering. This is demonstrated in
the tiered approach: in the flavor scenario, the tiered ap-
proach led to four (CED and EI99) or five (GWP) chemicals
being assessed with process models. That means that the
effort required for an analysis of the 15 chemicals on a
process level could be reduced by two thirds with little
effect on the result quality. This combination of Finechem
and process models thus offers the potential for data quality
of the process models with a significant reduction of the
efforts required for the overall estimation of chemical mix-
tures. Table 2 gives an overview of the different methods
and their capabilities.

5 Conclusions

While extrapolation or approximation of chemicals, espe-
cially in large numbers as is the case in mixtures, with
similar or generic datasets may seem tempting due to the
low requirements on time or data, these approaches cannot
generally be recommended given the results of the two case
studies presented here. Depending on the amount of pro-
duction data available, either a process model approach or
the use of the Finechem tool is preferable in most cases.
These two approaches complement each other well, as they
have different data requirements. Process models suffer
from the high data requirements as shown in Table 2, and

they may underestimate the complexities of fine chemical
production if standard estimations for basic chemicals are
used. Unfortunately, generic models with average values for
energy use and emissions in fine chemical production do not
yet exist. On the other hand, the Finechem tool is especially
useful in cases where few data are available. The Finechem
tool is therefore a useful addition to the toolbox of LCA
practitioners and offers a novel solution to a problem com-
monly encountered in LCAs. If the Finechem tool or other
approximation methods indicate a significant relevance of
the estimated inventories, additional data gathering projects
should be initiated to allow a thorough assessment with
reduced uncertainties. This is exemplified in the tiered ap-
proach shown in Fig. 1. The results of this tiered approach
show that a combination of Finechem tool and process
models can reduce the workload required while allowing
users to improve the results with targeted data acquisition
for process models on the most relevant components of a
chemical mixture. In case study 2, 2 weeks of estimation
work could be avoided by the use of the tiered approach.

6 Recommendation and perspectives

Extrapolation and using generic datasets do not differentiate
between different chemicals and can generally not be rec-
ommended for the estimation of production impacts of
complex chemicals. Depending on the overall relevance of
the chemical mixture in an LCA study, different approaches
can be recommended. If the overall relevance is rather low,
the Finechem model offers a fast and simple solution. If the
relevance is high, process models are recommended, as they
offer the possibility of including detailed production data
that should be gathered in such cases. The tiered approach
allows LCA practitioners to benefit from the advantages of
both approaches and should be considered especially if a
large number of chemicals need to be assessed.

Still, both approaches, the Finechem tool and process
models, need to be further improved. The neural network
models used in Finechem are generic approximators, and
their usefulness to model other industry sectors is an intrigu-
ing research topic. In the field of chemicals, the tool is
currently limited to organic chemicals, and some chemical
classes are not covered by the tool. The capabilities of the

Table 2 Overview of the different estimation methods

Method 1: Extrapolation 2: Generic dataset 3: Finechem 4: Process models

Data requirements Mass, inventory data
of similar chemical

Mass, inventory data
of generic dataset

Mass, molecular
structure

Mass, synthesis route,
detailed process data

Time requirements per
chemical production step

Minutes Minutes <1 h Hours–days

Chemical knowledge required Low Low Medium High
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neural networks can be extended once training data from
chemical classes that are currently not covered become
available. Concerning the process model approach, standard
estimations more suited to fine chemical production and
advanced chemistry would allow a better estimation of more
complex chemicals. In chemistry, the reaction type often
defines the production parameters more than the specific
product and the development of reaction-specific models
and estimations would be a significant step towards increas-
ing the quality of process models in chemical production
while reducing the requirements and efforts for their appli-
cation. Such process-specific models would also be able to
interact with chemical process simulation and flow-sheeting
software and other models beyond the scope of LCA as
well.
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