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Abstract. Transverse Magnetic (TM) and Transverse Electric (TE) optical Bloch waves are the generic

solutions of Maxwell’s equations in two-dimensional photonic crystals (2D-PhCs). We present an intuitive

description of these waves based on their Fourier decomposition into series of electromagnetic waves. The

properties of these electromagnetic waves as well as their contribution to the global energy and group

velocity of the global Bloch wave are discussed for each polarization. This description provides a simple

and intuitive method to understand dispersion and group velocity effects in 2D-PhCs.
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1. Introduction

In the early 80s, the original refraction properties of periodic structures were
demonstrated at optical wavelengths in thin film corrugated waveguides
(Russell 1986a; Zengerle 1987). Similar effects such as negative refraction
(Notomi 2000; Luo et al. 2002; Foteinopoulou et al. 2003; Cubukcu et al.
2003; Parimi et al. 2003), superprism (Kosaka et al. 1998; Baba and
Nakamura 2002; Wu et al. 2002) and self-collimation (Kosaka et al. 1999;
Witzens et al. 2002; Witzens and Scherer 2003) have recently been predicted
and observed experimentally in two-dimensional photonic crystals
(2D-PhCs). The physical understanding and use of such phenomena for
designing new optical devices requires a thorough understanding of the basic
properties of light propagation in periodic structures (Russell 1986b; Chu
and Tamir 1970; Chu and Tamir 1972).

In this paper, we present a description of light propagation in 2D-PhCs
based on the Fourier analysis of optical Bloch waves. This approach provides a
clear understanding of the basic properties of Bloch waves in PhCs (e:g: wave
vector, energy density, group velocity . . .) and highlights some differences
between the TE and TM polarizations. Moreover, this formalism provides a
simple method to investigate the original dispersion properties of 2D-PhCs.

In Section 2, we apply the plane wave expansion (PWE) method to solve
Maxwell’s equations and calculate the Fourier transform of the magnetic,
electric and displacement fields of an optical Bloch wave in a 2D-PhC. In
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Section 3, we use the different Fourier components of these fields to express
the optical Bloch wave as a series of electromagnetic waves. Then we dem-
onstrate that the latter waves possess the basic properties of electromagnetic
plane waves. We then explain the contribution of each individual component
to the global energy and group velocity and discuss the valid domain of this
decomposition. In Section 4, we introduce a possible graphical representation
of optical Bloch waves in reciprocal space and consider two examples to
illustrate the insight of this description.

2. Maxwell’s equations in 2D-PhCs

The 2D-PhC structure consists of a 2D lattice of dielectric cylinders with
permittivity "2 embedded in a dielectric medium with permittivity "1. These
materials are assumed to be non-magnetic and thus are assigned a magnetic
permittivity equal to the vacuum magnetic permittivity �0. The primitive
lattice vectors are a1 and a2, the section of the cylinders has an arbitrary
shape and the z-axis is chosen parallel to the cylinders, see Fig. 1.

2.1. MAXWELL’S EQUATIONS IN REAL SPACE

We consider the propagation of optical Bloch waves in the xy-plane of the
2D-PhC described in Fig. 1. These waves are characterized by their wave
vector k ¼ ðkx; ky ; 0Þ.

TE-polarized Bloch waves have a magnetic field parallel to the z-axis and
electric and displacement fields perpendicular to the z-axis:

Hk ¼ ð0; 0;HzkÞ; Ek ¼ ðExk;Eyk; 0Þ and Dk ¼ ðDxk;Dyk; 0Þ: ð1Þ

TM-polarized Bloch waves have a magnetic field perpendicular to the z-axis
and electric and displacement fields parallel to the z-axis:

Hk ¼ ðHxk;Hyk; 0Þ; Ek ¼ ð0; 0;EzkÞ and Dk ¼ ð0; 0;DzkÞ: ð2Þ

In the real space, the components of these fields are linked together via
Maxwell’s equations:

r �Hk ¼ 0; ð3Þ
r �Dk ¼ 0; ð4Þ
r �Hk ¼ �i!Dk; ð5Þ
r � Ek ¼ i!�0Hk; ð6Þ
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and with the constitutive relation:

Dk ¼ "0"Ek; ð7Þ

where the permittivity " ¼ "ðrÞ is a scalar function with the same periodicity
as the 2D lattice.

2.2. FOURIER DECOMPOSITION OF Hk, Ek AND Dk

According to Bloch’s theorem (Sakoda 2001), each field AkðrÞ (A ¼ H;E or
D) can be written as a Bloch wave:

AkðrÞ ¼ exp ðik � rÞAkðrÞ; ð8Þ

where k 2 ½� �
a ;

�
a ½�½� �

a ;
�
a ½ is the wave vector and AkðrÞ is a vectorial function

with the same periodicity as the 2D lattice. The corresponding reciprocal lattice
can be described by the series of reciprocal vectors Gn;m ¼ nG1 þ mG2, where
G1 ¼ 2�ða2 � ezÞ=S and G2 ¼ 2�ðez � a1Þ=S with S ¼ a1 � ða2 � ezÞ. Due to
the periodicity, Ak can be expanded as a Fourier series:

AkðrÞ ¼
X

n;m

An;mðkÞ exp ðiðkþGn;mÞ � rÞ ð9Þ

where the Gn;m are the vectors of the reciprocal lattice and the An;mðkÞ are the
Fourier components of the vectorial function Ak.

Fig. 1. Top view of the investigated 2D-PhC. A 2D lattice of dielectric cylinders with permittivity "2 is

embedded in a dielectric medium with permittivity "1. The section of the cylinder has an arbitrary shape.

The elementary lattice vectors are a1 and a2. We consider TM-polarized (E k ez) and TE-polarized (H k ez)
Bloch waves propagating in the xy-plane perpendicular to the cylinders.
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The Fourier component Hn;mðkÞ of the magnetic field can be expressed as
Hn;mðkÞ ¼ H0hn;mðkÞ, where H0 is the amplitude of the total magnetic field and
hn;mðkÞ is a dimensionless vector. Thus, the hn;mðkÞ satisfy the normalization
relation

P
n;m jhn;mðkÞj2 ¼ 1.

In order to manipulate dimensionless quantities and to simplify the following
calculations, the Fourier components En;mðkÞ and Dn;mðkÞ can be expressed
without loss of generality as En;mðkÞ ¼ �0cH0en;mðkÞ and Dn;mðkÞ ¼ ðH0=cÞdn;mðkÞ,
where c is the speed of light in vacuum and en;mðkÞ and dn;mðkÞ are dimension-
less vectors.

Finally, the magnetic, electric and displacement fields of the Bloch wave
take the form:

HkðrÞ ¼
X

n;m

Hn;mðkÞ expðikn;m � rÞ ¼
X

n;m

H0hn;mðkÞ expðikn;m � rÞ; ð10Þ

EkðrÞ ¼
X

n;m

En;mðkÞ expðikn;m � rÞ ¼
X

n;m

�0cH0en;mðkÞ expðikn;m � rÞ; ð11Þ

DkðrÞ ¼
X

n;m

Dn;mðkÞ expðikn;m � rÞ ¼
X

n;m

H0

c
dn;mðkÞ expðikn;m � rÞ; ð12Þ

where kn;m ¼ kþGn;m.
Equations (10–12) are valid for both polarizations and differ only in the

orientation of the dimensionless vectors hn;mðkÞ, en;mðkÞ and dn;mðkÞ.

2.3. MAXWELL’S EQUATIONS IN RECIPROCAL SPACE

Inserting Equations (10–12) into Maxwell’s Equations (3–6) and the con-
stitutive relation Equation (7), we obtain the following relations between the
Fourier components of the different fields:

kn;m � hn;mðkÞ ¼ 0; ð13Þ
kn;m � dn;mðkÞ ¼ 0; ð14Þ

dn;mðkÞ ¼ �
kn;mc
!
� hn;mðkÞ; ð15Þ

hn;mðkÞ ¼
kn;mc
!
� en;mðkÞ; ð16Þ

en;mðkÞ ¼
X

n0;m0
�n�n0;m�m0dn0;m0ðkÞ; ð17Þ

where the �n;m are the Fourier coefficients of the periodic function
1="ðrÞ ¼

P
n;m �n;m expðiGn;m � rÞ.
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TM polarization solution. In this case, en;mðkÞ ¼ en;mðkÞzez and
dn;mðkÞ ¼ dn;mðkÞzez. Substituting Equations (15) and (16) into Equation (17)
gives the equation for the coefficients en;mðkÞz:

X

n0;m0
�n�n0;m�m0 jkn;mjjkn0;m0 j

en0;m0ðkÞz
jkn;mj

¼ !

c

� �2 en;mðkÞz
jkn;mj

: ð18Þ

For an arbitrarily large integer N , the truncated version of Equation (18) with
jnj; jmj � N is the standard eigenvalues equation used in the PWE method to
compute the dispersion relations of TM-polarized waves in 2D-PhCs (P1ihal
and Maradudin 1991). The eigenvectors give the coefficients en;mðkÞ=jkn;mj
from which the vectors en;mðkÞ are easily deduced. The vectors hn;mðkÞ and
dn;mðkÞ can then be calculated from Equations (15) and (16).

TE polarization solution. In this case, hn;mðkÞ ¼ hn;mðkÞzez. Substituting
Equations (15) and (17) into Equation (16) gives the equation for the coef-
ficients hn;mðkÞz:

X

n0;m0
�n�n0;m�m0 ðkn;m � kn0;m0 Þhn0;m0ðkÞz ¼

!

c

� �2
hn;mðkÞz: ð19Þ

As in the TM case, the truncated version of Equation (19) with jnj; jmj � N
is an eigenvalues equation whose eigenvectors give the vectors hn;mðkÞ from
which the vectors dn;mðkÞ and en;mðkÞ are easily deduced using Equation (15)
and (17).

3. Fourier analysis of the optical Bloch wave

3.1. PROPERTIES OF ½Hn;mðkÞ exp ikn;m � r; En;mðkÞ exp ikn;m � r;Dn;mðkÞ exp ikn;m � r� CONSIDERED

AS AN ELECTROMAGNETIC WAVE

We consider the electromagnetic wave F n;mðkÞ built arbitrarily with the
magnetic, electric and displacement fields of the ðn;mÞth Fourier compo-
nents of the global Bloch wave. This wave is characterized by the wave vector
kn;m, the magnetic field Hn;mðkÞ expðikn;m � rÞ ¼ H0hn;mðkÞ expðikn;m � rÞ, the
electric field En;mðkÞ expðikn;m � rÞ ¼ �0cH0en;mðkÞ expðikn;m � rÞ and the dis-
placement field Dn;mðkÞ expðikn;m � rÞ ¼ ðH0=cÞdn;mðkÞ expðikn;m � rÞ.

In order to compare F n;mðkÞ with an electromagnetic plane wave with wave
vector kn;m, two points must be considered. First, F n;mðkÞ must satisfy Max-
well’s equations: from Equations (13–16), it is clear that Equations (3–6) are
satisfied. Second, the constitutive relation between En;mðkÞ and Dn;mðkÞ must be
clarified. There is a difference between the TM and TE polarizations as can
be seen by their representation in Fig. 2a and b, respectively.
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TM polarization. Using Equations (15) and (16) and the relation
kn;m � en;mðkÞ ¼ 0 which is specific to this polarization, we obtain:

dn;mðkÞ ¼ �
kn;mc
!
� kn;mc

!

2

� en;mðkÞ

� �
¼ kn;mc

!

����

����
2

en;mðkÞ ð20Þ

We conclude that the TM electromagnetic wave F n;mðkÞ behaves like a TM
electromagnetic plane wave propagating with energy ! and wave vector kn;m

in a homogeneous medium with the permittivity "0jkn;mc=!j2. Nevertheless,
we would like to stress that Equation (17) connects the different F n;mðkÞ
together and imposes their relative amplitudes through its equivalent form
Equation (18). Thus, the waves F n;mðkÞ cannot exist independently, but only
as components of the total Bloch wave. Because of this peculiarity, the F n;mðkÞ
cannot be named electromagnetic plane waves, so we will call them partial
electromagnetic plane waves in following sections.

TE polarization. Contrary to the TM case, the vectors dn;mðkÞ of the dif-
ferent F n;mðkÞ are not parallel and reside in the xy-plane, so that Equation (17)
is now a vectorial equation in the xy-plane, see Fig. 2b. The compatibility of
Equation (17) with Maxwell’s equations yields Equation (19) and imposes the
relative amplitudes of the different F n0;m0ðkÞ, and consequently the en0;m0ðkÞ, see
Section 2.3.

Thus, the vectors En;mðkÞ and Dn;mðkÞ of the TE wave F n;mðkÞ are not nec-
essarily parallel. The same effect occurs in anisotropic media where the
permittivity " is a tensor. Here, according to Equation (17), the electric field
En;mðkÞ is not related by an hermitian operator to the displacement field Dn;mðkÞ
but is a linear combination of the displacement field of all the different F n0;m0ðkÞ.

Fig. 2. Graphical representation of the electromagnetic wave F n;mðkÞ with magnetic field Hn;mðkÞ, electric
field En;mðkÞ and displacement field Dn;mðkÞ (a) TM polarization (b) TE polarization.
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Naming en;mðkÞk and en;mðkÞ? the parallel and perpendicular component of
en;mðkÞ along the direction of kn;m, we consider the electromagnetic wave
eF n;mðkÞ built arbitrarily with the magnetic (Hn;mðkÞ), orthogonal electric
(En;mðkÞ?) and displacement (Dn;mðkÞ) Fourier components.

dn;mðkÞ ¼ �
kn;mc
!
� kn;mc

!
� en;mðkÞ

� �
¼ kn;mc

!

����

����
2

en;mðkÞ?: ð21Þ

Hence, the electromagnetic wave eF n;mðkÞ behaves like a TE electromagnetic
plane wave propagating with energy ! and wave vector kn;m in an homoge-
neous medium with the permittivity "0jkn;mc=!j2.

The TE wave F n;mðkÞ which also satisfies Maxwell’s equations is identical to
eF n;mðkÞ except that its electric field possess an extra-component along the
direction of kn;m. The influence of this extra-component will be discussed below.

As for TM polarization, the waves F n;mðkÞ only exist as components of the
whole Bloch wave, so we will also call them partial electromagnetic plane
waves in following sections.

3.2. ENERGY PROPAGATION OF THE BLOCH WAVE

3.2.1. Time-space averaged energy density
Using Parseval–Plancherel equality, we calculate the time-space average
magnetic and electric energy densities hEmagn:ðkÞit;s and hEelec:ðkÞit;s of the
global Bloch wave:

Emagn:ðkÞ
� �

t;s¼
1

2
�0

H�H�
2

� 	

s
¼
X

n;m

1

4
�0Hn;mðkÞ � H�n;mðkÞ

¼
X

n;m

1

4
�0jhn;mðkÞj2H2

0 ; ð22Þ

Eelec:ðkÞ
� �

t;s¼
1

2

E�D�
2

� 	

s
¼
X

n;m

1

4
En;mðkÞ � D�n;mðkÞ

¼
X

n

1

4
�0H2

0 en;mðkÞ � h�n;mðkÞ �
kn;mc
!

� �

¼
X

n

1

4
�0jhn;mðkÞj2H2

0 ¼ Emagn:ðkÞ
� �

t;s: ð23Þ
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The total time–space average energy density hEkit;s of the global Bloch wave
can be simply written as:

hEkit;s ¼
X

n;m

1

2
�0Hn;mðkÞ � H�n;mðkÞ ¼

X

n;m

En;mðkÞ: ð24Þ

This expression is, of course, equal to 1
2�0H

2
0 . Yet, the form above shows that

the energy density of the global Bloch wave can be decomposed into frac-
tional energy densities En;mðkÞ ¼ 1

2�0jhn;mðkÞj2H2
0 corresponding to the energy

density of the partial electromagnetic plane wave F n;mðkÞ described in Section
3.1. This interesting result points out the importance of the dimensionless
coefficients jhn;mðkÞj2 which give the relative energetic contributions of the
different F n;mðkÞ. Finally it is important to note that this result is valid for
both TM and TE polarizations.

3.2.2. Time–space averaged Poynting vector
Using the Parseval–Plancherel equality, we develop the time–space average
Poynting vector hSkit;s of the global Bloch wave:

hSkit;s ¼ <e
E�H�

2

� �� 	

s
¼
X

n;m

<e
1

2
En;mðkÞ � H�n;mðkÞ

� �

¼
X

n;m

Sn;mðkÞ: ð25Þ

The partial Poynting vector Sn;mðkÞ ¼ <e 1
2 En;mðkÞ � H�n;mðkÞ
� �

corresponds to
the Poynting vector of the partial electromagnetic plane wave F n;mðkÞ, see
Fig. 2.

TM polarization. Using Equation (15) and the relation kn;m � En;mðkÞ ¼ 0
which is specific to the TM polarization, we obtain:

Sn;mðkÞ ¼ En;mðkÞ
!

jkn;mj
2
kn;m ð26Þ

TE polarization. Using the parallel and perpendicular components of
En;mðkÞ defined in Section 3.1, Sn;mðkÞ can be decomposed as:

Sn;mðkÞ ¼ Sn;mðkÞk þ Sn;mðkÞ?; ð27Þ

where
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Sn;mðkÞk ¼ En;mðkÞ
!

jkn;mj
2
kn;m ð28Þ

and

Sn;mðkÞ? ¼ <e
1

2

!

jkn;mj
2
kn;m � En;mðkÞk

 !
D�n;mðkÞ

" #
: ð29Þ

As there is an extra-component En;mðkÞk along the direction of kn;m, Sn;mðkÞ
possess in the TE case an extra-component along the direction of Dn;mðkÞ.
The consequence of this extra-component on the group velocity is discussed
below.

3.2.3. Group velocity of the global Bloch wave
In lossless periodic media, the group velocity vg of a Bloch wave is equal to its
energy velocity ve (Yeh 1979):

vg ¼ ve ¼
hSkit;s
hEkit;s

¼
P

n;m Sn;mðkÞ
1
2�0H

2
0

¼
X

n;m

jhn;mðkÞj2vn;mðkÞ; ð30Þ

where vn;mðkÞ is the group velocity of F n;mðkÞ given by:

vn;mðkÞ ¼
Sn;mðkÞ
En;mðkÞ

: ð31Þ

According to Equation (30), the group velocity of the global Bloch wave is
simply given by the sum of the group velocities vn;mðkÞ of the partial elec-
tromagnetic plane waves F n;mðkÞ weighted by their relative energetic contri-
butions jhn;mðkÞj2. This interesting relation provides an intuitive understanding
of the propagation direction of Bloch waves in 2D-PhCs, see Section 4.1.
Moreover, this result is valid for both TE and TM polarizations even if the
expressions of the group velocities vn;mðkÞ are different in each case.

TM polarization:

vn;mðkÞ ¼
!

jkn;mj
2
kn;m: ð32Þ

The group velocity vn;mðkÞ is simply equal to the phase velocity of the partial
electromagnetic TM plane wave F n;mðkÞ.
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TE polarization:

vn;mðkÞ ¼
!

jkn;mj
2
kn;m þ vn;mðkÞ?;

where

vn;mðkÞ? ¼ <e � !

jkn;mj2
kn;m � en;mðkÞ

jhn;mðkÞj2
d�n;m

 !
: ð33Þ

The component of vn;mðkÞ along the direction of kn;m is still equal to the phase
velocity ð!=jkn;mj2Þkn;m. Nevertheless, as in anisotropic media, the presence of
the extra electric component En;mðkÞk leads to a non-zero component vn;mðkÞ?
of the group velocity along the direction perpendicular to kn;m, see Fig. 2.

Finally, we want to point out that although kn;m and vn;mðkÞ are not parallel,
the scalar product kn;m � vn;mðkÞ ¼ ! is always positive. This shows that all the
partial electromagnetic plane waves F n;mðkÞ propagate in a standard right-
handed material and will be commented on in Section 4.3.

4. Examples

In this section, we consider the 2D-PhC structure made of a square lattice of
cylindrical air holes etched in a dielectric medium (inset in Fig. 3). The lattice
period is ‘a’ and the rod radius is ‘r’. The filling factor f ¼ �r2=a2 is 50% and
the susceptibilities are "1 ¼ 11 and "2 ¼ 1. The band diagram of this structure
is represented in Fig. 3 for each polarization.

4.1. GRAPHICAL REPRESENTATION OF BLOCH WAVES IN THE RECIPROCAL SPACE

In order to illustrate graphically the Fourier decomposition of a Bloch wave
propagating in the PhC structure under study, we need to represent on a
single diagram all the partial electromagnetic plane waves F n;mðkÞ and their
respective contributions to the energy density and group velocity.

A possible graphical representation of the partial electromagnetic plane
wave F n;mðkÞ is given in Fig. 4 where the particular example of F 1;0ðkÞ is con-
sidered. Each electromagnetic wave F n;mðkÞ can be represented by a disk
located at kn;m ¼ kþGn;m: the gray level of the disk indicates its relative
energetic contribution jhn;mðkÞj2 to the total Bloch wave (black! 1, white! 0).
From the center of the disk, the vector vn;mðkÞ shows its group velocity and
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the vector jhn;mðkÞj2vn;mðkÞ its contribution of F n;mðkÞ to the global group
velocity.

In the TE case, the vectors kn;m and vn;mðkÞ do not necessarily point in the
same direction. However, they belong to the same half-space since
kn;m � vn;mðkÞ > 0, see Section 3.2.

We now consider the examples of the TM- and TE-polarized Bloch waves
with wave vector k ¼ ð0:35; 0:1Þ propagating in the 2D-PhC under study. The
eigenvalues problem in Equations (18) and (19) has been solved with N ¼ 10,
and for each polarization, only the solution located in the first transmission
band is considered in this section. The corresponding partial electromagnetic
plane waves fF n;mðkÞg are represented in Fig. 5a and b with the same rep-
resentation as in Fig. 4. Here, only the vector jhn;mðkÞj2vn;m emerges from the
center of each disk in order to show the contribution to the group velocity vg
of the global Bloch wave. From Equation (30), vg is simply given by the
vectorial sum of all these vectors. In this particular example, F 0;0ðkÞ, F�1;0ðkÞ,
F 0;�1ðkÞ, F�1;�1ðkÞ are in the first, second, third, fourth Brillouin Zones (BZs),
respectively.

We observe in this particular example that the Fourier decomposition of
each Bloch wave is strongly dominated by the partial electromagnetic plane
wave F 0;0ðkÞ located in the first BZ (jh0;0ðkÞj2 > 0:92). The contribution of the
other F n;mðkÞ is negligible so that the global Bloch wave is very similar to
F 0;0ðkÞ. According to Equation (30), the group velocity vg is therefore very
close to the group velocity v0;0ðkÞ of F 0;0ðkÞ. Moreover, we observe in the TE
case that the extra-component v0;0ðkÞ? is very small, so that v0;0ðkÞ points in a
direction very close to k0;0. This result is actually very general: for partial

Fig. 3. Photonic band diagrams of the investigated 2D-PhC ("1 ¼ 1 and "2 ¼ 11, f ¼ 50%, black curve)

and of an homogenous medium considered as a PhC with zero modulation ("1 ¼ "2 ¼ 4:67, broken gray

curve). For comparison, they both have the same average refractive index < n >¼ 2:16. The three highly

symmetric points �; M and X of the square lattice are indicated. The inset shows the 2D-PhC structure

made of a square lattice of air holes embedded in a dielectric medium. (a) TM polarization (b) TE

polarization.
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electromagnetic plane waves with high energetic contribution, we have
observed that the extra-component vn;mðkÞ? of the group velocities is generally
small compared to the parallel component ð!=jkn;mj2Þkn;m. This property has
been observed in all the cases we have investigated. Nevertheless its theoretical
demonstration and domain of validity have not been completely clarified yet.

To conclude, although the decomposition of the group velocity is less
straightforward in the TE case, the results are qualitatively similar to the TM
case. In particular, when the Fourier decomposition of a Bloch wave is
dominated by a single partial electromagnetic plane wave F n;mðkÞ, the group
velocity of the Bloch wave points in a direction very close to kn;m. However, the
fact that the Bloch wave always has a dominant component which governs the
group velocity has not yet been rigorously demonstrated for the TM case.

Fig. 4. Graphical representation of the partial electromagnetic plane wave F 1;0ðkÞ in the reciprocal space.

The boundaries of the first Brillouin zone are represented by dashed lines. (a) TM polarization (b) TE

polarization.

Fig. 5. Graphical representation of the (a) TM- and (b) TE-polarized Bloch waves with the wave vector

k ¼ ð0:35; 0:1Þ propagating in the 2D-PhC under study (Parameters: "1 ¼ 1, "2 ¼ 11 and f ¼ 50). These

Bloch waves are located in the first transmission band of the 2D-PhC under study. The Brillouin zone

boundaries are represented by dashed lines.
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4.2. CONTINUOUS TRANSITION FROM THE 2D-PHCS TO THE HOMOGENEOUSMEDIUM

In this section, we consider the TM-polarized Bloch wave with wave vector
k ¼ ð0:35; 0:1Þ located in the second transmission band of the 2D-PhC
described in the introduction of Section 4. Its graphical representation
(Fig. 6a) shows that its Fourier decomposition is now strongly dominated by
the partial electromagnetic plane wave F�1;0ðkÞ located in the second BZ
(jh�1;0ðkÞj2 ¼ 0:78). This example illustrates that care must be taken, when
using the common reduced-zone scheme, to identify the dominant wave
vector of the Bloch wave. Indeed, it would be erroneous to assume that the
dominant wave vector is always the wave vector k ¼ k0;0 of the first BZ.
Here, the partial electromagnetic plane wave F 0;0ðkÞ has for example just a
negligible energetic contribution (jh0;0ðkÞj2 < 0:01) and has therefore just a
negligible influence on the properties of the global Bloch wave.

Problems resulting from an analysis focused on the first BZ are discussed
in details in (Lombardet et al. 2005). As an illustration, let us reduce con-
tinuously the index contrast of the 2D-PhC to zero: the homogeneous
medium is now described as a 2D-PhC with zero index contrast. After band
folding, the electromagnetic plane wave represented in Fig. 6b is character-
ized by the wave vector k ¼ ð0:35; 0:1Þ whereas only the wave vector
k�1;0 ¼ ð�0:65; 0:1Þ has a genuine physical meaning for this wave.

4.3. ARE PHCS LEFT-HANDED MATERIALS IN THE SECOND TRANSMISSION BAND?

Left-handed materials (LHMs) are generally characterized by the negative
sign of the scalar product k � vg, where k is the wave vector and vg the group

Fig. 6. Graphical representation of the TM-polarized Bloch wave with the wave vector k ¼ ð0:35; 0:1Þ and
located in the second transmission band of (a) the 2D-PhC under study and (b) the homogeneous medium

described in Fig. 3.
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velocity (Veselago 1968). In order to calculate this scalar product for a Bloch
wave, a single wave vector ‘k’ must be assigned to the considered Bloch wave.
The wave vector k ¼ k0;0 of the first BZ is generally chosen. In the second
transmission band, this scalar product is negative, thus suggesting that PhCs
behave as LHMs in this frequency range.

However, the Fourier decomposition of Bloch waves clearly shows that
these waves cannot be unambiguously characterized by a single wave vector.
Thus, the physical meaning of the scalar product ‘k’�vg is not clear for a Bloch
wave: as a matter of fact, this scalar product is negative for the wave vector
‘k’¼ k0;0 located in the first BZ, but positive for the wave vector ‘k’¼ k�1;0
of the dominant partial electromagnetic plane wave. The negative sign of the
product k:vg ¼ k0;0 � vg reported in previous papers has limited physical
meaning for optical Bloch waves. Therefore, it should not be invoked to
characterize the LHM properties of the second transmission band of
2D-PhCs.

5. Conclusion

We have demonstrated that an optical Bloch wave with the wave vector k can
be decomposed as series of partial electromagnetic plane waves fF n;mðkÞg.
Each of these waves satisfies Maxwell’s equations and is characterized by the
wave vector kn;m ¼ kþGn;m, where Gn;m is a vector of the reciprocal lattice.
In the TM case, F n;mðkÞ is identical to an electromagnetic plane wave prop-
agating in an homogenous medium with the permittivity "0jkn;mc=!j2. In the
TE case, the electric field of F n;mðkÞ possess an extra-component along the
direction of kn;m. Even if this component does not result from anisotropic
effects, the properties of F n;mðkÞ are very similar to those of an electromag-
netic plane wave propagating in an anisotropic medium. In both cases, the
global Bloch wave is characterized by the relative amplitudes of the different
F n;mðkÞ which are imposed by Maxwell’s equations. The energy density of the
global Bloch can be decomposed as the sum of the energies densities of the
different F n;mðkÞ. Its group velocity is given by the sum of the group velocities
of the F n;mðkÞ weighted by their relative energetic contribution. This
decomposition provides a simple and intuitive method for understanding and
investigating the propagative and refractive properties of optical Bloch waves
in 2D-PhCs.
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