
Rheol Acta (2006) 46: 59–82
DOI 10.1007/s00397-006-0085-3 ORIGINAL CONTRIBUTION

M. Dressler
B. J. Edwards

Received: 19 December 2005
Accepted: 12 January 2006
Published online: 24 May 2006
# Springer-Verlag 2006

Channel, tube, and Taylor–Couette flow
of complex viscoelastic fluid models

Abstract We show how to formulate
two-point boundary value problems to
compute laminar channel, tube, and
Taylor–Couette flow profiles for some
complex viscoelastic fluid models of
differential type. The models exam-
ined herein are the Pom-Pom Model
[McLeish and Larson 42:81–110,
(1998)] the Pompon Model [Öttinger
40:317–321, (2001)] and the Two
Coupled Maxwell Modes Model
(Beris and Edwards 1994). For the
two-mode Upper-Convected Maxwell
Model, we calculate analytical solu-
tions for the three flow geometries and
use the solutions to validate the
numerical methodology. We illustrate
how to calculate the velocity, pressure,
conformation tensor, backbone orien-
tation tensor, backbone stretch, and
extra stress profiles for various mod-

els. For the Pom-Pom Model, we find
that the two-point boundary value
problem is numerically unstable,
which is due to the aphysical non-
monotonic shear stress vs shear rate
prediction of the model. For the other
two models, we compute laminar flow
profiles over a wide range of pressure
drops and inner cylinder velocities.
The volumetric flow rate and the
nonlinear viscoelastic material prop-
erties on the boundaries of the flow
geometries are determined as func-
tions of the applied pressure drop,
allowing easy analysis of experimen-
tally measurable quantities.

Keywords Differential constitutive
equations . Polymer melts .
Laminar flows . Maxwell models .
Pom-Pom Model

Introduction

The flow of non-Newtonian liquids through channels,
tubes, and in the Taylor–Couette geometry (i.e., concentric
cylinders) is encountered in many industrial applications
involving plastics, food, and extraction of raw materials. It
is, therefore, of interest in applied and basic research in the
areas of engineering and physics. In capillary rheometry,
e.g., the nonlinear rheological properties of complex fluids
are measured indirectly via the volumetric flow rate through
the capillary. From the volumetric flow rate and the pres-
sure drop, one determines the wall shear rate and the shear
viscosity. However, for viscoelastic liquids, the relationship
between wall shear rate, volumetric flow rate, and extra
stress is more complicated than for Newtonian liquids due
to the highly nonlinear viscometric material functions and

the normal stresses. Taylor–Couette flows are encountered
in many applications, such as the journal bearing, and they
are modeled as annular flows between concentric or
eccentric cylinders. The fluid dynamics here are even
more complicated than in channel or tube flows, as there
can exist non-Newtonian flow behavior and centrifugal
forces due to rotation of the inner and/or outer cylinder.

To describe these flows theoretically for non-Newtonian
materials, it is necessary to use a constitutive model for
relating the flow kinematics to the fluid’s microstructure and
internal state of tension. Many models exist for this purpose,
and those that produce the best quantitative descriptions and
predictions of viscoelastic fluid responses are quite complex
internally. These more descriptive models employ multiple
microstructural variables subject to coupled evolution
equations, which relate changes in the fluid’s microstructure
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to the flow kinematics. In the past 10 years, the complexity
of viscoelastic fluid models has increased in direct propor-
tion with their descriptive capabilities.

In the 1980s, much effort was expended to develop finite
element methods (FEMs) to solve viscoelastic fluid models;
however, the simpler models available during that era were
not very successful at describing real material behavior. Now
that much better models are available, it is natural to try to
apply finite-element methodology to these new models, but
this is not as straightforward as it seems: the newer, better
models are much more complicated than the models used in
the 1980s. Consequently, they are in practice, although not
necessarily in principle, harder to implement using finite
element techniques.

As a consequence, it would be beneficial to have a simple
technique available that could be used to obtain relevant
information from complex models in flow fields of practical
importance. For example, a valid question for an experimen-
talist to ask might be: “What are the wall shear rate and wall
shear stress of a fluid following the Pom-Pom Model as
functions of the flow rate in Poiseuille flow?” Developing an
FEM to solve this problem presents several challenges,
including coding difficulties, which limit the use of thesemore
complicated models in inhomogeneous flow calculations.

Even the most complicated viscoelastic fluid model is
easy to solve in homogeneous flow calculations, using
techniques such as the Newton–Raphson Method (for
steady-state flows) or the Runge–KuttaMethod (for transient
flows). It would be a boon to have simple techniques
available for solving these complex models in inhomoge-
neous flows as well. Such a technique would require not
muchmore time than homogeneous flow calculations, which
run virtually instantaneously on contemporary personal
computers. Of course, with simplicity comes a trade-off
between ease of use and exactly what can and cannot be
described with the simpler methodology. Fortunately, the
needs of most rheologists are not that demanding: being able
to address the question presented in the preceding paragraph
without too much difficulty would be a nice advance.

In the present article, we want to solve several of the more
complicated viscoelastic fluid models of differential type for
non-homogeneous shearing flows as they are encountered in
several important geometries, such as the rectangular
channel, circular tube, and the Taylor–Couette geometry.
We will consider in this article the Pom-Pom Model
(McLeish and Larson 1998) of branched-chain macromole-
cules, the thermodynamically consistent Pompon Model
(Öttinger 2001), and the Two Coupled Maxwell Modes
(TCMM) Model (Beris and Edwards 1994; Edwards et al.
1996). This will allow us to discuss with these examples the
complicated relationships between inertia, nonlinear flow
profiles, viscoelastic stresses, wall viscometric material
functions, and volumetric flow rates in inhomogeneous
flows of practical importance. These examples serve to
illustrate the complications and difficulties encountered in

the experimental characterization and theoretical description
of non-Newtonian fluids.

There are several reasons for using the above-stated three
models in the present article. First, these models have not yet
been widely used in inhomogeneous flow calculations,
primarily because of their inherent complexity. The second
reason is because the models are inherently complex: our
motivation for this paper is to illustrate how complicated
models can be solved in inhomogeneous flows with no more
difficulty than simple models in homogeneous flows.
Consequently, we should use complicated models in our
illustrations rather than simple ones. These models have all
been used recently for fairly accurate quantitative descrip-
tions of rheological behavior for homogeneous flow fields
(Chodankar et al. 2003; Edwards et al. 2002; Jiang et al.
2003; Kamerkar et al. 2005); in this study, we extend this
work for inhomogeneous flow fields.

Much work has been done in the past to solve simpler
rheological models for one-dimensional inhomogeneous
flows. The Giesekus Model (Giesekus 1982) has been
solved by Schleiniger and Weinacht (1991) for steady
Poiseuille flow through channels and tubes. The Phan-
Thien–Tanner Model (Phan-Thien and Tanner 1977) has
been solved analytically and numerically for a number of
non-homogeneous shear flows in various flow geometries
(e.g., in Oliveira and Pinho 1999; Pinho and Oliveira
2000a,b; Alves et al. 2001; Cruz and Pinho 2004). In
Dressler and Edwards (2005), it has been shown how
viscoelastic fluid models for polymer blends can be
reformulated in terms of two-point boundary value
(TPBV) problems to solve for laminar channel flow. The
method is essentially a transformation of a set of partial
differential equations (PDEs) in terms of a set of ordinary
differential equations (ODEs) for the non-trivial spatial
coordinate.

In the present article, the Pom-Pom, Pompon, and TCMM
models will be solved for laminar channel, tube, and Taylor–
Couette flow (with andwithout axial through-flow) using the
methodology proposed in Dressler and Edwards (2005). We
determine the nonlinear flow profiles, extra stress tensor
profiles, backbone stretch profiles, and the wall viscometric
material properties in the laminar flow regime for the three
models.

The article is organized as follows. First, the three
viscoelastic fluid models are introduced. Then, the three sets
of model equations are reformulated for the laminar channel
and tube flow problems and it is explained how the model
equations can be reformulated in terms of a TPBV problem
to solve for mixed Poiseuille and Couette flow. Analytical
solutions will be derived for the Two-Mode Upper
Convected Maxwell (2MUCM) Model in channel and tube
flow. Then, we report and compare sample calculations for
the three viscoelastic fluid models. We find that the Pom-
PomModel predicts an aphysical non-monotonic wall shear
stress vs shear rate relationship, exactly analogous to its
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aphysical prediction in homogeneous steady-shear flow. In
the second part of the article, the methodology is then
applied to the Pompon and TCMM models to solve for
laminar flow in the Taylor–Couette geometry with axial
through-flow.

Model equations

The Pompon Model (Öttinger 2001) is a thermodynami-
cally consistent reformulation of the Pom-Pom Model
(McLeish and Larson 1998) that accounts for, among other
things, a non-trivial second normal stress coefficient in
shear flow. For this model, the physical variables are the
mass density, ρ, the momentum density, M = ρv (v being
the velocity field), the contravariant backbone orientation
tensor, S, and the scalar backbone stretch, λ . The time
evolution equations of the Pompon Model are

@ρ
@t

¼ �rrrr � vρð Þ; (1)

ρ
@v
@t

¼ �ρv � rrrrv�rrrrpþrrrr � σσσ; (2)

@S
@t

¼� v � rrrrSþ S � LT þ L � S

� 1

1þ a1ð Þλb
3S � Sþ a1 � 1ð ÞS� a1

3
1

n o
;

(3)

@λ
@t

¼ �v � rrrrλþ λL : S� 1

λs
λ� 1ð Þeν� λ�1ð Þ; (4)

where @�=@t and ∇ denote partial derivatives with respect to
time, t, and space, r, respectively, and LT = ∇v is the
velocity gradient tensor. We adopt the Gibbs notation here
as we work in terms of Cartesian and cylindrical
coordinates in the present article. Equation 1 is the
continuity equation for the mass density, ρ, and Eq. 2 is
the Cauchy momentum balance equation for the velocity
field, v, where the pressure and the extra stress tensor have
been denoted with p and σ, respectively.

The first term on the right side of Eq. 2 is the nonlinear
convective term, the second one represents the negative
pressure gradient, and the last one is the divergence of the
extra stress tensor field given by Eq. 5 below. Equation 3 is
the time evolution equation for the backbone orientation
tensor as reported by Chodankar et al. (2003) (Eq. 6),
where λb is a relaxation time and a1 is a phenomenological
parameter which is determined by the ratio of normal stress
differences in the zero shear limit, a1 ¼ � 1þ N1

�
2N2ð Þ� �

:

Equation 4 is the time evolution equation for the backbone
stretch, where λs is a second relaxation time and the
parameter ν* is related to the number of arms, q, of the
Pompon molecule: ν* = 2/q. The expression for the extra
stress tensor that renders the Cauchy momentum balance
thermodynamically consistent with the microstructural
Eqs. 3 and 4 is

σσσ ¼ Cgλ2S; (5)

where C = 15/4 and g is the elastic modulus of the fluid.
Equations 1, 2, 3, 4 and 5 constitute a set of PDEs to
describe the macroscopic dynamics of a Pompon fluid, and
it corresponds to the equations solved in Chodankar et al.
(2003) for double step-strain flows.

In the Pom-Pom Model (McLeish and Larson 1998), the
backbone orientation dynamics are described in terms of a
second-rank contravariant tensor, A, which is related to the
backbone orientation tensor, S = A/trA. The time evolution
equation of the tensor, A, according to Chodankar et al.
(2003) (Eq. 5) reads

@A
@t

¼ �v � rrrrAþ A � LT þ L � A� 1

λb
A� 1ð Þ; (6)

and it substitutes Eq. 3 in the set of Pompon Eqs. 1, 2, 3 and
4 to yield the Pom-Pom Model. Note that the Pom-Pom
Model has not been derived rigorously from nonequilib-
rium thermodynamics. The implications of this will be
discussed below.

For the TCMM Model (Beris and Edwards 1994;
Edwards et al. 1996), the microstructural variables of the
fluid are two contravariant second-rank conformation
tensors, Ci(i = {1, 2}). The model equations consist of
the continuity (Eq. 1) and the Cauchy momentum (Eq. 2)
for the mass density and the velocity field, respectively. For
the time evolution equations of the microstructural
variables, the equations of change are

@C1

@t
¼� v � rrrrC1 þ C1 � LT þ L � C1 � 1

λ1
C1

þ kBT

λ1K1
1� θ

2kBT

ffiffiffiffiffi
n2
n1

r
1ffiffiffiffiffiffiffiffiffiffi
λ1λ2

p

� K2 C1 � C2 þ C2 � C1
� �� 2kBTC

1
� �

;

(7)

@C2

@t
¼� v � rrrrC2 þ C2 � LT þ L � C2 � 1

λ2
C2

þ kBT

λ2K2
1� θ

2kBT

ffiffiffiffiffi
n1
n2

r
1ffiffiffiffiffiffiffiffiffiffi
λ1λ2

p

� K1 C1 � C2 þ C2 � C1
� �� 2kBTC

2
� �

:

(8)
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In the above equations, the quantities λi, ni, and Ki are
the relaxation time, the number density of microstructural
units per unit volume, and the characteristic elastic
constants belonging to conformation tensor Ci(i = {1,
2}), i.e., mode i, respectively. The phenomenological
parameter θ∈[−1, 1] quantifies the strength of the mode
coupling (Edwards et al. 1996). Equation 7 represents the
microstructural dynamics of mode 1, C1. The time
derivatives on the left side, together with the first three
terms on the right side of Eqs. 7 and 8, represent the upper-
convected derivatives of the contravariant second-rank
tensors, C1 and C2 (Oldroyd 1950). The last three terms on
the right side of Eqs. 7 and 8 describe the relaxation
behavior of the internal microstructure (Edwards et al.
1996). The fourth and fifth terms are the relaxation terms of
the Upper-Convected Maxwell Model and the sixth term
accounts for the coupling between the microstructural
variables. When θ = 0, a multiple uncoupled mode version
of the Upper-Convected Maxwell Model is manifested.

The extra stress tensor for the TCMM Model is (Beris
and Edwards 1994; Edwards et al. 1996)

σσσ ¼
X2
i ¼ 1

Gi
Ki

kBT
Ci � 1

� �
; (9)

where Gi = nikBT is the elastic modulus belonging to
microstructural variable Ci(i = {1, 2}). It arises due to the
fact that the microstructural components of the fluid are
modeled as Hookean springs. Equations 1, 2, 7, 8 and 9 are
thermodynamically consistent time evolution equations for
the TCMM fluid. In the present article, we solve the
Pompon, the Pom-Pom, and the TCMM models for a
superposition of drag (Couette) flow with plane pressure-
driven (Poiseuille) flow in Cartesian and cylindrical
coordinates. In Cartesian coordinates, we examine flows
between parallel plates, whereas in cylindrical coordinates,
we study tube and Taylor–Couette flows. Therefore, the
dynamical equations will be solved numerically to match
prescribed boundary conditions on the walls. In this paper,
we want to assume no-slip boundary conditions to be
imposed on the velocity field at the boundaries. Mathe-
matically, this is a TPBV problem because the physical
fields depend on one spatial coordinate and have to match
prescribed boundary conditions at the limits of the
integration interval. The methodology to solve the bound-
ary value problem is straightforward and computer
algorithms are available (Press et al. 1992, cf., e.g.).
However, it is not immediately obvious how to manipulate
the three sets of continuum equations (Eqs. 1, 2, 3, 4 and
5) to obtain a computationally tractable formulation of the
boundary value problem. The method is explained in the
subsequent sections for the different flow geometries.

Channel and tube flows

Boundary conditions and non-dimensional system
equations

In this section, the three viscoelastic fluid models (Pompon,
Pom-Pom, and TCMM) will be solved for mixed Poiseuille
and Couette flow between two horizontal planes located at
x2 = 0 and x2 = H assuming steady laminar flow in the x1
direction. Under these assumptions, the velocity vector is of
the form v ¼ υ1ðx2Þe1 and obeys the boundary conditions

υ1 x2 ¼ 0ð Þ ¼ 0; (10)

υ1 x2 ¼ Hð Þ ¼ V ; (11)

i.e., the upper plane moves at a velocity V relative to the lower
one. The backbone orientation tensor, backbone stretch,
conformation tensors, and extra stress tensors are functions of
the transversal coordinate, x2, and the density, ρ, is constant as
rrrr � v¼ 0: For pure Poiseuille flow, i.e., V = 0, the flow
problem is symmetric with respect to the mid-plane, x2¼
H=2; and the boundary conditions are

υ
0
1 x2 ¼ H=2ð Þ ¼ 0; (12)

υ1 x2 ¼ Hð Þ ¼ 0; (13)

where “ 0 ” denotes differentiation with respect to the
transversal direction, x2. In the following paragraphs, we
give the dimensionless form of the system equations for the
three viscoelastic fluid models.

The Pompon and Pom-Pom equations are rendered dimen-
sionlesswith ev ¼

ffiffiffiffiffiffiffiffiffiffi
λ1λ2

p
v
�
H; ep ¼ p

�
Cgð Þ;eσσσ ¼ σσσ

�
Cgð Þ; ander ¼ r=H; errrr ¼ Hrrrr: For tube flow, the channel height, H,

is to be replaced with the tube radius, R. In what follows,
we drop the “~” denoting dimensionless quantities. Then,
Eqs. 1, 2, 3, 4 and 5 reduce to the set of Pompon
equations

rrrr � λ2S
� ��rrrrp ¼ 0; (14)

S � LTþL � S� 1

1þ a1ð Þeλ1

3S � Sþ a1 � 1ð ÞS� a1
3
1

n o
¼ 0;

(15)

λL : S� 1eλ2

λ� 1ð Þeν� λ�1ð Þ ¼ 0; (16)
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where eλ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λb=λs;

p eλ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λs=λb:

p
Equation 14 is

obtained after inserting the stress constitutive assumption
(Eq. 5) into the Cauchy momentum balance (Eq. 2). The
equilibrium (L = 0) solution of the above Eqs. 15 and 16
is S = 1/3, λ = 1. With Eq. 5, this implies σ = 1/3. For the
Pom-Pom Model, Eq. 15 is replaced with

A � LT þ L � A� 1eλ1

A� 1ð Þ ¼ 0: (17)

Note that the Pompon equations can be expressed in
terms of the backbone orientation tensor, S, whereas the
Pom-Pom equations have to be expressed in terms of the
second-rank tensor, A, which has no strict physical
meaning.

The TCMM equations are rendered dimensionless
with ev ¼

ffiffiffiffiffiffiffiffiffiffi
λ1λ2

p
v=H; eCi ¼ KiC

i=kB T ði 2 f1; 2gÞ;ep ¼ p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G1G2;

p eσσσ ¼ σσσ=
ffiffiffiffiffiffiffiffiffiffiffi
G1G2

p
; and er ¼ r H;= errrr ¼ Hrrrr:

Again, we drop the “~” denoting dimensionless
quantities. Then, Eqs. 1, 2, 7, 8 and 9 reduce to the
set of differential equations

X2
i ¼ 1

eGirrrr � Ci �rrrrp ¼ 0 (18)

Ci � LTþL � Ci � 1eλi

Ci þ 1eλi

1

� θ

2eGi

C1 � C2 þ C2 � C1 � 2Ci
� � ¼ 0;

(19)

where eλ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1=λ2;

p eG1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G1=G2

p
: Analogous defini-

tions apply for eλ2 and eG2: Equation 18 is obtained by
inserting the stress constitutive Eq. 9 into the Cauchy
momentum balance (Eq. 2).

Analytical solution of the 2MUCM model

In this section, for θ = 0, the TCMM Eqs. 18 and 19 reduce
to the 2MUCM Model, which is solved here analytically
for laminar channel flow. The solution of the υ1-component
of the momentum balance Eq. 18 reads

υ1 ¼ � 1

2eη @p

@x1
x2 H � x2ð Þ þ Vx2

H
; (20)

where eη ¼ eG1
eλ1 þ eG2

eλ2 and @p
�
@x1 is the constant

pressure drop in the direction of flow. For the conformation
tensor Eq. 19, we arrive at the solutions

Ci
11 ¼ 2eλ2

j � 1

2eη @p

@x1
H � 2x2ð Þ þ V

H

	 
2
þ 1; (21)

Ci
12 ¼ �

eλi

2eη @p

@x1
H � 2x2ð Þ þ

eλiV

H
; (22)

Ci
jj ¼ 1; j ¼ 2; 3f g; (23)

and all other Ci
jk ¼ 0 for i = {2, 3}. Note that, for the

2MUCM Model, we have @p
�
@x2 from the υ2-component

of Eq. 18 together with Eq. 23. The extra stress tensor can
be calculated from the above Eqs. 21, 22 and 23 using the
constitutive relationship of Eq. 9. The volumetric flow rate,
Q (volume/length), through a cross section of the channel
perpendicular to the x1-axis is

Q ¼
ZW
0

dx3

ZH
0

υ1dx2 ¼ � 1

12eη @p

@x1
H3W þ V

2
HW ; (24)

whereW is a unit length in the neutral direction, e3, and υ1 is
given by Eq. 20. From Eq. 24, we recognize that a positive
drag flow, V, gives a positive contribution and a positive
pressure drop, @p

�
@x1; gives a negative contribution to the

total volumetric flow rate. For a given drag velocity,
V = Ve1, the volumetric flow rate (Eq. 24) vanishes for

@p

@x1

� �y
¼ 6eη

H2
V : (25)

To describe the axial flow of a 2MUCM fluid through a
circular tube of radius R, Eqs. 18 and 19 have to be solved
in cylindrical coordinates (r, ϕ, z), where r is the distance
from the cylinder axis, ϕ is the azimuthal coordinate, and z
is the axial coordinate along the cylinder axis. The solution
of the continuum Eqs. 18 and 19 is analogous to the
symmetric channel flow problem, which is given in the
“Appendix”. From the solution of the tube flow problem,
Eqs. 72 and 73, we obtain

Q ¼
Z2π
0

dϕ
ZR
0

υzrdr ¼ � π
8eη @p

@z
R4; (26)
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which corresponds to Hagen–Poiseuille’s law. The wall
extra stresses resulting from the non-equilibrium con-
formations, Eq. 73 in the “Appendix”, lead to a die swell
which can be estimated from the wall viscometric proper-
ties (Bird et al. 1987):

D
0

D
¼ 1

10
þ 1þ 1

2

σzz;w � σrr;w
2σrz;w

� �2
" #1

6

: (27)

A D = 2R is the diameter of the tube, D′ is the diameter
of the swollen fluid, and the subscript “w” refers to the wall
viscometric properties. For the 2MUCM model, we get
from Eq. 27 with Eq. 73

D
0

D
¼ 1

10
þ 1þ 1

2

eη2
2eη2 @p

@z
R

� �2
" #1

6

; (28)

where eη2 ¼ eG1
eλ2
1 þ eG2

eλ2
2: These solutions can be

compared with the numerical results obtained with the
TCMMModel for θ = 0 to validate the proposed numerical
methodology. In all cases examined in this study, such a
validation was perfect.

In the next section, we explain how the three viscoelastic
fluid models have been reformulated in terms of TPBV
problems to solve for laminar channel and tube flow. For
the channel geometry, the TPBV problems are solved for
mixed Couette and Poiseuille flow. The tube flow problems
are solved for pure Poiseuille flow.

Numerical method

In this section, we explain how the three models have been
discretized and solved numerically for superimposed
Couette and Poiseuille flow.We explain the methodology
separately for the three models considering both channel
and tube flows. First, we consider the channel flow
problem for the three viscoelastic fluid models.

For a superposition of unidirectional and laminar
Poiseuille flow with Couette flow, the three sets of PDEs
(Eqs. 14, 15, 16, 17, 18 and 19) reduce to sets of ODEs

A � ξ0 ¼ b; (29)

which have to be solved for the boundary conditions (Eqs.
10 and 11 or Eqs. 12 and 13) depending on whether the
channel flow profiles are non-symmetric or symmetric with
respect to the mid-plane. In the above linear equation, ξ is a

n-tuple of non-trivial physical fields,A is a n×n coefficient
matrix, b is another n-tuple called the “inhomogeneity,”
and “ 0 ” denotes differentiation with respect to the x2
coordinate. The coefficient matrix, A, and the inhomoge-
neity, b, have to be obtained from the continuum Eqs. 14,
15, 16, 17, 18 and 19. For laminar channel flow, we have

ξ ¼ υ1; υ
0
1; p;X11;X12;X22;λ

� �T
; (30)

ξ ¼ υ1; υ
0
1; p;C

1
11;C

1
12;C

1
22;C

2
11;C

2
12;C

2
22

� �T
; (31)

where υ
0
1 ¼ @υ1=@x2 is the velocity gradient. Equation 30

is for the Pompon Model (Xij ≡ Sij) or the Pom-Pom Model
(Xij ≡ Aij), and Eq. 31 is for the TCMM Model. The
coefficient matrix, A , and the inhomogeneity, b, are
identified from the system Eqs. 14, 15, 16, 17, 18 and 19.

For the TCMM Model, the coefficient matrix, A, and the
inhomogeneity, b, are obtained in the following way. The first
two rows of (A, b) corresponding to υ1 and υ

0
1 are the υ1-

component of Eq. 18 and the Ci
12 -component of Eq. 19

(either for i = 1 or 2), respectively. The third row of (A, b)
corresponds to the υ2-component of the momentum balance
Eq. 18. The remaining six rows of (A, b) corresponding to the
non-trivial components of the conformation tensor are
identified by taking the derivative of the appropriate compo-
nent of the conformation tensor Eq. 19 with respect to x2.

The TPBV problems for the three viscoelastic fluid models
are solved computationally using a shooting algorithm. The
algorithm uses a fourth-order Runge–Kutta scheme with
adaptive step size to integrate the set of ODEs and a globally
convergent Newton algorithm to match the imposed bound-
ary conditions at the upper channel wall, x2 = H. First, in our
computer algorithm the linear system (Eq. 29) is solved using
an LU decomposition of the coefficient matrix,A . The set of
ODEs ξ0 = A−1·b is then integrated with the Runge–Kutta
algorithm shooting from the lower plane, x2 = 0, to the upper
plane, x2 = H. Every Runge–Kutta shoot starts with the same
initial condition (Eq. 10) on the velocity field and a different
wall shear rate, υ

0
1 x2 ¼ 0ð Þ; being the independent variable

in the Newton subroutine of the shooting algorithm. The
Runge–Kutta integrations are repeated until the Newton
algorithm has converged, i.e., the boundary condition on the
upper plane, (Eq. 11), is satisfied. Note that, before every
Runge–Kutta shot, the homogeneous shear flow problem
related to Eq. 19 has to be solved for υ

0
1 x2 ¼ 0ð Þ because the

structural variables on the lower plane are non-trivial
functions of the wall shear rate. This is necessary because
the symmetry of the flow with respect to x2 ¼ H=2 is broken
in the case of mixed Poiseuille and Couette flow.
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For tube flow, the three sets of model equations are
reformulated in terms of TPBV problems (Eq. 29) for the
boundary conditions Eqs. 69 and 70 in the “Appendix”. The
n-tuples of unknown profiles now are

ξ ¼ p; υz; υ
0
1;Xrr;Xrz;Xzz;λ

� �T
; (32)

ξ ¼ p; υz; υ
0
1;C

1
rr;C

1
rz;C

1
zz;C

2
rr;C

2
rz;C

2
zz

� �T
; (33)

where Eq. 32 is for the Pompon Model (Xij ≡ Sij) or the Pom-
Pom Model (Xij ≡ Aij) and Eq. 33 is for the TCMM Model.
The “0” denotes differentiation with respect to the radial
coordinate. The coefficient matrices, A , and the inhomo-
geneities, b, are obtained in an analogous way as for the
laminar channel flow profiles. Note that, for the symmetric
tube flow problem, it is not necessary to solve numerically the
steady-state flow problem before every Runge–Kutta shoot as
the velocity gradient vanishes on the tube axis, i.e., S = 1/3, λ
= 1; Ci = 1(i = {1, 2}) for r = 0 in the three viscoelastic fluid
models. In the computer code, the velocity on the tube axis is
the independent variable of the Newton subroutine in the
shooting algorithm. It is varied until the boundary condition
(Eq. 70) is matched.

The accuracy of our solution technique has been verified
for the TCMMModel in the limit where this model reduces
to the 2MUCM Model (θ = 0). As already mentioned, the
2MUCM Model has analytical solutions in the three
geometries considered in this article. For a sufficiently
refined mesh, the computational code reproduced the
analytical results, within machine precision. The Runge–
Kutta integrator used in the shooting algorithm had an
adaptive step size.

Sample calculations for channel and tube flow are
presented and discussed in the following section. This is
done to illustrate the efficiency of the numerical scheme, to
discuss qualitatively the model behavior, and to compare
solutions of the three models. Furthermore, we will address
numerical problems which have been encountered in the
numerical solution of the Pom-Pom Model.

Sample calculations

The Pom-Pom and Pompon models

The boundary value problems for laminar channel and tube
flow of the Pompon Model and the Pom-Pom Model have
been solved computationally for λb=λs ¼ 3 and various
values for the number of arms, q. For the sample
calculations of the Pompon Model, we chose a1=1. The
results of the TPBV calculations are reported in Figs. 1, 2, 3,
4 and 5.

Figure 1 displays the velocity, stress tensor, and backbone
stretch profiles for laminar channel flow of a Pompon fluid
at five pressure drops. As the relative velocity of the two
planes is zero (V = 0), we solved the TPBV problem for the
boundary conditions Eqs. 12 and 13 exploiting the symme-
try of the fields. In Fig. 3, we will present velocity and shear
rate profiles for mixed Couette and Poiseuille flow between
horizontal planes. The velocity field (Fig. 1a, v ≡ v1) and
the normal stresses (Fig. 1d,e) are symmetric with respect
to the channel mid-plane; the shear rate (Fig. 1b, γ

: ¼ υ
0
1

�
and the shear stress (Fig. 1c) are anti-symmetric. On the
mid-plane of the channel, we have σ = 1/3 and λ = 1. Note
that the transversal normal stresses (Fig. 1e) are positive
and show a non-monotonic behavior, which is qualitatively
different from the results found for the TCMM Model (cf.
Fig. 6). The backbone stretch (Fig. 1f) increases mono-
tonically proceeding from the mid-plane to the upper wall,
and it is symmetric with respect to the channel mid-plane.
The normal stress in the vorticity direction is σ33 ¼ 1

�
3λ2

as S33 is at its equilibrium value for laminar channel flow.
From Fig. 1, we note that the shear rate, the components of
the extra stress tensor, and the backbone stretch assume
their maximum values on the channel wall. The wall
viscometric properties are, thus, non-trivial functions of the
wall shear rate. These properties are reported in Fig. 2 and
will be discussed in the next paragraph. The influence of
the number of arms, q, on the macroscopic flow behavior of
the Pompon fluid is discussed in Fig. 4.

In Fig. 2, the nonlinear viscometric functions of the
Pompon Model are plotted as functions of the negative wall
shear rate on the upper wall of the channel. The shear stress is
a monotonically increasing function of the shear rate, and we
observe a typical viscoelastic response with a shear-thinning
behavior of the viscosity and the first normal stress coeffi-
cient. The second normal stress coefficient is negative, and it
varies betweenΨ2w

�
Ψ1w ¼ �1

�
2 1þ a1ð Þð Þ for small shear

rates and zero for large shear rates. Note that the results
reported in Fig. 2 are identical to the nonlinear viscometric
functions as obtained from solution of the steady-state
homogeneous shear flow problem. The reason for this is
that the backbone orientation tensor and the backbone stretch
on the channel wall must satisfy Eqs. 3 and 4 for the wall
shear rate, γ

:

w; which is obtained from solution of the TPBV
problem.

Figure 3 shows the velocity field for Poiseuille flow
superimposed onto Couette flow for q = 3 and various
pressure drops, ∇1p, denoted with each curve. In Fig. 3a, we
show the velocity (υ ≡ υ1) as a function of the channel
height, and in Fig. 3b, we display the shear rate γ

: � υ
0
1

� �
:

The vertical line υ = 0 in Fig. 3a is to indicate where the
velocity changes its sign. The relative velocity of the planes
is V = 0.5, as can be identified from Fig. 3a. As the flow
problem is not symmetric, the TPBV problem has been
solved with the boundary conditions (Eqs. 10 and 11) so that
the steady-state shear flow problem is solved on the lower
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plate before every Runge–Kutta shoot to yield a correct
starting n-tuple, ξ, for the Runge–Kutta integration. In
Fig. 3a, we observe that the positive drag flow, V = 0.5,
gives a positive volumetric flow rate and the positive
pressure drop, ∇1p, gives a negative volumetric flow rate.
Consequently, for every velocity of the upper plane, one can
identify a critical pressure drop, (∇1p)

†, which leads to a
vanishing total volumetric flow rate (cf. the discussion for
the 2MUCM Model and the related Eq. 27 above).

Figure 4 displays the maximum fluid velocity (Fig. 4a),
the wall shear rate (Fig. 4b), and the volumetric flow rate
(Fig. 4c) for tube flow of a Pompon fluid. The volumetric
flow rate has been calculated numerically using a ten-point
Gauss–Legendre integration (Press et al. 1992) of the
velocity profile. We have considered a stationary (non-
rotating and non-translating) tube wall, and we show
sample calculations for three Pompon chains with different
numbers of arms. We observe that the behavior of the
volumetric flow rate correlates with the maximum fluid
velocity on the tube axis and the wall shear rate.

Furthermore, the maximum fluid velocity, wall shear rate,
and volumetric flow rate decrease as the number of arms
increases. These three quantities increase monotonically
with the applied pressure drop.

In what follows, we discuss the steady-state shear flow
properties of the Pom-Pom Model for one set of model
parameters, λb=λs and q. We solve this model for the
steady-state homogeneous shear flow problem and the
laminar channel flow problem. The wall viscometric
material properties obtained from the two numerical
schemes will be discussed as above for the Pompon
Model (cf. Fig. 2).

Figure 5 shows the viscometric material properties for
laminar channel flow of a Pom-Pom fluid (λb/λs = 3 and
q = 3) as a function of the negative wall shear rate on the
upper wall of the channel. Note that the wall shear stress
according to this model is a non-monotonic function of the
wall shear rate, which is qualitatively different from the
prediction of the Pompon Model and the TCMM Model in
Figs. 2 and 7. In fact, this model displays the completely
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Fig. 1 Laminar channel flow
profiles for the Pompon Model
at five pressure drops: ∇1p = −2
(solid lines), −4 (dotted lines),
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dashed lines), and −10 (dot-
dashed lines). Model parameters
are λb/λs = 3, a1 = 1, q = 3.
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absurd result that the shear stress in homogeneous steady-
shear flow goes to zero with increasing shear rate. (For
homogeneous flow, replace γ

:

w with �γ
:

in the figure).
This seems to be an artifact of the model and not a result of
any unusual flow behavior, such as shear band formation
(which would have been evident in the figures discussed
previously). Given the definition of S ( = A/trA) which
appears in the expression for σ, it is evident that A12

becomes much smaller than trA as the molecular
conformations extend with increasing shear rate.

The second normal stress coefficient is zero for the Pom-
PomModel. The solid lines in Fig. 5 have been obtained from
the solution of the TPBV problem for the Pom-Pom fluid
using the shooting algorithm. The dotted lines, which
superimpose onto the solid lines in the low shear rate regime,
have been obtained from solution of the steady-state
homogeneous shear flow problem. Note that the solution of
the steady-state homogeneous shear flow problem, which has
been obtained with a Newton Raphson algorithm (Press et al.
1992), can be calculated over the entire range of shear rates
shown in Fig. 5. However, the solid lines, which have been
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volumetric flow rate (c) for laminar tube flow of a Pompon fluid at
three values of the arm parameter: q = 3 (solid lines), 30 (dotted
lines), and 300 (dashed lines). Other model parameters are the same
as in Fig. 1
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Model as found in laminar channel flow. Model parameters are the
same as in Fig. 1
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obtained from the shooting algorithm, can be calculated only
up to the shear rate γ

: �
; where the wall shear rate has a

minimum @ σ12
�
@γ
:

w γ
: � ¼ 0
 : The reason for this breakdown

of the shooting algorithm in the vicinity of the wall shear rate,
γ
: �
; lies in the first equation of the linear system (Eq. 29),

which corresponds to the υ1-component of the Cauchy
momentum balance (Eq. 2),

@ σ12

@x2
¼ @p

@x1
: (34)

Using the stress constitutive relationship (Eq. 5), the left
side of Eq. 34 can be identified with the left side of the linear
Eq. 29,

P7
i ¼ 1 A1iξi; b7 ¼ @p=@x1: However, the left side of

Eq. 34 can be rewritten as

@ σ12

@x2

ex2¼ @ σ12

@υ
0
1


γe: @υ

0
1

@x2

ex2 : (35)

Now, for υ
0
1 ¼ γ

: �
; the left side of Eq. 34 is zero and the

first row of the coefficient matrix A in Eq. 29 vanishes.
Consequently, the minimum of the shear stress implies that
the rank of the coefficient matrix, A, in Eq. 29 is reduced by
one, which leads to the numerical instabilities of the shooting
algorithm. In our computer code, the step size in the Runge–
Kutta integrator of the shooting algorithm decreases towards
zero and the integration of Eq. 29 stops as the shear rate

approaches the value γ
: �
: This occurs for pressure drops that

lead to wall shear rates slightly below γ
: �
; as seen in Fig. 5.

As a consequence of the non-monotonic shear stress vs
shear rate predictions reported in Fig. 5 and the numerical
instabilities of the shooting algorithm related to this model
behavior, we do not consider the Pom-PomModel further in
the present article. Instead, we focus on the Pompon and the
TCMM models as we are interested mainly in the model
predictions for laminar flows through channels, tubes, and
annular gaps. Presumably, the Pom-Pom Model gives
similar flow profiles as the Pompon Model for shear rates
below γ

: �
: Furthermore, Chodankar et al. (2003) have shown

that the Pompon Model provides a better qualitative match
of the integral Pom-Pom Model in step-strain flows than the
differential Pom-Pom Model. This implies that the Pompon
Model might more accurately represent the physics
contained within the more fine-grained integral version of
the original Pom-PomModel. The original Pom-PomModel
was extended by Verbeeten et al. (2001) to allow for the
prediction of a non-zero second normal stress coefficient. As
above, the Extended Pom-Pom Model can also be checked
to see if it predicts a monotonic steady-state shear stress vs
shear rate profile under homogeneous shear flow.

The TCMM Model

The boundary value problems for channel and tube flow of
a TCMM fluid were also solved computationally, and
sample calculations for λ2/λ1 = 2, n2/n1 = 1 and different
values of the phenomenological coupling parameter, θ, are
reported in Figs. 6, 7 and 8. Figures 6 and 7 are for channel
flow and Fig. 8 is for tube flow.

Figure 6 displays the velocity, extra stress tensor, and
pressure profiles for laminar channel flow for five
pressure drops. As the relative velocity of the two planes
is zero (V = 0), we solve the TPBV problem for the
boundary conditions (Eqs. 12 and 13) exploiting the
symmetry of the physical fields. The velocity field (υ≡ υ1)
in Fig. 6a is symmetric with respect to the mid-plane and
the shear rate profile in Fig. 6b is antisymmetric γ

: � υ
0
1Þ:

�
For the smallest pressure drop, the shear rate profile is
almost linear, whereas for higher pressure drops, we
observe a pronounced departure from linearity as the
channel wall is approached. According to the momentum
balance, the shear stress is linear and it vanishes on the
mid-plane where the shear rate is zero (Fig. 6c). Figure 6d,
e displays the normal stress profiles, which are even
functions. We observe that the absolute value of the
normal stresses acting on the channel walls (σ22) are two
orders of magnitude smaller than the normal stresses
acting in the direction of flow (σ11). A consequence of the
appearance of the normal stresses, σ22, is that one has to
exert a normal force, F/A = −σ22, on the planes to obtain a
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Fig. 5 Non-linear viscometric functions according to the Pom-Pom
Model as found from solution of the steady-state homogeneous flow
problem (dotted lines) and from solution of the TPBV problem
(solid lines). Model parameters are λb/λs = 3 and q = 3. The shear
stress vs shear rate dependence is non-monotonic
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steady-state channel flow. The normal stress in the
vorticity direction vanishes, σ33 = 0. The pressure profile
is reported in Fig. 6f. Note that we are investigating here
an incompressible fluid. Therefore, the pressure has no
thermodynamic definition, but it ensures that the
velocity field fulfills the incompressibility condition,
rrrr� v ¼ 0; along with the momentum balance equation.
In Cartesian coordinates, we have r2σ22 �r2p ¼ 0;
so that the pressure profile is identical to the trans-
versal normal stress profile: p ¼ σ22 þ p0; where p0 is
a constant.

Figure 7 displays the nonlinear viscoelastic properties of
the TCMM fluid as a function of the negative wall shear
rate on the upper wall. The model parameters are the same
as before (in Fig. 6). We obtain a monotonic increase of the
negative wall shear stress with the wall shear rate, and we
observe a typical shear thinning behavior with a positive
first normal stress coefficient and a negative second normal
stress coefficient. Note that the nonlinear flow curves
shown in Fig. 7 are obtained from the solution of the TPBV

problem. We obtain identical flow curves as we obtained
previously from the solution of the steady-state homoge-
neous flow problem (Edwards et al. 1996). The qualitative
model behavior of the TCMM Model is identical to the
Pompon Model (cf. Fig. 2): the shear stress is a
monotonically increasing function of the shear rate, the
first normal stress coefficient is positive, the second normal
stress coefficient is negative, and the ratio of normal stress
differences is less than unity. Contrarily, the Pom-Pom
Model predicts a non-monotonic stress vs shear rate
behavior and vanishing second normal stress difference.

In Fig. 8, we show the die swell, predicted according to
Eq. 27, for the 2MUCM fluid and three non-trivial
coupling parameter values of the TCMM fluid. We have
studied pure Poiseuille flow, i.e., the tube wall is stationary
(no translational or rotational motion of the tube is
considered). For small pressure drops, the diameter of the
swollen fluid increases slightly, whereas for large pressure
drops, we get a strong increase of the relative die swell as a
function of the pressure drop. The transition from the slight
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Fig. 6 Laminar channel flow
profiles for a TCMM fluid
(λ2/λ1 = 2, n2/n1 = 1, θ = 0.1) at
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to the strong extrudate swelling regime in Fig. 8 occurs at
pressure drops slightly below ∇z p = −10. Note that the
onset of significant die swell in Fig. 8 decreases as the
nonlinear coupling parameter increases. This seems
reasonable as the increasing coupling parameter value
implies a broader separation of the characteristic times of
the two relaxation modes (Edwards et al. 1996).

Comparison with experimental trends

There is not a great wealth of experimental data available
concerning stress and velocity profiles in channel and tube
flows. What does exist is in qualitative agreement with the
model predictions described above, with a couple of
exceptions. First, there is no experimental evidence to
suggest that the non-monotonic steady-state wall shear
stress profile of the Pom-Pom Model exhibited in Fig. 5 is
physically reasonable. Indeed, the fact that this quantity
vanishes for high flow rates seems particularly egregious.
At first glance, this effect might potentially be ascribed to
wall slip; however, the fact that the same quantitative
behavior is observed for the steady-state shear stress vs
shear rate in homogeneous shear flow clearly indicates that
this behavior is an aphysical artifact of the differential
Pom-Pom Model.

Second, the Pompon Model predicts a non-monotonic
curve for σ22 near the centerline of the channel. Of course,
there is no experimental data available to suggest even a
qualitative trend for this quantity, but we cannot imagine
any potential mechanisms leading to this behavior. Perhaps
a study of the underlying chain conformations would shed
light on this issue. Nevertheless, this problem with the
Pompon Model, assuming it is one, does not seem to affect
the numerical stability of this model.

Taylor–Couette flow

Boundary conditions and dimensionless system
equations

In this section, the Pompon and TCMM Model are solved
for mixed Poiseuille and Couette flow through the annular
gap between two concentric cylinders with inner radius Ri

and outer radius Ro. We explain how the coefficient matrix,
A, and the inhomogeneity, b, change with respect to channel
and tube flow. The ratio of cylinder radii is k = Ri/Ro, the
annular gap is δ = Ro−Ri, and the relative distance from the
inner cylinder is r ¼ r � Rið Þ ðRo � RiÞ:

�
Again, we adopt

cylindrical coordinates (r, ϕ, z) to describe the flow. The
no-slip boundary conditions to be imposed on the velocity
field are

υϕ r ¼ Rið Þ ¼ U ; (36)

υϕ r ¼ Roð Þ ¼ 0; (37)

υz r ¼ Rið Þ ¼ 0; (38)
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υz r ¼ Roð Þ ¼ 0; (39)

The inner cylinder rotates at a constant angular velocity,
Ω = U/Riez, generating Couette flow in the annular gap and
a constant pressure drop along the cylinder axis, ∇z p, leads
to axial through-flow.

The Pompon equations are rendered dimensionless as
before for the channel and tube flow problems, except that the
characteristic length scale of the flow geometry now is, δ, i.e.,er ¼ r=δ; errrr ¼ δrrrr Then, the Pompon Eqs. 1, 2, 3, 4 and 5

adopt the form

Ta v � rrrrv ¼ rrrr � λ2S
� ��rrrrp; (40)

� υϕ
r
Mi þ S � LT þ L � S

� 1

1þ a1ð Þeλ1

3S � Sþ a1 � 1ð ÞS� a1
3
1

n o
¼ 0;

(41)

λL : S� 1eλ2

λ� 1ð Þeν� λ�1ð Þ ¼ 0; (42)

where Ta ¼ ρ2U2δ3
�
RiC2g2λbλsð Þ is the Taylor number.

The first term on the left side of Eq. 41 is obtained from the
general relationship

v � rrrrS ¼ bQ Sþ υϕ
r
M (43)

which holds for cylindrical coordinates (Tanner 2000). In
Eq. 43, we have bQ ¼ υr@r þ υϕ

�
r@ϕ þ υz@z and

M ¼
�2Srϕ Srr � Sϕϕ � Sϕz

� �2Srϕ Srz
� � 0

0B@
1CA; (44)

is a matrix with * denoting a symmetric entry. Note that for
laminar flow in the Taylor–Couette geometry, we have bQ ¼ 0
since υr = 0, and the flow is homogeneous in the eϕ and ez
direction. In the above Eqs. 40, 41 and 42, we have nonlinear
convective terms in the momentum balance and in the
backbone orientation tensor equation due to the rotation of the
inner cylinder. These inertial terms are not present in laminar
channel and tube flow with a stationary wall but in Couette

flow between rotating cylinders. We will show sample
calculations for the flow Eqs. 40, 41 and 42 for a specific
choice of the relaxation times, parameter a1, and various
values of the number of Pompon arms. However, we present
first the system equations for the TCMM Model.

The TCMM equations are rendered dimensionless with the
characteristic length scale of the flow geometry δ. Then, the
model Eqs. 1, 2, 7, 8 and 9 adopt the form

Ta v � rrrrv ¼
X2
i¼ 1

eGirrrr � Ci �rrrrp; (45)

� υϕ
r
Mi þ Ci � LT þ L � Ci � 1eλi

Ci

þ 1eλi

1� θ

2 eGi

C1 � C2 þ C2 � C1 � 2Ci
� � ¼ 0

(46)

where we have introduced the Taylor number Ta¼ρ2U2δ3=
RiG1λ1G2λ2ð Þ: The symmetric matrices Mi are defined in
analogy to Eq. 44 for conformation tensor Ci(i = {1, 2}).
Equations 45 and 46 are analogous to Eqs. 18 and 19 except
that we now have inertial effects due to inner cylinder
rotation. In the next section, the flow Eqs. 45 and 46 will be
solved for vanishing coupling parameter, θ, to compare with
analytical results of the 2MUCM Model.

Analytical solution for the 2MUCM model

For the Taylor–Couette geometry with axial through-flow,
the continuum equations (Eqs. 45 and 46) can be solved
analytically for vanishing coupling parameter (θ = 0). The
analytical solution is developed as follows. First, we want to
reformulate and solve the momentum balance equation for
our flow problem. The �r-component of the momentum
balance (Eq. 45) gives the differential equation for the radial
pressure distribution

@p

@r
�
X2
i¼ 1

eGi
@Ci

rr

@r
¼ Ta

υ2ϕ
r
þ
X2
i¼ 1

eGi
Ci
rr

r
� Ci

ϕϕ

r

 !
;

(47)

and will be solved below after we have solved the
conformation tensor (Eq. 46). For the υϕ -component of
the momentum balance (Eq. 45), we have
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r2
@2υϕ
@r2

þ r
@υϕ
@r

� υϕ ¼ 0; (48)

which is obtained upon insertion of the Ci
rϕ components of

Eq. 46 into the υϕ -component of Eq. 45. The general
solution of this differential equation is

υϕ ¼ k�1
1

r
� k1r; (49)

where k −1 and k1 are constants to be determined from the
boundary conditions. With Eqs. 36 and 37, we obtain the
following azimuthal velocity field

υϕ ¼ RiU

R2
o � R2

i

R2
o

1

r
� r

� �
; (50)

υ
0
ϕ ¼ � RiU

R2
o � R2

i

R2
o

1

r2
þ 1

� �
: (51)

The �z-component of the momentum balance (Eq. 18) is
equivalent to

eηr @2υz
@r2

þ eη @υz
@r

¼ r
@p

@z
: (52)

Equation 52 is obtained by inserting the Ci
rz -components

of the conformation tensor (Eq. 46) into the momentum
balance for υz, (Eq. 45). The general solution of Eq. 52 is

υz ¼ 1

4eη @p

@z
r2 þ kl ln r þ k0; (53)

where kl and k0 are constants which, again, have to be
determined from the boundary conditions. From the
boundary conditions of Eqs. 38 and 39, we get

υz ¼ � 1

4eη @p

@z
ðR2

o � R2
i Þ

ln r
Ri

� �
ln Ro

Ri

� �� r2 � R2
i

� �24 35; (54)

υ
0
z ¼ � 1

2eη @p

@z

R2
o � R2

i

2 ln Ro

Ri

� � 1

r
� r

0@ 1A: (55)

With Eqs. 51 and 55, we can now solve the conformation
tensor (Eq. 46) to obtain

Ci
rr ¼ 1; (56)

Ci
rϕ ¼ �eλi

2R2
oRiU

R2
o � R2

i

1

r2
; (57)

Ci
rz ¼ �

eλi

2eη R2
o � R2

i

2 ln Ro

Ri

� � 1

r
� r

0@ 1A @p

@z
; (58)

Ci
ϕϕ ¼ 2eλ2

i � 2R2
oRiU

R2
o � R2

i

1

r2

� �2

þ 1; (59)

Ci
ϕz ¼ 2

eλ2
ieη R2

oRiU

R2
o � R2

i

1

r2
R2
o � R2

i

2 ln Ro

Ri

� � 1

r
� r

0@ 1A @p

@z
; (60)

Ci
zz ¼ 2eλ2

i � 1

2eη R2
o � R2

i

2 ln Ro

Ri

� � 1

r
� r

0@ 1A @p

@z

24 352

þ 1; (61)

for the radial normal conformations Ci
rr; the radial angular

shear conformations due to rotation Ci
rϕ; the radial axial

shear conformations Ci
rz; the angular normal conformations

Ci
ϕϕ; the angular axial shear conformations Ci

ϕz; and the
axial normal conformations Ci

zz for i = {1, 2}. The cor-
responding extra stress tensor components are obtained from
Eq. 9. Finally, with Eqs. 56 and 59, we can solve the υr-
component of the momentum equation which gives the
radial pressure distribution

p ¼Ta
RiU

R2
o � R2

i

� �2

�

1

2
R4
o

1

R2
i

� 1

r2

� �
þ 2R2

o ln
Ri

r

� �
� 1

2
R2
i � r2

� �	 

� 1

2
eη2 2R2

oRiU

R2
o � R2

i

� �2
1

R4
i

� 1

r4

� �
:

(62)
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The volumetric flow rate through the annular gap is

Q ¼
Z2π
0

dϕ
ZRo

Ri

rυz rð Þdr

¼ � π
8eη R4

o � R4
i

� �
1� 1

ln Ro

Ri

� � R2
o � R2

i

R2
o þ R2

i

0@ 1A;

(63)

and the average axial velocity is given as V ¼ Q
�

π R2
o � R2

i

� �� �
: In what follows, we explain the numerical

scheme that we have adopted to solve the Pompon equations
and the TCMM equations for laminar Taylor–Couette flow.

Numerical method

The Pompon Eqs. 40, 41 and 42 can be reformulated in terms
of a TPBV problem, Eq. 29, for the radial coordinate and the
boundary conditions (Eqs. 36, 37, 38 and 39). The 12-tuple of
flow profiles to solve for is

ξ ¼ p; υϕ; υ
0
ϕ; υz; υ

0
z; vec Sð Þ;λ

� �T
; (64)

where vecðSÞ ¼ Srr; Srϕ; Srz; Sϕϕ; Sϕz; Szz
� �

: The 12×12-
coefficient matrix,A , and the inhomogeneity, b, in Eq. 29 are
obtained as for the laminar channel and tube flow problem in
the previous sections. Note that we have here to match two
boundary conditions on the outer cylinder, Eqs. 37 and 39.
Therefore, a two-dimensional Newton method for the
variables υ

0
ϕ and υ

0
z is embedded into the shooting algorithm

to match the two boundary conditions, Eqs. 37 and 39.
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Fig. 9 Laminar annular flow
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Consequently, before every Runge–Kutta integration in the
shooting algorithm, the homogeneous shear flow problem for
the velocity gradient

rrrrv ¼
0 � υϕ

r 0
@υϕ
@r 0 0
@υz
@r 0 0

0B@
1CA; (65)

has to be solved on the inner cylinder to determine correct
starting values for the structural variables S and λ on the inner
cylinder.

For laminar Taylor–Couette flow of a TCMM fluid, the
system Eqs. 45 and 46 are reformulated in terms of a TPBV

problem, Eq. 29, in analogy to the Pompon Model. The 17-
tuple of unknowns is now

ξ ¼ p; υϕ; υ
0
ϕ; υz; υ

0
z; vec C1

� �
; vec C2

� �� �T
; (66)

where vec Ci
� � ¼ Ci

rr;C
i
rϕ;C

i
rz;C

i
ϕϕ;C

i
ϕz;C

i
zz

� �
; i ¼

f1; 2g: The 17×17-coefficient matrix, A , and the inhomo-
geneity, b, in Eq. 29 are obtained as in the previous sections
and the boundary conditions (Eqs. 36, 37, 38 and 39) are
the same as for the Pompon Model. In what follows, we
present sample calculations for the Pompon Model and the
TCMM Model in the Taylor–Couette geometry with and
without axial through-flow and inner cylinder rotation.
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Sample calculations

The Pompon model

The boundary value problem for annular flow of a Pompon
fluid between concentric cylinders (κ = 0.5) has been solved
for λb=λs ¼ 3 , a1 = 1, and different values of the number of
arms, q. Sample calculations are reported in Figs. 9, 10, 11,
12, 13 and 14. In what follows, we report model predictions
for Couette flow due to inner cylinder rotation (Fig. 9), for
pressure-driven axial flow between stationary concentric
cylinders (Fig. 10), and for combined Poiseuille and Couette
flow (Figs. 11, 12, 13 and 14).

In Fig. 9, we display model predictions for Couette flow
between concentric cylinders where the inner cylinder is
rotating with a constant velocity U ¼ υϕ r ¼ 0ð Þ . We report
sample calculations for five inner cylinder velocities, which
illustrate that the wall shear rate (Fig. 9b), the extra stresses
(Fig. 9e), and the backbone stretch (Fig. 9f) are larger on the
inner cylinder than on the outer cylinder. Figure 9a displays
the angular velocity as a function of the relative gap

distance. The angular velocity is U at the inner cylinder and
it vanishes on the outer cylinder. The corresponding shear
rate is displayed in Fig. 9b, where we notice that the
variation of the local shear rate is stronger near the inner
cylinder than near the outer cylinder. In Fig. 9c,d, we display
the radial and the angular normal stress distributions in the
annular gap, respectively. Both normal stresses are positive;
they decrease monotonically as a function of the relative
position in the gap, and they increase as a function of inner
cylinder velocity, U. Note that the radial normal stresses are
smaller than the angular normal stresses. The radial angular
shear stress shown in Fig. 9e correlates with the shear rate
shown in Fig. 9b. The backbone stretch profiles for the five
inner cylinder rotations are shown in Fig. 9f. The backbone
stretch decreases monotonically between the two cylinders
and it increases as the inner cylinder velocity increases. The
corresponding results for the TCMM Model are shown in
Fig. 15 and will be discussed below.

Figure 10 displays the properties of the Pompon Model
for axial-pressure-driven flow between concentric cylin-
ders and U = 0. We display sample calculations for five
pressure drops which, again, illustrate that the shear rate
(Fig. 10b), extra stresses (Fig. 10c–e), and backbone stretch
(Fig. 10f) are more elevated on the inner cylinder than on
the outer one. The axial velocity in the cylindrical gap
(Fig. 10a) vanishes on the two cylinders, as required by the
no-slip boundary conditions, and it has a maximum in
between. The corresponding shear rate profile is shown in
Fig. 10b, where we notice that the wall shear rates are
higher on the inner cylinder than on the outer one.

The extra stress tensor profiles are displayed in
Fig. 10c–e. Remember that the stress tensor of the
Pompon fluid is σ = 1/3 for vanishing velocity gradient.
Figure 10c shows the radial normal stress profiles, which
behave qualitatively different compared to pure Couette
flow (cf. Fig. 9c) as they oscillate in the central area of the
gap. The highest value of the radial normal stress is found
on the inner cylinder. The radial axial shear-stress profile
in Fig. 10d correlates with the shear-rate profile shown in
Fig. 10b. The axial normal-stress profile in Fig. 10e is
positive and two orders of magnitude larger than the radial
normal stresses. The backbone stretch profiles for the five
pressure drops in Fig. 10f have a maximum on the inner
cylinder, followed by a decrease to the equilibrium value,
λ = 1, where the shear rate vanishes, and an increase as the
outer cylinder is approached. The corresponding results for
the TCMM Model is presented in Fig. 16.

In Figs. 11, 12, 13 and 14, we summarize the flow profiles
for mixed Couette and Poiseuille flow between concentric
cylinders. We report sample calculations for inner cylinder
velocity, U = 10, and three axial pressure drops, ∇z p = −10,
−50, and −100. Pompon Model parameters are the same as
before, in Figs. 9 and 10.

Figure 11 displays the axial (Fig. 11a) and azimuthal
fluid velocities (Fig. 11b) in the annular gap. The axial
velocity vanishes on the boundaries, and it has a maximum

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

⎯⎯⎯
r - Ri

Ro- Ri

a

b

vϕ

v
z

Fig. 11 Axial (a) and azimuthal (b) velocity profiles for Taylor–
Couette flow (κ = 0.5) of a Pompon fluid with inner cylinder
velocity U = 10 and three axial pressure drops: ∇z p = −10 (solid
lines), −50 (dotted lines), and −100 (dotted lines). Model parameters
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value between r ¼ 0:4 and 0.5. The solid triangles in
Fig. 11a mark the position of maximum axial fluid velocity
for ten pressure drops between ∇z p = −10 and −100. They
have been determined numerically with a “golden section”
search in one dimension (Press et al. 1992). Figure 11b
displays the corresponding angular velocity profiles. The
angular velocity is υϕ ¼ 10 on the inner cylinder, and it
vanishes on the outer cylinder as required by the boundary
conditions Eqs. 36 and 37. A high axial pressure drop
(dashed line in Fig. 11b) leads to a decrease of the angular
velocity near the inner cylinder and to an increase of the
angular velocity near the outer cylinder with respect to the
flow field for zero pressure drop (dots in Fig. 11b).

The components of the extra stress tensor corresponding
to the velocity field in Fig. 11 are shown in Fig. 12.
Figure 12a displays the radial normal stress profiles for the
three pressure drops. This extra stress tensor component is

small (in comparison with the other two normal stress
components in Fig. 2d,f) and positive. For the smallest
pressure drop, it is almost monotonic as found for pure
Couette flow (cf. Fig. 9c). For the largest pressure drop, it is
oscillating as observed for axial annular flow (cf. Fig. 10c).
Note that for large pressure drops, the position of
maximum radial normal stress is not on the boundary but
in the gap.

The radial angular shear stress and the radial axial shear
stress are shown in Fig. 12b,c, respectively. Both shear
stresses are monotonic functions, and they correlate with the
respective shear rate profiles. Note that the absolute
magnitude of the radial angular shear stress decreases with
increasing pressure drop and constant inner cylinder velocity.

Figure 12d displays the angular normal stress profiles in
the annular gap which are monotonic for the small pressure
drops. For the large pressure drops, they are non-
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monotonic near the outer cylinder. Similarly as for the
absolute value of the radial angular shear stress, the angular
normal stresses also decrease as the pressure drop increases
and the inner cylinder velocity remains constant.

Figure 12e displays the angular axial shear stress profiles.
This extra stress tensor component is only found in mixed
Couette and Poiseuille flow and it has a maximum absolute
value on the inner cylinder which increases with increasing
pressure drop. The axial normal-stress profiles are shown in
Fig. 12f. Note that for a pressure drop rz p ¼ �50; the
maximum axial normal stress is found on the outer cylinder.

Figure 13 displays the profile of the backbone stretch in
the annular gap. We see a transition of the backbone stretch
profile from the flow regime dominated by Couette flow
(for small axial pressure drops) to a flow regime dominated
by Poiseuille flow (for large axial pressure drops). For
small pressure drops, the backbone stretch profile is almost
monotonic as we have found for pure Couette flow (solid
line in Fig. 13). For large pressure drops, the backbone
stretch profile is similar as for pure Poiseuille flow between
concentric cylinders (dashed line in Fig. 13), i.e., it has a
minimum with a value larger than unity due to the Couette
flow component.

Figure 14 shows the maximum axial fluid velocity
(Fig. 14a), the relative position of maximum fluid velocity
(Fig. 14b), and the volumetric flow rate (Fig. 14c) as
functions of the axial pressure drop. We report sample
calculations for three numbers of arms, q. Note that the
maximum fluid velocity (Fig. 14a) and the volumetric flow
rate (Fig. 14c) decrease as the number of arms increases.
This is qualitatively similar to the behavior found for tube
flow of a Pompon fluid (Fig. 4c). The relative position of
maximum fluid velocity in the axial direction has been

determined with a golden section scheme, and it is found to
lie between 0.4 and 0.55.

The TCMM model

In Figs. 15, 16, 17, and 18, we report flow characteristics of
the TCMM fluid for λ2=λ1 ¼ 2; n2=n1 ¼ 1 and various
values of the coupling parameter. We investigate pure Couette
flow, pure Poiseuille flow, and a combination of both in the
annular gap between concentric cylinders. For our sample
calculations, we use cylinder radii Ri = 0.5 and Ro = 1, i.e.,
κ = 0.5.

Figure 15 displays the velocity (Fig. 15a,b), stress tensor
(Fig. 15c–e), and pressure profiles (Fig. 15f) in the annular
gap for five inner cylinder velocities and vanishing pressure
drop, i.e., vz(r) = 0. The magnitude of the inner cylinder
velocity can be identified from the abscissa of Fig. 15a. Note
that, for the smallest value of inner cylinder velocity, the
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velocity gradient in Fig. 15b increases strongly near the inner
cylinder and reaches a plateau near the outer cylinder. The
absolute magnitude of the angular shear rate decreases when
going from the inner to the outer cylinder.

Figure 15c–f show the stress tensor and pressure profiles
corresponding to the velocity field in Fig. 15a,b. Note that
the absolute values of the radial normal stresses (Fig. 15c)
and the angular normal stresses (Fig. 15d) decrease as the
outer cylinder is approached. The radial normal stresses in
Fig. 15c are small and negative, being qualitatively
different from the Pompon Model in Fig. 9c which predicts
positive radial normal stresses. The angular normal stresses
in Fig. 15d are large and positive and show the same
qualitative behavior as for the Pompon Model (cf. Fig. 9).
The radial angular shear stress (Fig. 15e) correlates with the
behavior of the angular shear rate in Fig. 15b. The
magnitude of the shear stress is large on the inner cylinder
and small on the outer cylinder. We again obtain similar

qualitative behavior as for the Pompon Model (cf. Fig. 9).
The absolute magnitudes of the stresses in Fig. 15c–e are
large at the inner cylinder and small at the outer cylinder.

The pressure profiles for laminar Couette flow of a
TCMM fluid between concentric cylinders are reported in
Fig. 15f. Note that the pressure on the outer cylinder as a
function of inner cylinder velocity shows a non-monotonic
behavior: it decreases for small inner cylinder velocities and
it increases for large inner cylinder velocities.

Figure 16 displays annular flow profiles of the TCMM
Model for axial-pressure-driven flow between concentric
cylinders and five pressure drops. For the velocity field
(Fig. 16a,b), the radial axial shear stress (Fig. 16d) and the
axial normal stresses (Fig. 16e), we find qualitatively similar
results as for the Pompon Model (cf. Fig. 10). The axial
velocity in Fig. 16a vanishes on the walls as required by the
no-slip boundary conditions, and it assumes a maximum
value in between the two cylinders. The corresponding
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fluid for five inner cylinder
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shear-rate profile is displayed in Fig. 16b where we notice
that the wall shear rates are higher on the inner cylinder than
on the outer one, similar to the Pompon Model (cf. Fig 10b).

The extra stress tensor profiles are displayed in Fig. 10c–e.
For vanishing velocity gradient, the extra stresses of the
TCMM fluid vanish, σ = 0. Figure 16c shows the radial
normal stress profiles, which behave qualitatively differently
than the Pompon Model (cf. Fig. 10c). The TCMM Model
predicts negative radial normal stresses; the Pompon Model
predicts positive radial normal stresses. The largest radial
normal stresses (absolute values) for the TCMM fluid are
found on the inner cylinder, which is the same as for the
Pompon Model. The radial axial shear stress profile of
Poiseuille flow between concentric cylinders is shown in
Fig. 16d. We find that this quantity correlates with the shear-
rate profile shown in Fig. 16b, and that it has its maximum
value on the inner cylinder, too. The axial normal-stress
profiles of the TCMM Model (Fig. 16e) are positive and

larger than the absolute value of the radial normal stresses.
The radial pressure distribution for axial annular flow of a
TCMM fluid is shown in Fig. 16f. This quantity has an
absolute maximum in the middle of the annular gap and a
non-trivial value on the outer cylinder.

In Figs. 17 and 18, we show flow profiles for mixed
Couette and Poiseuille flow of a TCMM fluid between
concentric cylinders. Again, we report sample calculations for
inner cylinder velocity U = 10 and three axial pressure drops:
∇z p = −10, −50, and −100. TCMMModel parameters are as
before in Figs. 15 and 16.

Figure 17 displays the axial (Fig. 17a) and the azimuthal
(Fig. 17b) fluid velocity in the annulus. The axial velocity
field fulfills the no-slip boundary conditions Eqs. 38 and 39
on the two cylinders, and it has a maximum in between. The
solid triangles in Fig. 17a show the maximum axial fluid
velocity for ten pressure drops between ∇z p = −10 and
−100, which have been calculated with a golden section
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(κ = 0.5) profiles of a TCMM
fluid for five pressure drops:
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search. Figure 17b displays the corresponding angular flow
profiles that fulfill the boundary conditions Eqs. 36 and 37.
Note that the axial pressure drop increases the angular fluid
velocity in the gap, which is qualitatively different from the
sample calculations for the Pompon Model (cf. Fig. 11b).
For the Pompon Model, we found a decrease of the angular
velocity near the inner cylinder and an increase near the
outer cylinder (with respect to pure Couette flow) due to the
applied pressure drop.

The extra stress-tensor profiles corresponding to the
velocity field in Fig. 17 are reported in Fig. 18. Figure 18a
shows the radial normal stress profiles in the gap, which are
small and negative. For the smallest pressure drop, the radial
normal stresses are dominated by the inner cylinder rotation,
and we observe a monotonically increasing radial normal
stress profile (cf. Fig. 15c). For large pressure drops, i.e., a
flow which is dominated by the axial pressure drop, the
radial normal stress has a maximum in the middle of the
annular gap and is similar to the profile found in pure
Poiseuille flow (cf. Fig. 16c). The radial angular shear stress
(Fig. 18b) and the radial axial shear stress (Fig. 18c)
correlate with the axial shear rate and the angular shear rate,
respectively. The absolute magnitude of the radial angular
shear stress decreases as the pressure drop increases, and the

variations of the radial axial shear stress become more
pronounced as the pressure drop is increased. This behavior
is qualitatively similar to that observed for the Pompon
Model (cf. Fig. 12b,c).

The angular normal stresses are displayed in Fig. 18d.
These stresses are large and positive, and vary slightly with
the pressure drop. Note that the angular normal stresses on
the inner cylinder decrease, whereas they increase on the
outer cylinder as the pressure drop is increased. This is
qualitatively similar to the results found for the Pompon
Model (cf. Fig. 12d).

The angular axial shear-stress and the axial normal-stress
profiles are displayed in Fig. 18e,f, respectively. The
angular axial shear stresses become more important as the
pressure drop is increased. The absolute value of this shear
stress component is larger on the inner cylinder than on the
outer cylinder. The same behavior has also been found for
the Pompon Model (Fig. 12e). The axial normal stress
profiles are non-monotonic, and they assume their maxima
on the inner cylinder. This is qualitatively different than
that observed for the Pompon Model (cf. Fig. 12f).

Conclusions

In the present article, the Pompon, Pom-Pom, and TCMM
models for viscoelastic fluids have been solved for laminar
channel, tube, and annular flow with and without axial
through-flow to compute laminar flow profiles in these
geometries. The dynamic equations for the three models
have been formulated in terms of TPBV problems, and
several modifications of a shooting algorithm have been
adapted to solve the continuum equations in the three flow
geometries. Furthermore, analytical solutions for the
2MUCM Model have been derived to verify the con-
sistency of the numerical codes for the TCMM equations
with the analytical solutions. The velocity, backbone
stretch, stress tensors, and radial pressure profiles have
been computed for the different models and flow
geometries.

For the Pom-Pom Model, we encountered numerical
instabilities of the shooting algorithm which are due to the
non-monotonic shear stress vs shear rate predictions of this
model. For the Pompon Model and the TCMM Model,
there exists a monotonic shear rate vs shear stress
dependency and the shooting algorithm computed laminar
flow profiles over a wide range of wall shear rates.

For the Pompon Model, we found an increase of the
volumetric flow rate through tubes and concentric annuli for
increasing number of Pompon arms. For the transversal
normal stress in channel flow, the Pompon Model and the
TCMM Model make qualitatively different predictions.
Whereas the former gives positive transversal normal
stresses, the latter gives negative transversal normal stresses
on the channel walls. Furthermore, the Pompon Model
predicts a non-monotonic behavior of the transversal normal
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Fig. 17 Velocity profiles in the gap, κ = 0.5, for three axial pressure
drops: ∇z p = −10 (solid lines), −50 (dotted lines), and −100 (dashed
lines). The velocity of the inner cylinder is U = 10. a Axial velocity
and b azimuthal velocity. Model parameters are the same as in Fig. 6
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stresses near the mid-plane of the channel that is not found
for the TCMMModel. An analogous behavior is found also
for the radial stresses in annular flow.

In conclusion, we have solved coupled, multi-mode visco-
elastic fluid models for polymer melts and polymer solutions
to compute laminar flow and microstructural profiles in
simple flow geometries such as channels, tubes, and con-
centric cylinders. The effect of coupled Couette and Poiseuille
flow on the backbone stretch dynamics and the volumetric
flow rate has been studied and the different viscoelastic fluid
models have been compared with each other.

Acknowledgement MD acknowledges Prof. E. J. Windhab for
providing the resources and encouragement necessary to carry out
this type of research.

Appendix

In this appendix, the TCMM Model is solved for laminar
Poiseuille flow through a circular tube of radius R. To
accomplish this, we introduce cylindrical coordinates, (r,ϕ, z).
The tube wall is allowed to rotate with a constant angular
velocity, Ω = U/Rez. Then, the boundary conditions for the
velocity field are

υϕ r ¼ 0ð Þ ¼ 0; (67)

υϕ r ¼ Rð Þ ¼ U ; (68)

υ
0
z r ¼ 0ð Þ ¼ 0; (69)
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υz r ¼ Rð Þ ¼ 0; (70)

and the cylinder axis is a symmetry line for the velocity and
conformation tensor profiles. The TCMM equations in
dimensionless form are given by Eqs. 45 and 46, where the
cylinder radius, R, is the characteristic length of the flow
problem.

For θ = 0, Eqs. 45 and 46 reduce to the 2MUCM model,
which is solved analytically for laminar tube flow. For the
azimuthal velocity, we get from Eq. 49, together with
Eqs. 67 and 68,

υϕ ¼ �U

R
r; (71)

i.e., a constant angular shear rate in the tube. For the
boundary conditions, Eqs. 69 and 70, we get from Eq. 53

υz ¼ � 1

4eη @p

@z
R2 � r2
� �

: (72)

The non-trivial components of the conformation tensors
(Eq. 46) are

Ci
rr ¼ 1; Ci

rϕ ¼ 0; Ci
rz ¼

eλi

2eη @p@zr;
Ci
ϕϕ ¼ 1; Ci

ϕz ¼ 0; Ci
zz ¼ 2

eλi

2eη @p

@z
r

 !2

þ 1;

(73)

for i = {1, 2}. They are analogous to the channel flow
solutions presented in the main body of the article. Note that
for @p

�
@z ¼ 0 and U ≠ 0, the 2MUCMModel gives Ci = 1

as the solution of the conformation tensor equations. The
components of the extra stress tensor are calculated
according to Eq. 9.
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