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Abstract. This paper considers unconditionally secure protocols for reliable broadcast
among a set of n players, where up to t of the players can be corrupted by a (Byzantine)
adversary but the remaining h = n−t players remain honest. In the standard model with
a complete, synchronous network of bilateral authenticated communication channels
among the players, broadcast is achievable if and only if 2n/h < 3.

We show that, by extending this model by the existence of partial broadcast channels
among subsets of b players, global broadcast can be achieved if and only if the number h
of honest players satisfies 2n/h < b+1. Achievability is demonstrated by protocols with
communication and computation complexities polynomial in the size of the network,
i.e., in the number of partial broadcast channels. A respective characterization for the
related consensus problem is also given.

Key words. Broadcast, Byzantine agreement, unconditional security.

∗ Preliminary versions of the results presented in this article were reported in [25], [9], [19], [10], and [20].
Leonid A. Levin was supported by NSF Grants CCR 9820934, 0311411, Matthias Fitzi was partly supported
by the Packard Foundation, Matthew Franklin was supported by the Packard Foundation and NSF, and Ueli
Maurer was partly supported by the Swiss National Science Foundation.

191

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159147995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


192 J. Considine, M. Fitzi, M. Franklin, L. A. Levin, U. Maurer, and D. Metcalf

1. Introduction

A fundamental problem in fault-tolerant distributed computing is to achieve consistency
of the involved parties’ views, even if some of the parties (also called players) deviate from
the protocol in an arbitrary manner. A core primitive for achieving global consistency
is broadcast, i.e., a mechanism or protocol allowing one player, the sender, to send a
value consistently to all other players such that, even in case of malicious behavior
by the sender and/or some of the other players, all honest players receive the same
value.

The standard model considered in fault-tolerant distributed computing is that every
pair of players can communicate over a bilateral authenticated channel. In this model,
authenticated channels are simply assumed to exist. In practice, they can be implemented
using cryptographic techniques. Such techniques assume an initial set-up phase such as
the establishment of a public-key infrastructure, or sharing pairwise secret keys.

The problem of implementing broadcast in the standard model [32] is a classi-
cal problem in distributed computing. The seminal result of Lamport et al. [32] is
that broadcast can be implemented if and only if less than a third of all the players
misbehave.

1.1. Motivation

In this paper we propose to investigate a new research direction by assuming, as part
of the model, more powerful primitives than authenticated channels, i.e., primitives that
guarantee some degree of consistency among the players. The additional primitive we
consider is probably the simplest one that can serve as an extension of the standard
model, namely channels that guarantee consistency among b participants when one of
them sends a value to the others.

Our motivation for considering such enhanced models is twofold. First, the generic
reduction of complex tasks to simple ones is a useful tool for proving whether or not a
task is achievable under given conditions, only requiring a construction for the simple
task in order to prove the achievability of the complex one, and only requiring to show
the impossibility of the complex task in order to prove the simple one to be impossible.

Second, for unconditional multi-party computation1 among n players, the achievability
of broadcast is a limiting factor. As 2n/h < 3 is the lower bound for multi-party compu-
tation when broadcast is not available, broadcast allows for n/h < 2. When additionally
assuming oblivious transfer, non-robust multi-party computation is still achievable in
the presence of any number of corrupted players. As broadcast is typically the only
assumed primitive that involves all n players (in contrast to other commonly assumed
primitives such as pairwise channels or oblivious transfer), it is a natural question to ask
whether global broadcast is necessary for multi-party computation beyond 2n/h < 3
or, alternatively, what resilience can be achieved for multi-party computation when only
assuming primitives of constant size.

1 Refer to Section 6.4 for an informal definition of multi-party computation as well as a short overview of
previous results.
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1.2. Models and Definitions

Byzantine agreement refers to the general problem of having a set P = {p1, . . . , pn}
of n players agree on a value v from some finite domain D where some of the players
may be corrupted. There are two main variations of Byzantine agreement, broadcast and
consensus. The goal of broadcast (or the Byzantine generals problem) is to have some
designated player ps , called the sender, consistently send an input value (or message) xs

to all other players. The goal of consensus, where every player pi starts with an input
value xi of his own, is to make all honest (non-corrupted) players decide on a common
output value such that, if all honest players hold the same input value v, this common
output value is v.

1.2.1. Communication

The players in P are connected via a complete, synchronous network of pairwise au-
thenticated channels. A pairwise authenticated channel between two players pi and pj

is a bilateral communication channel that guarantees that only the two respective players
can send messages on the channel, i.e., excluding any third party from accessing it in any
other way than possibly reading the communication between the two players. In partic-
ular, we assume that communication via an authenticated channel cannot be blocked by
a third party. Synchronicity means that all players share common, synchronized clock
cycles. In such a clock cycle, each player first receives a finite (possibly empty) set of
messages from the other players, followed by a finite number (possibly zero) of local
computation steps, and finally sends a finite (possibly empty) set of messages to the other
players. Messages being sent during a clock cycle are guaranteed to have arrived at the
beginning of the next cycle.

We refer to the communication model described so far in this section as the classical
model, denoted by M2. In contrast, we introduce the partial-broadcast model, Mb,
below.

Definition 1 (Mb). ModelMb extends the classical model by perfectly reliable syn-
chronous broadcast channels among each b-tuple of players, i.e., authenticated broadcast
channels (denoted BCb) from pi1 to players pi2 , . . . , pib , for any selection of b distinct
players from P . We assume all bilateral and BCb-channels to be composable in parallel
(or at least sequentially).

1.2.2. Composability

It has long been a common technique to construct complex protocols by combining sub-
protocols that achieve simpler tasks. When giving a security proof of such a construction,
the fact that the subprotocols compose correctly is usually not made explicit because it is
typically trivial in the context of the protocol itself. On the other hand, composability can
become non-trivial when the whole context of the execution of the (sub-)protocols is not
known in advance [6], [33]. We note that, in our modular construction, our subprotocols
trivially compose with each other, and so do the final protocols.
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1.2.3. Adversary and Corruption

The resilience of a protocol is characterized by the number t of players that may de-
viate from the protocol. We refer to such a player as being corrupted whereas a non-
corrupted player is called honest. Alternatively, h = n − t denotes the minimal number
of players that are assumed to be honest. It helps to imagine a central adversary who
can corrupt up to t players and make them cheat in an arbitrary, coordinated manner.
We consider an adaptive adversary who can gradually corrupt arbitrary new players
during the protocol, but at most t in total. Note, however, that our impossibility re-
sults are proven even with respect to the strictly weaker definition of a non-adaptive
(or static) adversary that is assumed to preselect up to t of the players at the begin-
ning of the protocol and not corrupt any further players during any later stage of the
protocol.

1.2.4. Security

We demand our protocols to be unconditionally secure, i.e., we require that even a
computationally unbounded adversary cannot make the protocol fail except for some
negligible error probability. Our final broadcast protocol will even be perfectly secure
(zero error probability). On the other hand, our impossibility result is given even with
respect to an adversary that is bounded to polynomial-time computation.

1.2.5. Setup Assumptions

We assume that all players know the player set, the protocol, and the whole network
topology, i.e., they know which players participate in the protocol and how they are
connected by communication channels. Additionally, we assume that all players agree
on a common point in time when the protocol is to be started.

The achievable resilience of Byzantine agreement depends on whether or not one
assumes that a public-key infrastructure (PKI) is consistently set up among the players.
Such a PKI would allow all messages to be signed and enable broadcast with arbitrary
resilience and consensus for n/h < 2. In this paper we consider the case where no such
PKI is set up among the players.

1.2.6. Complexities

We characterize the efficiency of the protocols in terms of the computational complexity,
i.e., the local computational worst-case complexity of the honest players, the bit complex-
ity, i.e., the total number of bits communicated by all honest players during the protocol
in the worst case, and the round complexity, i.e., the maximal number of communication
rounds for any honest player in the worst case. Our round complexity analyses are given
under the assumption that the underlying channels are composable in parallel without
any side-effects on each other.

1.2.7. Broadcast, Consensus, and Proxcast

Definition 2 (Broadcast). A protocol for the player set P , where player ps ∈ P (the
sender) holds an input value xs ∈ D and every player pi ∈ P computes an output
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value yi ∈ D, achieves broadcast (or is a broadcast protocol) if it satisfies the following
conditions:

Consistency (or agreement): All honest players decide on the same output value,
i.e., yi = yj for all honest players pi and pj .

Validity: If the sender ps is honest, then every honest player pi decides on the sender’s
input value, i.e., yi = xs .

Definition 3 (Consensus). A protocol for the player set P , where every player pi ∈ P
holds an input value xi ∈ D and computes an output value yi ∈ D, achieves consensus
if it satisfies the following conditions:

Consistency (or agreement): All honest players decide on the same output value,
i.e., yi = yj for all honest players pi and pj .

Validity (or persistency): If every honest player pi holds the same input value xi = x ,
then every honest player decides on it, i.e., yi = x .

Note that, in contrast to broadcast, the consensus definition only makes sense if less
than half of the players are corrupted. In this case, broadcast can easily be achieved using
consensus and vice versa. Thus, we focus on broadcast in what follows, and generalize
our results to consensus only at the very end. Furthermore, we mainly focus on binary
broadcast (domainD = {0, 1}) since broadcast for any finite domainD can be efficiently
solved by �log2|D|
 invocations of its binary variant. A more efficient way to achieve
this was given in [40] by Turpin and Coan.

We now introduce the primitive proxcast which serves as a fundamental building block
for our protocol constructions. Proxcast was first defined in [38]. Pk

n is a broadcast-like
primitive that achieves the validity property of broadcast. Additionally, it is guaranteed
that the players’ outputs are proximate in the sense that they do not deviate too strongly
from each other.Pk

n is best introduced pictorially and by means of a binary input domain.
See Fig. 1.

The sender sends a bit x ∈ {0, 1}. Each player pi receives an output � ∈ {0, . . . , k−1}.
If the sender is honest then each honest player gets output x · (k − 1). If the sender is
corrupted then it is still guaranteed that there is a value m such that all honest players
get an output � ∈ {m,m + 1}. Alternatively, the output can be represented as a pair
(y, g) with output bit y and grade value g = 0, . . . , �(k − 1)/2
. If the sender is honest
then each honest player gets bit y = x and maximal grade g = �(k − 1)/2
. If the
sender is corrupted then the honest players still receive adjacent grades g ∈ {z, z + 1}.

k = 4

`

y
g

0 1 2 3

0 0 1 1
1 0 0 1

k = 5

`

y
g

0 1 2 3 4

0 0 ? 1 1
2 1 0 1 2

Fig. 1. P4
n and P5

n over binary input domain.



196 J. Considine, M. Fitzi, M. Franklin, L. A. Levin, U. Maurer, and D. Metcalf

If any honest player gets a high enough grade g then it is guaranteed that all hon-
est players hold the same output bit y—as can be verified, this is the case for grades
g > k mod 2.2 According to requirements we use the two different representations
interchangeably.

Definition 4 (Proxcast). Let k > 0 be an integer. A protocol among player set P where
player ps ∈ P (the sender) holds an input value xs ∈ D and every player pi ∈ P finally
decides on an output value yi ∈ D and a grade gi ∈ {0, . . . , �(k − 1)/2
} achieves
k-proxcast (Pk

n , for short) if it satisfies the following conditions:

Validity: If the sender is honest with input xs then every honest player pi computes
yi = xs and gi = �(k − 1)/2
.

Consistency: There is a value g ∈ {1, . . . , �(k − 1)/2
} such that every honest player
pi decides on either gi = g − 1 or gi = g. If some honest player pi computes
gi > k mod 2 then all honest players pj compute the same value yj = yi .

Alternatively, if D = {0, 1}, we say that a player with values yi ∈ {0, 1} and
gi ∈ {0, . . . , �(k − 1)/2
} decides on level �i = yi · (�(k − 1)/2
 + gi ) + (1 − yi ) ·
(�(k − 1)/2
 − gi ).3 The validity and consistency conditions then transform into

Validity′: If the sender is honest with input xs then every honest player pi computes
�i = xs · (k − 1).

Consistency′: There is a level � ∈ {0, . . . , k − 2} such that every honest player pi

computes �i ∈ {�, �+ 1}.

Well known special cases of proxcast are multi-send (k = 2), crusader agreement [12]
(k = 3), and graded broadcast [17] (k = 5). We denote an invocation of Pk

n with sender
ps and input xs by Pk

n (P, ps, xs). Note the following trivial fact about proxcast.

Proposition 1. Pk
n implies Pk ′

n for any k ′ < k. Pk
n for any finite domain D can be

efficiently achieved by binary Pk
n .

Proof. Pk ′
n can be easily achieved by invoking Pk

n and merging k − k ′ + 1 adjacent
output values together.

Let a protocol for binary Pk
n be given, i.e., x ∈ {0, 1} and g ∈ {0, . . . , �(b − 1)/2
}.

Multi-valued Pk
n with a given domain D, x ∈ D, can be achieved by running an

instance of binary Pk
n with respect to every single bit in the binary representation

of x . The recipients then decide on the value y being composed of all the bits re-
ceived during these invocations plus on the minimal grade ever received during the binary
invocations.

Since proxcast (broadcast) for any finite input domain efficiently reduces to binary
proxcast (broadcast, respectively) we restrict ourself to the binary case in what follows.

2 For odd k, g = 1 is not sufficient since the “middle level” � = (k − 1)/2 cannot be uniquely associated
with a particular output bit y.

3 Which maps the possible pairs (yi , gi ) to values �i ∈ {0, . . . , k − 1} according to Fig. 1.
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1.2.8. Protocol Notation

Protocols are understood to be specified with respect to a player set S ⊆ P = {p1, . . . ,

pn}. Each player pi ∈ S runs the same program, using as the input (if there is one)
his own input, say xi . The local variable names indicate the index i of the player pi

performing the instruction. For instance,

Protocol Broadcast(S, p1, x1)

refers to a protocol for broadcast among the player set S where player p1 holds input x1

and the other players hold no input. Some of the instructions are indicated as being only
for a specific player, e.g., the sender:

if i = 1 then SendToAll(v1) fi; Receive(wi )

means that player p1 sends the value stored in (his local) variable v1 to all players in S
and that each player pi (including p1) assigns the received value to his local variablewi .
At the end of a protocol, each player outputs a value, usually stored in the local variable
yi , written return yi .

The domain of the values is usually specified implicitly. For simplicity, it is not
explicitly stated how to handle received values (from a corrupted player) outside the
domain. Such a value can be assumed to be replaced by some default value, either an
arbitrary value in the domain or a special extra symbol ⊥.

1.3. Previous Work

The Byzantine agreement problem was introduced by Lamport et al. [32]. For the standard
modelM2 they presented a broadcast protocol among n players that is secure for 2n/h <
3. As proven in [32], [31], and [18], this bound is tight, i.e., no protocol can tolerate
2n/h ≥ 3, not even if the adversary is computationally bounded. The first efficient (i.e.,
polynomial-time) broadcast protocol was given in [15] by Dolev and Strong, followed
by a variety of alternative protocols with different interesting properties [14], [39], [1],
[17], [5], [8], [28].

The extension of the standard communication model by partial broadcast was already
considered in [27], [26], and [41] in the context of secure point-to-point communica-
tion over an incomplete network, a problem initially studied by Dolev et al. [13] for
the standard communication model. In [27] Franklin and Yung show how to achieve
private point-to-point communication in the presence of a passive adversary, given par-
tial broadcast but not necessarily pairwise communication channels among the players.
Secure point-to-point communication over partial-broadcast networks in the presence
of an active adversary was considered by Franklin and Wright [26] and Wang and
Desmedt [41].

1.4. Result and Sources

Theorem 1. In ModelMb, global broadcast among n > b players is achievable if and
only if 2n/h < b + 1. If b = O(1) or n − b = O(1) then broadcast is achievable with
message and computation complexities polynomial in n. In all other cases, our protocols
are still polynomial in the size

(n
b

)
of the network.
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The special case of b = 3 was introduced and fully treated in [25]. In [9] 2n/h <
b + 1 was shown to be a lower bound for the case of general b. There, a protocol
matching this bound for integers n/h was given. That protocol additionally assures
agreement whenever the sender is honest regardless of the number of corrupted recipients;
requiring this extra property, the protocol is optimal even for fractional n/h. Protocols
matching the lower bound 2n/h < b+1 for fractional n/h were independently developed
in [19] and [10]. Protocols that are polynomial in the size of the network were given
in [20].

1.5. Outline

We first give our proof of the lower bound in Section 2. The proof is obtained by using
ideas of Fischer et al. who in [18] introduced a standard technique in order to prove the
impossibility of Byzantine agreement in standard scenarios. We also use a simulation
argument from [32] for this purpose.

We then describe two different protocols with respect to the optimal bound 2n/h <
b + 1. Since both protocols are built on b-proxcast, Pb

n (as given in Definition 4), we
first show how to implement that primitive efficiently in Section 3.

In Section 4 we present our first protocol which extends the recursive construction
in [32] known under the name “information gathering (IG)” [1]. This protocol is less
complicated than the second one but generally superpolynomial in the size

(n
b

)
of the

network. IG among n players is implicitly based on two-threshold broadcast among less
than n players, a generalization of broadcast that achieves validity and consistency with
respect to different thresholds [24].

In Section 5 we present our second construction. The resulting protocol’s complexities
are polynomial in the size

(n
b

)
of the network. The protocol is obtained along the lines

of the protocols in [16] and [34] where a PKI is assumed to be set up among the
players with respect to a (pseudo-)signature scheme. We demonstrate that k-proxcast
(with sufficiently large k) is powerful enough to replace a PKI with respective signatures
in the protocols of [16] and [34], thus yielding a protocol for our model without the need
for a PKI or signatures. We also show how to transform Pb

n into Pk
n efficiently for the

required k.
Final remarks and the extension of the results to consensus are given in Section 6.

2. Lower Bound

We prove that, in ModelMb, secure global broadcast among n > b players is impossible
if 2n/h ≥ b + 1. We first prove the inexistence of a protocol for n = b + 1 and h = 2
by generalizing the proof idea in [18] for the impossibility of broadcast among n players
in the standard model with respect to 2n/h < 3. Actually, this yields a stronger result,
namely that such a protocol cannot exist even for a weaker adversary whose choice of
which players he must leave uncorrupted is restricted to two consecutive players. The
final impossibility result for general n will then be derived from this special case along
the lines of a similar generalization in [32].
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2.1. Impossibility for n = b + 1 and h = 2

Our aim is to show that, for each possible protocol among b + 1 players, there is an
admissible adversary that can make the protocol fail with some non-negligible probability
by corrupting at most b − 1 of the players. For this, we assume any potential broadcast
protocol � to be given and consider it in two different contexts, distributed systems �
and �′ (see Fig. 2 for the special case b = 3).

System� is the original setting among the b+1 players where the adversary corrupts
b − 1 of them. By assumption, the protocol � achieves broadcast in this system.

In system �′ no adversary is present, i.e., all players follow the protocol correctly.
However, the players are arranged in a different way. In particular, �′ is a distributed
system built of 2b+ 2 players—the b+ 1 original ones together with one identical copy
of each of them. Still, protocol � can be run in this extended system—meaning that all
2b + 2 players run their respective local codes and communicate with the players they
are connected to.

We show that, for certain pairs of players, their joint views in protocol� are indistin-
guishable with respect to the different systems � and �′. That is, such a pair of players
cannot tell whether they are involved in system � or �′. This implies that system �′

(i.e., the rearrangement of the players) simulates an admissible adversary in the original
system � with respect to several pairs of players simultaneously.

Since we assume the protocol to be secure in the presence of h = 2 honest players, the
validity and consistency conditions of broadcast must thus be satisfied for each one of
these pairs even in system�′. However, we will be able to conclude that it is impossible
to achieve these conditions simultaneously with respect to all involved pairs—hence
showing that the assumed protocol cannot be secure in the original system �.

Technical details. Let P = {p0, . . . , pb} be the n = b + 1 players with sender p0 and
let� be a protocol among the players in P . Protocol� specifies a local program ψi for
each player pi . Let the integer i ∈ {0, . . . , b} be called the type of player pi , uniquely
defining the program ψi it is supposed to run. Our communication model suggests that
each player pi has ports with respect to each communication channel it shares with
other players. Let pi ’s bilateral port of type j denote the port it uses for its bilateral
communication with player pj . When necessary, we distinguish pi ’s bilateral read port
of type j (where it reads the messages received from player pj ) from its bilateral write
port of type j (where it writes the messages to be sent to player pj ). Finally, let pi ’s BCb

port of type j denote the port it uses for its communication via the BCb channel it shares
with the players in P\{pj }.

Reconnection of Players. The left part of Fig. 2 sketches how the players are connected
with each other in the original setting for the special case of b = 3 (where the bilateral
channels are represented by arrows and the BCb channels are represented by shaded
triangles). We refer to this distributed system as the original system �.

We now describe the simulation system �′ which is sketched in the right part of the
figure for the special case b = 3. For each player pi ∈ P , let pi+n be an identical copy of
pi . System�′ consists of the 2n = 2(b+1) players P ′ = {p0, . . . , p2b+1}, all connected
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Fig. 2. Original system � and simulation system �′ for the special case b = 3.

together as described further below. Let Type(i) = i mod n denote the type of player
pi ∈ P ′. There are hence two players of each of the b + 1 types and, in particular, two
senders p0 and pn who take binary input x0 and xn , respectively.

In order to define the system �′ exactly we need to specify, for each player pi (i ∈
{0, . . . , 2n − 1}), with which other players its communication channels are connected.
The 2n players p0, . . . , p2n−1 are arranged in a circular way, with the channels of each
player arranged in a cyclically identical manner. It thus suffices to describe the channels
of player p0.

Each bilateral write port of p0 of type k = 1, . . . , b − 1 is connected to the bilateral
read port of type 0 of the specific player pk as originally. Player p0’s bilateral write port
of type b is connected to the bilateral read port of type 0 of the specific player p2n−1.
Each BCb port of p0 of type k = 1, . . . , b is connected to the BCb port of type k of the
specific players p1, . . . , pk−1 and pk+1+n, . . . , p2n−1.

This way of connecting the players pi ∈ P ′ satisfies the following properties:

1. Exclusive assignment of ports. Each player pi ’s bilateral write (read) port of type j is
exclusively connected to the bilateral read (write) port of type Type(i) of one player
of type j . Furthermore, each player pi ’s BCb port of type j is exclusively connected
to the BCb ports of type j of b − 1 players of distinct types k /∈ {Type(i), j}.

Exclusive assignment of the bilateral ports immediately follows by cyclical sym-
metry of the construction. Furthermore, the connection rule for the BCb channels
guarantees that a player pi ’s BCb port of type j is assigned to a player pk’s port of
type j if and only if player pk’s BCb port of type j is assigned to player pi ’s BCb

port of type j .4

2. Mutual assignment of ports. For each player pair {pi , p(i+1)mod 2n} it holds that pi ’s
bilateral read (write) port of type Type(i+1) is connected to the write (read) port of
the particular adjacent player p(i+1)mod 2n . Furthermore, their BCb ports of types
j /∈ {Type(i),Type(i + 1)} are all mutually connected.

Exclusive and mutual assignment of ports (in �′) now guarantees that any message
sent (received) by player pi via its bilateral port of type Type(i + 1) is received (sent) by

4 Note that the rule simply mutually groups together either all players p� ∈ P ′ such that pj < p� < pj+n

or all players p� ∈ P ′ such that p� < pj or pj+n < p�.
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pi ’s own adjacent player p(i+1)mod 2n . The same holds for the mutual BCb ports. Mutual
assignment of ports additionally guarantees that any message sent on a BCb channel
of type j /∈ {Type(i),Type(i + 1)} is either received by both adjacent players pi and
p(i+1)mod 2n or by none of them.

Identical joint views and contradiction. We now demonstrate that, for any pair
{pi , p(i+1)mod 2n} of adjacent players in system �′, there is an admissible adversary
for the original system � that achieves that the joint view of the players pi mod n and
p(i+1)mod n is identical to the joint view of the players pi and p(i+1)mod 2n .

For this, the adversary corrupts the b−1 players in P\{pi mod n, p(i+1)mod n}, simulates
the virtual players in P ′\{pi , p(i+1)mod 2n} of system �′, and makes player p(i−1)mod n

interact with the honest players like player p(i−1)mod 2n in �′ and player p(i+2)mod n

interact with the honest players like player p(i+2)mod 2n in �′.5

Since any two adjacent players pi and p(i+1)mod 2n are consistently interconnected in
�′ (see the previous paragraph), this adversary strategy now guarantees that that the joint
view of the players pi and p(i+1)mod 2n is identical to the joint view of the players pi mod n

and p(i+1)mod n in the original system �.

Lemma 2. In modelMb, broadcast among the n = b+1 players P = {p0, . . . , pb} is
not achievable if, for any one pair {pi , p(i+1)mod n} ⊂ P , the adversary can corrupt the
b − 1 remaining players in P\{pi , p(i+1)mod n}. In particular, the adversary can make
the protocol fail with probability at least 1/n = 1/(b + 1).

Proof. We assume that, without loss of generality, the sender’s program ψ0 outputs its
own input value. Now, consider the system �′ being started with input x0 = 0 for p0

and input xn = 1 for pn . Let qi , for i = 0, . . . , b, be the probability (in system �′) that
players pi and pi+1 output different values, i.e., yi �= yi+1. Since y0 = 0 and yn = 1,
we have

b∑
i=0

qi ≥ 1. (1)

Since for any pair of adjacent players in system �′, their view is identical to their
respective players’ view in the original system�, the consistency condition of broadcast
demands that yi = yi+1 holds for every i = 1, . . . , b also in system�′—in contradiction
to (1). In particular, in the original system �, the following adversary strategy makes
the protocol fail with a probability of at least 1/n.

The adversary selects one of the n pairs {pi , p(i+1)mod n} ⊂ P (i = 0, . . . , b) uniformly
at random and corrupts the remaining players (P\{pi , p(i+1)mod n}) by simulating the
players in {p0, . . . , pi−1, pi+2, . . . , p2n−1} of system �′ towards the players pi and
p(i+1)mod n . Thus, the probability that the honest players pi and p(i+1)mod n disagree on

5 This situation is depicted in Fig. 2 with respect to the player pair p0 and p3. On the left side, the corrupted
players are encircled. On the right side, the players are encircled who are simulated by the adversary. In�, p1

plays the role of player p1 in �′ and p2 plays the role of player p6 in �′.
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their outputs is

P ≥ 1

n

b∑
i=0

qi ≥ 1

n
= 1

b + 1
, (2)

and the lemma follows.

2.2. Impossibility for General 2n/h ≥ b + 1

We now give the impossibility proof for general n. We show that any protocol for general
n > b and 2n/h ≥ b + 1 could be used in order to achieve broadcast among b + 1
players where the adversary can corrupt at least b − 1 consecutive players—which is
impossible by Lemma 2.

Lemma 3. Let |P| = n and 2n/h ≥ b+ 1. It is possible to partition P into b+ 1 sets
P0 ∪̇ · · · ∪̇ Pb = P such that | Pi ∪ P(i+1)mod(b+1) |≥ h holds for each i = 0, . . . , b.

Proof. Let k = n mod(b+1) and n = λ(b+1)+k. The set P is partitioned into b+1 sets
Pi of �n/(b + 1)
 or �n/(b + 1)
 elements in any possible way except for the following
constraint: if k ≥ (b+1)/2 then it is additionally assured that |Pi | = �n/(b + 1)
 implies
|P(i+1)mod(b+1)| = �n/(b + 1)
. The lemma follows by distinction of the following two
cases.

k <
b + 1

2
⇒ ∣∣Pi ∪ P(i+1)mod(b+1)

∣∣ ≥ 2

⌊
n

b + 1

⌋
=
⌊

2n

b + 1

⌋
≥ h , and

k ≥ b + 1

2
⇒ ∣∣Pi ∪ P(i+1)mod(b+1)

∣∣ ≥
⌊

n

b + 1

⌋
+
⌈

n

b + 1

⌉
≥
⌊

2n

b + 1

⌋
≥ h.

Theorem 2. In modelMb, broadcast among n > b players is not achievable if 2n/h ≥
b + 1. In particular, the adversary can make the protocol fail with probability at least
1/(b + 1).

Proof. Assume any broadcast protocol � for n > b players Q = {q0, . . . , qn−1} with
sender q0, secure for 2n/h ≥ b + 1. With the help of protocol �, the b + 1 players
P = {p0, . . . , pb} can achieve broadcast secure for any honest pair {pi , p(i+1)mod(b+1)}
as follows. The set Q is partitioned into b + 1 sets Q0, . . . , Qb such that q0 ∈ Q0, and
|Qi∪Q(i+1)mod(b+1)| ≥ h for all i = 0, . . . , b which is possible by Lemma 3. The players
in P can now achieve broadcast by having each player pi simulate all players qj ∈ Qi in
an instance of protocol�. There, the players in Qi∪Q(i+1)mod(b+1) for some i = 0, . . . , b
are honest since at least one pair {pi , p(i+1)mod(b+1)} of the simulating players is. Since
|Qi ∪ Q(i+1)mod(b+1)| ≥ h by construction, protocol � achieves broadcast among the
simulating players in P , as secure as with respect to the player set Q. Thus, by Lemma 2,
protocol � must have an error probability of at least 1/(b + 1).

Note that this impossibility result holds with respect to the stronger model where the
players are connected by secure bilateral channels and where the adversary is static and
limited to probabilistic polynomial computation.
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3. Efficient b-Proxcast

Let � := �(b − 1)/2
 be the maximal possible grade in Pb
n . Pb

n is achieved by having
the sender ps distribute his input value xs by all

(n−1
b−1

)
different BCb-channels including

the sender (as a sender of the primitive). Depending on the consistency among the
(n−2

b−2

)
different BCb-channels a recipient pi is involved in, pi decides on a value yi and a
grade gi . Qualitatively speaking, player pi decides on a higher grade gi as more BCb

invocations involving pi result in the same value yi .
For example, assume b = 6, and let ysi jk�m

i be the output value of the BC6 instance
among the players ps , pi , pj , pk , p�, and pm , where ps acts as the sender. If the sender
ps is honest then an honest player pi receives the same value xs in all instances of partial
broadcast, i.e., “ysi∗∗∗∗

i ≡ xs .” However, if such a player pi sees “ysi∗∗∗∗
i ≡ xs” then the

sender could still be corrupted, and another honest player pj could have received the
value 1 − xs in an invocation where pi does not participate, e.g., “ys jcde f

j = 1 − xs .”
However, honest player pi seeing “ysi∗∗∗∗

i ≡ xs” implies that, for every honest player pj ,
it holds that “ys ji∗∗∗

j ≡ xs .” Furthermore, if pj sees “ys ji∗∗∗
j ≡ xs” (but no honest player

pi sees “ysi∗∗∗∗
i ≡ xs”) then it holds that every honest player pk sees “ysk ji∗∗

j ≡ xs ;
and so on. As a natural approach, the grades of the final proxcast directly relate to the
maximal “number of asterisks” a player can infer. More precisely, in order to compute
his grade gi , a player pi computes a minimal set of players Zi ⊆ (P\{ps, pi }) such that
all invocations of BCb involving the players in {ps, pi } ∪ Zi resulted in output 0. For
example, if there are players pj and pk such that “ysi jk∗∗

i ≡ 0” but no pc exists such that
“ysic∗∗∗

i ≡ 0” then Zi = { j, k}.
In step 4 of the protocol, let “min” denote any minimal set that satisfies the given

condition and let “:⊆” denote the assignment of any set satisfying the respective
condition.

Protocol 1. Pb
n (S, ps, xs)

1. ∀Pb−2 ⊆ P\{ps, pi }, |Pb−2| = b − 2:
y Pb−2

i := BCb(Pb−2 ∪ {ps, pi }, ps, xs) fi;
2. if i = s then yi := xs ; gi := �; �i := yi · (b − 1); return (yi , gi , �i ) fi;
3. if b = n then yi := y P\{ps ,pi }

i ; gi := �; �i := yi · (b− 1); return (yi , gi , �i ) fi;
4. if ∃Pb−2 : y Pb−2

i = 0 then Zi := min(Z ⊆ P\{ps, pi }|∀Pb−2 ⊇ Z : y Pb−2
i = 0)

else Zi :⊆ P\{ps, pi } such that |Zi | = b − 1 fi; [0 never received]
5. if |Zi | < b/2 then yi := 0 else yi := 1 fi;

gi := ⌊∣∣(b − 1)/2− |Zi |
∣∣⌋; �i := |Zi |;

6. return (yi , gi , �i )

Lemma 4. In modelMb, Protocol 1 achieves Pb
n .

Proof. If b = n then the lemma trivially holds. Thus we assume that b < n.
(Validity′) If the sender ps is honest then every honest player pi computes Zi such

that �i = |Zi | = xs · (b − 1).
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(Consistency′) Consider an honest player pi with a minimal set Zi , i.e., such that for
all players pj it holds that �j = |Zj | ≥ |Zi | = �i . If |Zi | ≥ b − 2 then |Zj | ≤ |Zi | + 1
trivially follows. If |Zi | < b − 2 then Z = Zi ∪ {pi } satisfies that, for all Pb−2 ⊇ Z ,
y Pb−2

j = 0, and thus, that |Zj | ≤ |Z | ≤ |Zi | + 1. Thus, consistency follows.

Note that a minimal set Zi can be efficiently (polynomial in the size of the commu-
nication network) computed in the case where b ≤ n/2. However, in the general case,
finding a minimal set Zi calculates the witness for an NP-complete problem and thus
seems infeasible. Thus, in order to guarantee a computation complexity polynomial in
the size

(n
b

)
of the communication network (and thus polynomial in n for b = O(1)

and n − b = O(1)), we have the players “approximate” such a minimal set by public
discussion in the following way.

A player pi with Zi = ∅ (i.e., pi received value 0 in every single BCb invocation)
can efficiently detect this fact. Thus, in a first round, we have every such player pi

distribute his set Zi = ∅ to every other player. A player pj (who has not computed Zj

yet) now accepts this statement if and only if ys ji∗
j ≡ 0 by calculating Zj := {pi } and

distributing Zj in a next round. A player pk (who has not computed Zk yet) now accepts
pj ’s statement if and only if ysk ji∗

k ≡ 0 by calculating Zk := Zj ∪ {pj }, and distributing
Zk in a next round; etc. This process is continued for b − 2 rounds in total.

Although this process does not guarantee that the honest players pi compute a minimal
set Zi it still guarantees that they compute an extremal set (|Zi | = 0 if xs = 0, and
|Zi | = b− 1 if xs = 1) when the sender is honest, and, that there is a player pj such that
each honest player pk’s set satisfies |Zk | ∈ {|Zj |, |Zj | + 1}.

The following protocol is to replace step 4 in Protocol 1. Note that step 5 below is
necessary in order to guarantee that, in round z, pi indeed composes a set Zi of exact
cardinality z + 1 (in the textual description above this is not necessarily the case since
the set obtained might contain pi himself).

Protocol 2. ApproximateZ

1. if � ∃Pb−2 : y Pb−2
i = 1 then Zi := ∅ else Zi := ⊥ fi;

2. for z = 0 to b − 3 do
3. if Zi �= ⊥ ∧ |Zi | = z then SendToAll(Zi ) fi; Receive(Z1

i , . . . , Zn
i );

4. if Zi = ⊥ ∧ (∃Zk
i , |Zk

i | = z ∧ ∀Pb−2 ⊇ Zk
i ∪ {pk} : y Pb−2

i = 0) then
5. Zi := Zk

i ∪ {pk};
if pi ∈ Zi then pick arbitrary p� /∈ Zi ∪{ps, pi } and let Zi :=(Zi\{pi })∪ p�
fi;

6. od;
7. if Zi = ⊥ then Zi :⊆ P\{ps, pi } such that |Zi | = b − 1 fi;

Theorem 3. In model Mb, Protocol 1 (using Protocol 2 instead of step 4) achieves
Pb

n . The computation and communication complexities of the protocol are polynomial
in the size

(n
b

)
of the network. In particular, the protocol is polynomial in the number of

players if b = O(1) or n − b = O(1).
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Proof. If b = n then the lemma trivially holds. Thus we assume that b < n.
(Validity′) Assume the sender ps to be honest. If xs = 0 then every honest player

pi immediately computes Zi := ∅ in step 1 of Protocol 2, and thus �i = 0. If xs = 1
then there is no set Pb−2 such that player pi received y Pb−2

i = 0 and pi computes
�i = |Zi | = b − 1.

(Consistency′) Consider an honest player pi with a minimal set Zi , i.e., such that for
all players pj it holds that �j = |Zj | ≥ |Zi | = �i . If |Zi | ≥ b − 2 then |Zj | ≤ |Zi | + 1
trivially follows. If |Zi | < b − 2 then pj either already computed Zj with |Zj | = |Zi |
or accepts such a set Zi by computing Zj according to step 5 of Protocol 2 of exact
cardinality |Zj | = |Zi | + 1, and �j = �i + 1.

(Complexities) Protocol 1 involves one communication round in step 1 and b − 2
communication rounds in step 4 and thus R = b− 1 rounds in total. The overall number
of BCb calls is

(n−1
b−1

)
and, additionally, in Protocol 2, each player sends at most one n-bit

message to every other player. Thus, the bit complexity of Protocol 1 is B = O(n3+(n
b

)
).

The computational complexity is dominated by the test in step 4 of Protocol 2 which is
evidently polynomial in

(n
b

)
.

4. The Information-Gathering Protocol

We now present our information-gathering (IG) protocol for global broadcast in model
Mb secure if 2n/h < b + 1. Its complexities are generally superpolynomial in the
size

(n
b

)
of the network. IG among n players is implicitly based on subprotocols for

two-threshold broadcast [24].

Definition 5 (Two-Threshold Broadcast). A protocol among P where player ps ∈ P
(called the sender) holds an input value xs ∈ D and every player pi ∈ P finally decides
on an output value yi ∈ D, and achieves two-threshold broadcast (TTBC, for short) with
respect to thresholds tv and tc if it satisfies the following conditions:

Validity: If the sender ps and at most tv players overall are corrupted then all honest
players pi decide on the sender’s input value, yi = xs .

Consistency: If at most tc players are corrupted then all honest players decide on the
same output value.

TTBC among a player set S ⊆ P (n = |S|) with sender ps and thresholds tv and tc
(tv ≥ tc) recursively works as follows. First, the sender ps distributes his input value
xs to all players in S via an instance of Pb

n . Then each player pi ∈ S\{ps} recursively
redistributes the received value with an instance of TTBC among the n′ = n−1 remaining
players (S′ := S\{ps}) with respect to threshold t ′c = tc − 1. Now, every player holds
the same n′ = n − 1 votes (one per remaining player) on what level the respective
player received in the invocation of Pb

n . The only difference between two players’ views
can now be that their initial levels received during Pb

n differ by one (consistency of
Pb

n ). The decision rule finally manages to reunite respective adjacent views while still
guaranteeing validity with respect to an honest sender. Note that the recursion works on
reduced n′ = n − 1 and t ′c = tc − 1 but leaves tv unchanged.
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In the following protocol, let hv := n − tv and hc := n − tc, and for any predicate Q,
let
∧0

k=1 Q := true. Note that the protocol is binary. Thus the recursion in step 3 does not
only branch in order of n (n−1 subcalls) but also in order log b since �j ∈ {0, . . . , b−1}
must be processed bitwise.

Protocol 3. TTBC(S, ps, xs, tv, tc)

1. if n = b then yi := BCb(S, ps, xs) else (yi , gi , �i ) := Pb
n (P, ps, xs) fi;

2. if i = s then yi := xs ; return yi fi
if tc = 0 ∨ b = n then return yi fi;

3. ∀pj ∈ S\{ps}: � j
i := TTBC(S\{ps}, pj , �j , tv, tc − 1) fi;

4. ∀� ∈ [0, b − 1] : Li [�] := |{pj ∈ S\{ps}|� j
i = �}|;

5. if
∧�i

k=1(Li [k − 1]+ Li [k] ≥ hc) ∧ (Li [0] ≥ hv − 1) then
6. yi := 0 else yi := 1
7. fi; return yi

Lemma 5. Consider Protocol 3 in modelMb. If 2tv+ (b−1)tc < (b−1)n and tc ≤ tv
then the protocol achieves TTBC with respect to thresholds tv and tc.

Proof. The proof proceeds by backward induction over n. Thus, assume that Protocol 3
achieves TTBC among n′ = n − 1 players whenever 2t ′v + (b − 1)t ′c < (b − 1)n′, and
hence achieves TTBC for the special case that n′ = n − 1, t ′v = tv , and t ′c = tc − 1.

(Validity) Assume that the sender ps is honest and that at most tv players are corrupted.
If tc = 0 or b = n then validity is trivially satisfied (step 2)—this case constitutes the
induction base. Thus, assume that tc > 0 and b < n, and, by induction, that the protocol
achieves validity with respect to n′ = n − 1, t ′v = tv , and t ′c = tc − 1.

Since honest ps consistently distributes the same value xs , every honest player pj

computes �j = xs · (b − 1). By induction assumption, every honest player consistently
receives this value �j by the at least hv − 1 remaining honest players in S\{ps} in step 3.

If xs = 0 then every honest player pi computes �i = 0 and Li [0] ≥ hv − 1, and thus
yi = 0 = xs . If xs = 1 then �i = b − 1 and Li [b − 1] ≥ hv − 1. Thus, pi computing
yi = 0 would imply that, additionally, Li [0] ≥ hv − 1 and Li [k]+ Li [k + 1] ≥ hc for
k = 0, . . . , b− 2, and thus that at least (2(hv − 1)+ (b− 1)hc)/2 > n− 1 = n′ players
participated in step 3. Thus pi must compute yi = 1 = xs .

(Consistency) Assume that at most tc players are corrupted. If tc = 0 or b = n
then consistency is trivially satisfied according to step 2. If the sender ps is honest then
consistency follows from validity (proven above) since tv ≥ tc.

Thus, assume that tc > 0, n > b, the sender ps is corrupted, and that, by induction,
the protocol achieves TTBC with respect to n′ = n − 1, t ′v = tv , and t ′c = tc − 1.

Since the sender is corrupted, only t ′c = tc − 1 corrupted players remain in S\{ps},
and are involved in step 3. Hence, by induction, every invocation of the protocol in
step 3 achieves consistency. Furthermore, since t ′v ≥ t ′c, also validity is achieved, i.e.,
all invocations of the protocol in step 3 achieve broadcast. This implies that two honest
players pi and pj compute exactly the same sets Li [0] = L j [0] =: L[0], . . ., Li [b−1] =
L j [b − 1] =: L[b − 1].

Let pi be an honest player with minimal �-value, i.e., such that for all other honest
players pj : �i ≤ �j . By the consistency property of Pb

n , it holds that �j ∈ {�i , �i + 1}.
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We now show that all honest players pj compute yj = yi . If �j = �i then both players
have exactly the same view and hence decide in the same way, yj = yi . Thus, assume
that �j = �i + 1.

• If pi computes yi = 0 then
∧�i

k=1(L[k − 1]+ L[k] ≥ hc) ∧ (L[0] ≥ hv − 1), and
by the consistency property of Pb

n it also holds that L[�i ]+ L[�i + 1] ≥ hc. Hence,∧�i+1
k=1 (Lk−1 + Lk ≥ hc) ∧ (Li [0] ≥ hv − 1) and pj computes yj = 0 = yi .

• If pi computes yi = 1 then ¬(∧�i
k=1(L[k − 1]+ L[k] ≥ hc) ∧ (L[0] ≥ hv − 1)),

and thus ¬(∧�i+1
k=1 (L[k − 1]+ L[k] ≥ hc) ∧ (L[0] ≥ hv − 1)), and pj computes

yj = 1 = yi .

Protocol 4. Broadcast(P, ps, xs)

1. yi := TTBC(P, ps, xs, n − h, n − h);
2. return yi

Theorem 4. In modelMb, Protocol 4 achieves broadcast if 2n/h < b + 1. Its round
complexity is R = min(n − h, n − b) + 1 and its bit complexity is polynomial in n for
n − b = O(1).

Proof. Protocol 3 is invoked with parameters tv = tc = n− h. Since 2n/h < b+ 1, it
holds that 2tv+ (b−1)tc = (b+1)(n−h) = (b−1)n+ (2n− (b+1)h) < (b−1)n and
thus that Protocol 3 achieves TTBC. That Protocol 4 achieves broadcast now follows
from Definition 5 and Lemma 5.

Furthermore, if Protocol 1 is run without the efficient approximation technique given
in Protocol 2 then the round complexity is R = min(n − h, n − b) + 1. Polynomial
bit complexity for n − b = O(1) follows from the efficiency of Pb

n and the fact that
R ≤ n − b + 1 = O(1).

5. The Protocol Along the Lines of Dolev–Strong

For any number t of corrupted players, the broadcast protocol of Dolev and Strong [16]
can be based on any authentication scheme with transferability k ≥ t+1, e.g., any digital
signature scheme or the unconditional pseudo-signature scheme in [35]. The protocol
then is as secure as the component authentication scheme.

In this section we first show that even the weaker assumption ofP2(t+1)
n (orP2(n−h+1)

n ,
respectively) is sufficient for broadcast, by slightly adapting the Dolev–Strong protocol
to this different primitive. We then give an efficient construction for P2(n−h+1)

n under
the assumption that 2n/h < b + 1, which can then be plugged into that broadcast
protocol.

The stepwise construction of the final broadcast protocol is depicted in Fig. 3. First,
BCb is transformed into Pb

n with arbitrary resilience. How to achieve this was already
shown in Section 3. Then Pb

n is iteratively transformed into P2(n−h+1)
n which is possible

if 2n/h < b + 1. This step is demonstrated in Section 5.2. Finally, P2(n−h+1)
n can be

plugged into our modified Dolev–Strong protocol which we present in Section 5.1.
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BCb
-

Theorem 3

Section 3

Any h

Pb
n

-

Theorem 7

Section 5.2

2n=h < b+ 1

P
2(n�h+1)
n

-

Theorem 5

Section 5.1

h

Broadcast

Fig. 3. Stepwise construction of our broadcast protocol along the lines of Dolev and Strong.

5.1. P2(n−h+1)
n Implies Broadcast

We now show that (efficient) proxcast with parameter k = 2(n−h+1) implies (efficient)
broadcast secure if 2n/h < b + 1. For this, the Dolev–Strong protocol (with a small
modification in [34]) is executed using proxcast instead of signatures. Every player
pi ∈ P maintains a set Ai of accepted values that, at the end, is either ∅, {0}, {1}, or
{0, 1}. Furthermore, every player pi maintains two sets Si [0] and Si [1] that consist of
elements in {1, . . . , n}. For ease of exposition, we parameterize the following protocol
by the number of corrupted players t = n − h whereby k = 2(n − h + 1) turns into
k = 2t + 2.

Protocol 5. Broadcast(P, ps, xs)

The whole protocol proceeds for t + 1 phases. In a first phase, ps initiates an instance of
P2t+2

n (P, ps, xs) sending xs , sends {s} to every other player over the pairwise channels,
computes ys := xs , and halts. During phases r = 1, . . . , t + 1, every player pi (i �= s)
performs the following actions where, initially, each Ai = ∅:

• If any value v ∈ {0, 1} has been newly added to the set of accepted values Ai during
phase r −1 then pi initiates an instance of P2t+2−2r

n (P, pi , v) sending v, and sends
Si [v] ∪ {i} to everybody over the pairwise channels.

• Suppose (v, S) is received from any player pj such that v ∈ {0, 1} and the set S
contains at least r distinct values m including s such that pi received value v with
grade ≥ t − r + 1 from some instance of Pk

n initiated by pm . Then v is added to
Ai , and Si [v] := S.

At the end of the protocol, every player pi computes output yi = 1 if Ai = {1}, and
yi = 0 otherwise.

Lemma 6. If all instances Pk
n (k ≤ 2t + 2) execute correctly then, in the standard

pairwise-channels model, Protocol 5 achieves broadcast for any number t < n of cor-
rupted players. Let R0, B0, and C0 be the round, bit, and computational complexities of
P2t+2

n . Then the respective complexities of Protocol 5 are R ≤ (t+1)R0, B = O(nt B0),
and C = Poly(nC0).

Proof. (Validity) Assume that the sender ps is honest. Now, pi accepts xs after the
first phase but never accepts the value 1− xs since ps never initiates any instance of the
form Pk

n (P, ps, 1− xs). Hence every honest player pi decides on yi = xs .
(Consistency) Assume players pi and pj to be honest. We show that pi and pj decide

on the same value yi = yj by showing that Ai = Aj at the end of the protocol.
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Consider any valuev ∈ Ai . If pi addsv to Ai for the first time during phase r ∈ [1 · · · t],
then there are r distinct values of m (including s) in Si [v] such that pi received v with
grade≥ t−r+1 from some instance ofPk

n initiated by pm . This implies that pj received
vwith grade≥ t−r from the same r instances ofPk

n . Note that pi will initiate an instance
ofP2t+2−2(r+1)

n (P, pi , v) in phase r+1, and pj will receive this instance with maximum
grade t − r − 1. Also note that pj will receive (v, Si [v] ∪ {i}) from pi in phase r + 1.
This will cause pj to accept v in phase r + 1, if he has not already done so.

On the other hand, if pi accepts v only during phase t + 1 then some player sent him
(v, S)with t+1 distinct values of m (including s) in S such that pi received v with grade
≥ t − r + 1 from some instance of Pk

n initiated by pm . One of those t + 1 distinct values
of m corresponds to an honest player who was convinced to accept v in an earlier phase,
and then sent convincing information to all parties. Thus every honest player accepts v
by the end of the protocol.

(Complexities) The round complexity of Protocol 5 is R ≤ (t + 1)R0, its bit com-
plexity is B = O(nt B0),6 and its computational complexity is evidently polynomial in
nC0.

Theorem 5. If 2n/h < b + 1 then P2(n−h+1)
n allows for efficient broadcast.

Proof. The theorem follows from Lemma 6.

5.2. Transformation from Pb
n to P2(n−h+1)

n

We now present an efficient transformation from Pb
n to P2(n−h+1)

n for the case that
2n/h < b+1. The transformation proceeds in a stepwise manner from Pk

n to Pk+1
n . The

basic step involves one invocation of Pk
n and n invocations of Pb

n . Since the basic step
involves Pk

n only once, the final reduction will be efficient.

5.2.1. Transformation Idea

In a first round, an instance of Pk
n is executed with the same sender as designated for the

broadcast. In a second round, every player (including the original sender, for simplicity)
distributes his result using an instance of Pb

n . It is convenient to interpret the initial
(binary) Pk

n with respect to the alternative definition where each player pi receives a
level �i ∈ {0, . . . , k − 1} and the second (non-binary) instances Pb

n with respect to the
original definition where each player pi receives a value yi ∈ {0, . . . , k− 1} and a grade
gi ∈ {0, . . . , �(b − 1)/2
}.

Thus, in the final protocol, each player pi receives an initial level �i ∈ {0, . . . , k − 1}
and n further messages (one per player pj ) of the form (�

j
i , g j

i ) where g j
i ∈ {0, . . . ,

�(b − 1)/2
}—expressing that player pj claimed towards pi to have received (as a result
of Pk

n ) level � j
i , and that pi received this claim “�j ” from pj with grade g j

i . Based on
this information, each player pi finally decides on a new level Li ∈ {0, . . . , k}.

6 We adopt the convention that not initiatingP2t+2−2r
n for any value v ∈ {0, 1} is done by initiatingP2t+2−2r

n

with value v = ⊥. Thus, every player initiates a proxcast during every phase.
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For simplicity, we first describe the initial transformation fromPb
n toPb+1

n , i.e., k = b.
The following transformation steps then proceed in a very similar way.

5.2.2. Decision Rule

Consider the case k = b and let � = �(b − 1)/2
 be the maximal possible grade in
the second instances of proxcast. In order to guarantee validity, a player pi with level
�i = b − 1 (�i = 0) who received at least h values of the form (�i , �) must decide on
Li = b (Li = 0, respectively).

However, if the sender is corrupted and an honest player pi still has this respective
view then, in order to guarantee consistency, an honest player pj with level �j = b − 2
must change his level to L j ∈ {b− 1, b}. This, in turn, implies that an honest player pm

with level �m = b−3 must upgrade his level to Lm ∈ {b−2, b−1}whenever an honest
player pj with this respective view exists, etc.

We now describe how a player pi computes his final level Li based on his local
view, i.e., level �i and the n received pairs (� j

i , g j
i ). In order to do so, we define the

distance between two pairs of the form (x, g) (g ∈ {0, . . . , �}). Informally, the distance
between two pairs simply characterizes how far they are apart in the “scale” of proxcast.
Reconsider Fig. 1.

Definition 6. The distance between two levels �i and �j is D[�i , �j ] = |�i − �j |.
Accordingly, the distance of two pairs (xi , gi ) and (xj , gj ) is

D[(xi , gi ), (xj , gj )] =


|gi − gj |, if xi = xj ,

gi + gj , if xi �= xj ∧ b odd,
gi + gj + 1, if xi �= xj ∧ b even.

In these new terms, validity demands the following rule:

�i = b − 1
∧∃Sb−1 ⊂ P: |Sb−1| ≥ h ∧ ∀ j ∈ Sb−1: D[(b − 1, �), (� j

i , g j
i )] = 0

}
−→ Li := b.

Given any honest player pi following the above rule, an honest player pk with level
�k = b − 2 (which is possible in case the sender is corrupted) must also upgrade his
level to Lk = b − 1 (or Lk = b) in order to guarantee consistency.

Thus, assume that an honest player pi follows the above rule. By the consistency
property of proxcast (second round), the h pairs (� j

i , g j
i ) = (b − 1, �) must also be

received by player pk—as pairs of the form (b − 1, �) or (b − 1, � − 1), i.e., pk sees
h pairs (� j

k , g j
k ) such that D[(b − 1, �), (� j

k , g j
k )] ≤ 1. Furthermore, by consistency of

proxcast (first round), every honest player must have sent level b − 1 or b − 2 during
the second round of proxcast. Thus, by validity of proxcast (second round), player pk

must also have received h pairs of the form (b − 1, �) or (b − 2, �). Thus, consistency
of Pb+1

n demands the following rule:

�i = b − 2
∧∃Sb−2 ⊂ P : |Sb−2| ≥ h ∧ ∀ j ∈ Sb−2 : D[(b − 1, �), (� j

i , g j
i )] ≤ 1

∧∃Sb−1 ⊂ P : |Sb−1| ≥ h ∧ ∀ j ∈ Sb−1 : � j
i ∈ {b − 1, b − 2}

∧D[(� j
i , �), (�

j
i , g j

i )] = 0



−→Li :=b−1.
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The rule now progresses further to

�i = b − 3
∧∃Sb−3 ⊂ P : |Sb−3| ≥ h ∧ ∀ j ∈ Sb−3 : D[(b − 1, �), (� j

i , g j
i )] ≤ 2

∧∃Sb−2 ⊂ P : |Sb−2| ≥ h ∧ ∀ j ∈ Sb−2 : � j
i ∈ {b − 1, b − 2}

∧D[(� j
i , �), (�

j
i , g j

i )] ≤ 1
∧∃Sb−1 ⊂ P : |Sb−1| ≥ h ∧ ∀ j ∈ Sb−1 : � j

i ∈ {b − 2, b − 3}
∧D[(� j

i , �), (�
j
i , g j

i )] = 0



−→Li :=b−2.

In order to guarantee consistency, this rule must now progress all the way to level �i = 1.
Note that a player pi with level �i < b − 1 simply inherits the upgrade rule for �i + 1
(weakened by a distance of 1) plus he gets one additional rule. Finally, we apply the
following rule for �i = 0:

�i = 0 ∧ |{ j | (� j
i , g j

i ) = (0, �)}| < h −→ Li := 1,

i.e., a player pi with level �i = 0 upgrades whenever there is not enough “support” for
0. In all other cases, a player pi keeps his level, Li := �i .

This approach obviously guarantees validity and consistency as long as no honest
player pi holds �i = 0. In order to prove consistency for �i = 0, we finally show that
any honest player pj upgrading from �j = 1 to L j = 2 implies that |{ j | (� j

i , g j
i ) =

(0, �)}| < h, and, thus, that pi computes Li := 1. We end up with the following rule:

Upgrade Rule
if �i > 0 ∧ ∃ S�i , S�i+1, . . . , Sb−1 ⊂ P :

∀S� : |S�| ≥ h
∧∀k,m : (Sk ∩ Sm �= ∅ ⇒ |m − k| ≤ 1)

∧∀S�∀ j ∈ S� : � j
i ∈ {�, �+ 1} ∧D[(� j

i , �), (�
j
i , g j

i )] ≤ �− �i

or �i = 0 ∧ |{ j | � j
i = 0 ∧ g j

i = �}| < h
then Li := �i + 1 else Li := �i .

Note that two consecutive sets Sk and Sk+1 are not necessarily disjoint whereas,
in favor of our final analysis, we demand that two non-consecutive sets Sk and Sm

(m /∈ {k, k ± 1}) are disjoint. Such sets Sk can be efficiently constructed in a way
that guarantees the precondition of the upgrade rule exactly if it can be satisfied:
this is achieved by assigning the sets Sk by increasing index k. This guarantees that
“close” pairs are not wasted for too “distant” sets Sk that tolerate more relaxed
conditions.

The upgrade rule is also depicted in Fig. 4 for the case where �i = 1 and where pi must
upgrade to Li = 2 (the sets T0 and T1 will be required later for a counting argument).
Each possible output value � ∈ {0, . . . , b−1} of the initial instance of Pb

n is represented
by a row. The columns represent distances from the pairs (0, �), . . . , (b − 1, �). Thus
the matrix position (x, y) stands for pairs (u, v) received during a secondary instance
of Pb

n that satisfy D[(x, �), (u, v)] = y. With respect to this example, the upgrade rule
now demands that there are sets S1, . . . , Sb−1 that each contain at least h pairs matching
the respective distance constraints.
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pi upgrades from `i = 1 to Li = 2

D = 0 D = 1 D = 2 : : : D = b� 3 D = b� 2

(b� 1;�)

(b� 2;�)

: : :

(4;�)

(3;�)

(2;�)

(1;�) �

(0;�)

: : :

T0T1

S1

S2

S3

Sb�2
Sb�1

Fig. 4. Upgrade rule and consistency argument for the non-trivial case.

Lemma 7. Based on (efficient) Pb
n , the described protocol achieves (efficient) Pb+1

n .

Proof. (Validity′) Validity is trivially satisfied since pi receives �i = xs · (b− 1) from
sender ps and at least h pairs of the form (�i , �).

(Consistency′) The way the upgrade rule is designed, consistency is trivially satisfied
as long as there is no honest player pj with level �j = 0. Thus, assume that such a player
pj exists and that there is at least one player pi with �i �= 0 and thus, by consistency of
the first proxcast, �i = 1. We have to show that whenever pi upgrades (Li = �i +1 = 2),
pj also upgrades. In particular, we show that it cannot happen that pi upgrades while pj

stays with his level L j = 0. For this, we distinguish whether or not b is even. Player pi

upgrading to Li = 2 implies the view depicted in Fig. 4.
Since all honest players pj hold a level �j ∈ {0, 1}, player pi must hold a set T0 of

pairs (0, �) or (1, �) with |T0| ≥ h and, since pj holds at least h pairs (0, �), pi also
holds a set T1 of pairs (·, ·) such that D[(0, �), (·, ·)] ≤ 1 (see Fig. 4). We distinguish
whether or not b is even.

ODD b. Since Sk ∩ Sk+2 = ∅ there are (b − 1)/2 distinct sets S1, S3, . . . , Sb−2 of
cardinalities at least h. All pairs (·, ·) ∈ S1 ∪ . . . ∪ Sb−2, for some � �= 0, satisfy
D[(�, �), (·, ·)] ≤ b− 3, whereas the pairs (·, ·) ∈ T1 satisfyD[(0, �), (·, ·)] ≤ 1. Thus,
the sets S1, S3, . . . , Sb−2 and T1 are all pairwise distinct, and pi must have received at
least ((b + 1)/2)h > n different pairs in contradiction to the fact that there are at most
n players.

EVEN b. Since Sk ∩ Sk+2 = ∅ the sets S1, S3, . . . , Sb−1 are pairwise distinct. All
pairs (·, ·) ∈ S1 ∪ . . . ∪ Sb−1, for some � �= 0, satisfy D[(�, �), (·, ·)] ≤ b − 2. Thus
the sets T0\S1, S1, . . . , Sb−1 are pairwise distinct, and pi must have received at least
(b/2)h + |T0\S1| different pairs.

Furthermore, the sets S2, . . . , Sb−2 are also pairwise distinct. All pairs (·, ·) ∈ S2∪. . .∪
Sb−2, for some � �= 0, satisfyD[(�, �), (·, ·)] ≤ b− 3, whereas the pairs (·, ·) ∈ T0 ∪ T1

satisfy D[(0, �), (·, ·)] ≤ 1. Thus the sets T1\T0, T0, S2, . . . , Sb−2 are pairwise distinct,
and pi must have received at least (b/2)h + |T1\T0| different pairs.

Hence, since (T0\S1) ⊆ T1, pi received at least (b/2)h + max(|T0\S1|, |T1\T0|) ≥
((b + 1)/2)h > n pairs overall, contradicting the number n of involved players.
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5.2.3. General Step from Pk
n to Pk+1

n

It can be easily seen that the described transformation from Pb
n to Pb+1

n directly general-
izes to the general step from Pk

n to Pk+1
n (k > b). The counting argument basically stays

the same whereas more sets Sm get involved which makes the counting even easier.

Theorem 6. For any k ≥ b, Pk+1
n can be efficiently achieved from one instance of Pk

n
and n instances of Pb

n .

Proof. The theorem follows from the above text.

5.2.4. Complete Transformation from Pb
n to P2(n−h+1)

n

Theorem 7. If 2n/h < b + 1 then P2(n−h+1)
n can be achieved from Pb

n . Let R0, B0,
and C0 be the round, bit, and computational complexities of Pb

n . Then the resulting
protocol for P2(n−h+1)

n has respective complexities R = (2(n − h) − b + 3) · R0, B =
O(n2 log n · B0), and C = Poly(n · C0).

Proof. The reduction presented in the previous two sections implies the theorem.
Pk

n results from one invocation of binary Pk−1
n and n invocations of Pb

n with domain
{0, . . . , k − 2}. Thus the given complexities follow.

5.3. The Final Broadcast Protocol

By Theorems 3 and 7 and Lemma 6, we get the following complexities for the final
broadcast protocol: round complexity R = (n − h + 1)(2(n − h) − b + 3)(b − 1), bit
complexity B = O

(
n4 log n

(
n3 + (n

b

)))
, and computational complexity C = Poly

((n
b

))
.

We conclude

Theorem 1. In Model Mb, global broadcast among n > b players is achievable if
and only if 2n/h < b + 1. If b = O(1) or n − b = O(1) then broadcast is achievable
with computation and communication complexities polynomial in n. In all other cases,
our protocols are still polynomial in the size

(n
b

)
of the network.

Proof. The theorem now follows from Theorems 3, 7, 5, and 2.

6. Remarks

6.1. Pairwise Channels

Initially, ModelMb was defined as an extension of ModelM2 (Definition 1), i.e., in
addition to partial-broadcast channels, we required pairwise channels. However, since
our protocols do not involve any secrecy, every invocation of a pairwise channel can
be simulated by the invocation of a partial-broadcast channel. Thus the assumption of
pairwise communication channels is not required.
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6.2. Erroneous Partial Broadcast

In the previous analyses of our protocols, we assumed the BCb-channels to be perfectly
reliable, i.e., to involve no error probability. The results naturally generalize to the case
when the underlying BCb-channels involve some error probability. In order to achieve
an overall failure probability negligible in a security parameter k, a security parameter
κ = k + O(log

(n
b

)
) for the BCb-channels is sufficient—which is κ = k + O(log n) for

the special case of b = O(1) or n − b = O(1).

6.3. Consensus

The given results immediately extend to the consensus variant of Byzantine agreement.

Theorem 8. In Model Mb, global consensus among n > b players is achievable if
and only if 2n/h < min(b + 1, 4); with computation and communication complexities
polynomial in n.

Proof. Note that consensus implies broadcast for n/h < 2 and that consensus is
impossible when n/h ≥ 2. Thus impossibility beyond the stated bound follows.

Consensus for n/h < 2 can be efficiently simulated by broadcast among the same
players. In the case of b = 2, the resulting protocol is directly polynomial in n. In order
to be polynomial in n for the case of b > 2, we have to make sure that only polynomially
many BCb-channels are involved. However, since BC3-channels are sufficient to achieve
n/h < 2, we can simply use the construction for b′ = 3 thereby simulating each BC3-
channel by a BCb-channel involving the same three players.

6.4. Multi-Party Computation

Previous work. Byzantine agreement is a special case of the more general problem of
multi-party computation (MPC), initially defined by Yao [42], where the players want
to evaluate distributedly some agreed function(s) on their inputs in a way preserving
privacy of their inputs and correctness of the computed result.

Goldreich et al. [29] gave the first complete solution to the problem for ModelM2 :
an efficient protocol that is computationally secure for n/h < 2—which is optimal (with
respect to computational security).

Ben-Or et al. [4] and Chaum et al. [7] gave the first optimal solutions with respect
to unconditional security for ModelM2: efficient protocols unconditionally secure for
2n/h < 3. Also this bound is tight.

For Model Mn (i.e., when additionally given broadcast channels), Beaver [2] and
Rabin and Ben-Or [37] proposed efficient protocols that are unconditionally secure if
n/h < 2. Also this bound is tight. A more efficient protocol for this model was given
by Cramer et al. [11].

When additionally assuming oblivious transfer [36] besides broadcast, non-robust
multi-party computation is achievable even in presence of any number of corrupted
players [29], [3], [30].7 Furthermore, when only demanding robustness in the case that

7 Whereas the protocol in [29] may be completely unfair, the protocols in [3] and [30] guarantee that the
adversary has practically no advantage over the honest players in obtaining information about the computation
result.
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no players are corrupted, h = n, then the same results as in [2], [37], [29], [3], and [30]
can also be achieved without broadcast channels [21]–[23].

Implications. The results derived in this paper now imply that, instead of ModelMn ,
ModelM3 is sufficient in order to achieve the result in [2] and [37]. That is, broadcast
among three players is sufficient for MPC unconditionally secure for n/h < 2. Further-
more, assuming oblivious transfer in ModelMb (instead of ModelMn as in [29], [3],
and [30]) still allows for unconditionally secure MPC for 2n/h < b + 1.

7. Conclusion

It was shown that broadcast among every subset of b players allows for global broadcast
if and only if 2n/h < b + 1 players are corrupted. Achievability was demonstrated
by protocols whose communication and computation complexities are polynomial in
the size

(n
b

)
of the network and, in particular, polynomial in n whenever b = O(1) or

n − b = O(1).
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