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Abstract Numerous factors involved in general homeo-

stasis are able to modulate ventilation. Classically, this

comprises several kind of molecules, including neuro-

transmitters and steroids that are necessary for fine tuning

ventilation under different conditions such as sleep, exer-

cise, and acclimatization to high altitude. Recently,

however, we have found that erythropoietin (Epo), the

main regulator of red blood cell production, influences both

central (brainstem) and peripheral (carotid bodies) respi-

ratory centers when the organism is exposed to hypoxic

conditions. Here, we summarize the effect of Epo on the

respiratory control in mammals and highlight the potential

implication of Epo in the ventilatory acclimatization to

high altitude, as well as in the several respiratory sickness

and syndromes occurring at low and high altitude. (Part of

a multi-author review.)
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Introduction

The classical function of erythropoietin (Epo) in the

hematopoietic system is the regulation of red blood cell

production, a process that is mediated by its specific cell

surface Epo receptor (EpoR). Recently, however, Epo was

found to do far more than blood. It was observed that Epo

was not only endogenously synthesized in the fetal liver

and adult kidney [1, 2], but also in cell lines with

neuronal characteristics. Specifically, it was Sasaki and

co-authors who, in 1992, detected for the first time the

presence of Epo and functional EpoR in the neuron-like

cells PC12 and NS6 [3]. Later, we localized Epo and

Epo binding sites in specific areas of the mouse brain,

including hippocampus and cerebral cortex [4]. More

recently, we and others demonstrated in rodents and men

that Epo exerts a potent protective function upon exper-

imentally induced brain ischemia [5–10], spinal cord

ischemia and trauma [11, 12], and light-induced retinal

degeneration [7, 13, 14].

Since the neuroprotective impacts of Epo in neural tissue

have been investigated during the last decade, little is

known regarding Epo’s physiological function in the brain.

Moreover, despite the fact that Epo is a hypoxia-inducible

factor, its putative impact on respiratory control has not

been considered as a working hypothesis until recently.

Thus, the main objective of this review is to summarize the

current knowledge on the mammalian regulation of

breathing process by Epo. We provide convincing evidence

that cerebrally produced Epo is a key factor in the venti-

latory response to acute and chronic hypoxia by modulating

the respiratory centers in the brainstem. In addition, we also

review the evidence that circulating Epo in plasma controls

the peripheral carotid bodies, thus establishing the crucial

interaction between the erythropoietic system, responsible

for increasing the oxygen carrying capacity in blood, and

the neural respiratory response, that increases minute ven-

tilation. We finally discuss the putative clinical implications

of Epo in breathing diseases and the impact of Epo in the

acclimatization and de-acclimatization process to high

altitude.
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Epo regulates ventilation in hypoxia

Ventilation (VE) is the process by which O2 and CO2 are

exchanged by diffusion between the lungs and the envi-

ronment. The mammalian lungs have the capacity to

increase the ventilatory performance by a factor of 20

compared to the resting ventilation. This allows mammals

to adapt and colonize extreme environments [15], as well

as humans to permanently live at altitudes higher than

4,000 m, and to continuously challenging sports’ limits.

Taken together, investigation of factors and molecular

mechanism that permit improvement of ventilatory mech-

anism is a topic of major interest.

Hypoxia may be defined as a relative deficiency in

oxygen availability/delivery for maintaining adequate

physiological oxygen tensions, and thus results from an

imbalance between oxygen demand and supply [16]. As

such, a set of genes whose expression is regulated by cellular

oxygen tension is activated controlling the corresponding

adjustments. The hypoxia-inducible factor-1 (HIF-1) is

the most important protein regulating the physiological

homeostasis against the reduced oxygen supply [16]. HIF-1

is stabilized under hypoxic conditions conferring selectivity

to the hypoxic response. As a major transcription factor,

HIF-1 regulates the activation of more than 100 target genes

[17, 18], of which Epo is the best known one.

Epo’s impact on the brainstem respiratory centers

During the last decade, we and others have demonstrated

that Epo and its receptor (EpoR) are functionally expressed

in glial cells and neurons of mice, monkey, and humans,

implying that Epo has a much broader field of action than

so far recognized. We observed that the amount of Epo in

brain dramatically increases after hypoxic exposure of the

organism by HIF-1 stabilization [4]. The mechanisms by

which Epo exerts its function include several pathways

controlling oxygen homeostasis. Epo has been recognized

to be involved in the upregulation of oxygen-free radical

scavenger enzymes [19–21], avoiding apoptosis by main-

taining the expression of Bcl-2 and Bcl-xl [21, 22],

preventing glutamate-induced cell death [23, 24] and

activating voltage-gated channels [25, 26]. Considering

that all these processes are directly or indirectly involved in

the ventilatory acclimatization to hypoxia and corre-

sponding morphological and neurochemical regulations in

the neural respiratory network, we hypothesized a few

years ago that Epo influences the respiratory centers in the

brain. To test this hypothesis, we used a transgenic mouse

line (tg21) constitutively overexpressing human Epo only

in brain [8]. This transgenic mouse model allowed us to

test the impact of elevated brain Epo (respiratory center)

omitting the influence of elevated plasma Epo that would

probably interfere with the peripheral respiratory centers.

Both severe acute hypoxia (6% O2) and chronic hypoxic

exposure (3 days at 10% O2) showed a greater ventilatory

response in tg21 mice, compared with corresponding wild-

type (WT) control animals. Following a bilateral transection

of the carotid sinus nerves (chemodenervation) that

uncouples the brain from the carotid bodies, tg21 mice

responded to severe hypoxia with a sustained ventilation,

while chemodenervated WT animals showed life-threaten-

ing apneas, and exposure had to be stopped [27]. Because

tg21 mice express human Epo only in brain without

increasing their Epo plasma level, these results imply that

cerebral Epo is a key factor that stimulates ventilation under

conditions of reduced oxygen availability. In parallel to

these experiments, immunohistochemical analysis revealed

that EpoR is expressed in the main brainstem respiratory

centers; of note, EpoR was expressed with neurokinin-1

receptors (NK-1R) in neurons present in the pre-Bötzinger

complex that are involved in the generation of the respira-

tory pattern, in the nucleus tractus solitarious (NTS), that

relays input from peripheral chemoreceptor to the central

respiratory areas, and in catecholaminergic centers in the

brainstem that are important modulators of ventilation

under hypoxic conditions [27].

Mechanisms of Epo’s impact on the brainstem

Studies using neuronal-glial cultures and mice revealed

that Epo provides neuroprotection action by activating the

Janus-tyrosine kinase 2 (JAK-2) that is linked with the

EpoR via its Box-1 motif (reviewed in [28]). JAK-2 in turn

phosphorylates, thereby activating downstream signaling

factors, such as the mitogen-activated protein (MAP)

kinases, extracellular-regulated kinase (ERK)-1/-2 [29],

phosphatidyl inositol 63 kinase (PI3k)/Akt [29, 30], Jun

kinase (JNK) [31, 32], and signal transducers and activators

of transcription (SAT)-5 [29, 33] (Fig. 1). With this in

mind, we performed western blot analysis to determine

whether the Epo signal transduction in tg21 mice was

prolonged in comparison to WT animals. We did not

observe any differences in the expression of neural JAK-2,

MAP kinase, ERK-1/-2, JNK, and AKT pathways, thus

showing that the Epo-mediated increased hypoxic ventila-

tion in tg21 mice is not related to higher activation of these

molecular neuroprotective signal transduction (note that

this result has not been previously published).

On the other hand, Epo has been recognized as a potent

factor able to modulate release of catecholamines in cells

with neuronal characteristics [34–37]. Knowing that cate-

cholamines in brainstem are important factors in the

modulation of ventilation upon hypoxic conditions
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[38–40], we used HPLC to evaluate the noradrenaline

content and the tyrosine hydroxylase (TH) activity in tg21

and WT mice. Compared to WT controls, tg21 mice show

altered catecholaminergic content in brainstem, higher

levels in pons, but lower levels in medulla. These data are

in agreement with the report showing that increased hyp-

oxic ventilation—by mean the augmentation of the

respiratory frequency—is associated with higher catechol-

amine level in pontial A5 cell group [41, 42] and with

lower catecholamine level in the medullary A1C1 and

A2C2 cell groups [43]. Thus, our results suggest that higher

Epo level modulates the catecholamine synthesis in

brainstem. Once hypoxic, this alteration affects the venti-

latory response by increasing the respiratory frequency.

In an attempt to verify our data by using WT mice, we

focused the soluble EpoR (sEpoR). In analogy to several

other members of the cytokine superfamily type I trans-

membrane proteins, EpoR is also synthesized in a soluble

form that corresponds to the extracellular domain of the

complete receptor [44–46]. The sEpoR is synthesized by

alternative splicing of EpoR mRNA and secreted to the

extracellular fluid. Once there, it binds Epo, thereby

sequestering it from the system [47–49]. We observed first

that chronic hypoxia produces a drastic downregulation of

the sEpoR in the central nervous system of WT mice [49].

In a following step, when sEpoR was chronically infused in

the nervous system of mice by a minipump, the process of

ventilatory acclimatization to chronic hypoxia (defined as a

gradual increase in ventilation to compensate for the low

O2 availability) was abolished. In parallel, the neural Epo

concentration was decreased by 50% (Fig. 2). These results

show that the neural regulation of Epo and its antagonist

sEpoR play a critical role in the central nervous system in

stabilizing the ventilatory activity and thus ensuring the

systemic oxygen delivery under low O2 conditions [49].

Taken together, our results imply that endogenous

Epo:sEpoR system in the central nervous system play a

crucial role in regulating oxygen homeostasis, thereby
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Fig. 1 Transgenic mice

overexpressing human Epo only

in brain (tg21) does not show

activation of Janus tyrosine

kinase 2 (JAK-2) or

corresponding downstream

signal factors such as signal

transducers and activators of

transcription (STAT-5),

extracellular-regulated kinase

(ERK-1/-2), jun kinase (JNK),

or serin/threonin kinase (AKT)
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Fig. 2 a Western blot analysis shows that Epo and sEpoR are

expressed in the mouse brain. b Intracerebral infusion of sEpoR

abolishes ventilatory acclimatization to chronic hypoxia. Normoxic

minute ventilation was evaluated before and after animals were

exposed chronically to hypoxia of 10% O2 during 3 days. After

acclimatization, control animals showed large increase of normoxic

ventilation. In contrast, this elevation was abolished in sEpoR-treated

mice
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ultimately contributing to the same goal as Epo in plasma,

i.e., increasing overall oxygen delivery capacity.

Plasma Epo and carotid bodies

Because oxygen is able to react fast with several other

molecules thereby producing harmful forms of reactive

oxygen species, oxygen is not stored in the organism in

large amounts. Therefore, oxygen must be continuously

supplied to settle the oxygen-dependent enzymatic reac-

tions [50]. As a result, mammals need to be equipped with

more than one mechanism to respond to the oxygen

reduction in arterial blood. The very first mechanism pro-

viding higher level of oxygen consists in the increase of

ventilation, which enlarges the overall volume of air and

thus increases the level of oxygen in the alveolus. This

quick increase of ventilation is controlled by the carotid

body. This organ senses the reduced blood oxygenation and

activates the chemoreflex pathway. The sensory informa-

tion is then relayed to brainstem neurons that in turn

modulate corresponding ventilatory adjustments. Increas-

ing ventilation is the most important hypoxic response

when mammals are acutely exposed to high altitude [51],

but it also plays a crucial role in the acclimatization process

to chronic hypoxia [52].

Despite being essential, the ventilatory system is not

sufficient to ensure adequate oxygen supply to cells and

tissues. A second important mechanism increasing the

oxygen availability consists in the augmentation of the

blood’s oxygen carrying capacity. Upon sustained hypox-

emia, Epo synthesis in the adult kidney is accelerated,

resulting in increased plasma Epo level [53, 54]. Once in the

bone marrow, Epo maintains the availability of erythrocyte

progenitor cells, promotes cell division, and increases

hemoglobin synthesis culminating in increased hematocrit

levels [55, 56]. Despite being complementary, no interac-

tion between the neural control of ventilation and the Epo-

mediated elevation of red blood cells has been described so

far. Knowing that PC12 cells, a cell line derived from rat

pheochromocitoma representing a model of peripheral

chemosensitive cells, increase their intracellular calcium

concentration, induce membrane depolarization, increase

the number of viable cells, and increase the dopamine

release and TH activity upon exposure to Epo [25, 34, 36,

37, 57], we suspected that the ventilatory and erythropoietic

response crosstalk. We postulated that higher concentration

of Epo in plasma stimulates the hypoxic ventilatory

response by interacting with carotid body cells, while ele-

vated tissue oxygenation induced by increased ventilation

will reduce the hypoxic secretion of Epo in renal cells.

The main peripheral chemoreceptors identified in small

mammals are the carotid bodies [58]. These are among the

most vascularized organs in the body (five times higher

than brain) [58], and are stimulated by the decline of

arterial oxygen partial pressure. Considering its embryonic

neural origin and its similarity with PC12 cells, we first

addressed the question whether EpoR is present in carotid

body glomus cells, as it is in brain tissue and neural-like

cells. To this end, we performed immunostaining in serial

lateral sections of the carotid body bifurcation, and used

tyrosine hydroxylase (TH) staining to identify the glomus

cells. We detected dense staining of EpoR in the carotid

body, apparently localized within islets of chemosensitive

cells [27]. This observation implies that circulatory Epo

interacts with carotid body cells, probably by binding the

EpoR. In a next step, we placed WT animals into the

plethysmograph and measured the hypoxic ventilatory

response after acute injection of 2,000 U/kg of rhEpo in the

tail vein. We observed that Epo-injected mice showed

higher respiratory frequency but lower tidal volume than

saline-injected controls when exposed to hypoxia. Con-

sidering that a glycoprotein such as Epo can hardly cross

the blood–brain barrier [59–61], these results suggest that

peripheral chemoreceptors can be activated by circulating

Epo. It is tempting to speculate that, under hypoxic expo-

sure followed by increased plasma levels, Epo stimulates

the response of carotid bodies, thus fine-tuning the neural

control of hypoxic ventilation.

Epo modulation of hypoxic ventilation is gender

dependent

Several studies on cats and rats pointed out that the carotid

bodies are one of the major sites for gender differentiation

of ventilatory control in hypoxia [62, 63], but the under-

lying mechanisms of this hormonal stimulation remain

poorly understood. Among the various neuromodulators

synthesized by glomus cells under hypoxemia, dopamine is

found at high concentration and has been recognized as a

potent inhibitory neuromodulator of carotid body chemo-

transduction [58, 64, 65]. As such, we postulated a few

years ago that sexual female hormones can modulate

hypoxic ventilation by impacting the carotid body dopa-

minergic secretion. Indeed, we found that ovarian steroids

stimulate ventilation by lowering the peripheral dopami-

nergic inhibitory drive [51]. These results are in line with

several reports showing a better capacity of women and

female mammals to adapt to hypoxia [51, 62], and to be

less susceptible to a number of hypoxia-associated issues.

Based on the fact that ovarian steroids can influence

the expression of hypoxia-inducible genes, such as renal

Epo, vascular endothelial growth factor, endotheline 1,

nitric oxide synthase, and HIF-1 [66–71], we recently

hypothesized that gender-dependent regulation of hypoxic
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ventilation is mediated by erythropoietin. To test this

hypothesis, we used a second transgenic mouse line (tg6)

showing high levels of human Epo in brain and plasma, the

latter leading to excessive erythrociatosis [8, 72]. Inter-

estingly, despite tg6 mice showing hematocrit values up to

80–90%, we found no differences in minute ventlation

between male tg6 and WT mice during exposition to

hypoxia. Nevertheless, tg6 mice showed dramatic changes

in the ventilatory pattern [73]. In contrast, when hypoxic

ventilatory response was evaluated in female tg6 animals,

we observed that minute ventilation was dramatically

increased in tg6 animals compared to corresponding WT

mice [74]. These results suggest that the gender-dependent

regulation of hypoxic ventilation imply an interaction

between Epo and sexual steroids.

In a next step, based on the notion that an intact blood–

brain barrier excludes large glycosylated molecules such as

Epo [6, 60, 61], we measured the hypoxic ventilatory

response in male and female WT mice following i.v.

injection of 2,000 U/kg of rhEpo. This experiment allowed

us to study the gender-dependent impact of Epo on carotid

bodies without the influence of cerebrally produced Epo.

While no differences were observed in male mice during

hypoxia, Epo-injected female animals underwent a tre-

mendous increase in hypoxic ventilation [74]. As such,

these results suggest that plasma Epo and sex female hor-

mones under hypoxic conditions occurs in the carotid body

cells. Note, however, that these date do not discard a

putative interaction of cerebral Epo and neurosteroids.

Finally, in an attempt to summarize the impact of central

and peripheral Epo on hypoxic ventilation, we proposed a

new model for the ventilatory response to hypoxia (Fig. 3).

Clinical implications and future research

The notion that Epo interacts with neural cells is quite

recent. Despite this short time, large efforts have been made

concerning the pathological implication of Epo as a neu-

roprotective factor [5–7, 9–14]. On the other hand, little

work has been done concerning Epo’s physiologiclal

impact. Our work clearly provides convincing evidence that

Epo, EpoR, and sEpoR play a crucial role in regulating the

systemic oxygen homeostasis in adult mice, by regulating

both central (brainstem) and peripheral (carotid bodies)

check points of ventilation in hypoxia. The clinical impli-

cations of these findings are obvious. We assume that there

is an impact of neural Epo:sEpoR in lowlanders suffering

from chronic obstructive pulmonary diseases, such as

emphysema, chronic bronchitis, and cystic fibrosis, as well

as from other types of diseases such as, polycythemia vera,

sleep apnea, and renal and liver tumor. Moreover, regarding

the increasing population permanently living at high

altitude, we postulate that plasma and cerebral Epo are

involved in the ventilatory adaptation. At present, we do not

know whether high altitude dwellers have a higher con-

centration of Epo in neural tissue, or whether neural Epo

participates in the blunted ventilation observed in acute and

chronic mountain sickness.

Of note, appropriate breathing control and optimal

oxygen supply during early life is a determinant factor for

the normal development of the respiratory control network

[75, 76], as well as for several cognitive tasks [77, 78].

Apnoea of the premature, neonatal asphyxia, or respiratory

distress syndrome in premature infants are among the most

important factors associated with impaired oxygen delivery

to the brain [19, 79]. Consequently, the implications of Epo

and sEpoR during development are of most interest. In

addition, mammalian milk contains substantial concentra-

tions of Epo, suggesting that Epo plays a pleimorphic role

in erythropoiesis, neurodevelopment, maturation of the gut,

apoptosis, and immunity in breast-fed infants [80–82]. The

expression of Epo was also found in the placenta; never-

theless, its role in this tissue remain to be elucidated.

Finally, it is interesting to mention that two different

routes of functional adaptation were naturally selected in

Tibetan and Andean high altitude natives: Tibetans have

developed increased ventilatory capacity compared to

Andean Aymaras, but complementary to this, Andeans

have generated higher hemoglobin concentrations [83].

Our data fit this observation and provide convincing
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Fig. 3 Model of ventilatory response to hypoxia showing the

contribution of cerebral and plasma Epo. During the first minutes of

hypoxia, carotid bodies sense the drop of arterial oxygen pressure thus

leading to a fast response to hypoxia. Longer exposure to hypoxia

promotes a higher secretion of Epo by the kidney. An increased level

of plasma Epo augments the oxygen carrying capacity (by gradual

increase of the hematocrit), but also contributes to the regulation of

ventilation (VE) by regulating the activity of the carotid body glomus

cells. In parallel, the level of cerebral Epo is increased in brainstem

(and decreased the level of sEpoR), thus contributing to the regulation

of central ventilation
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evidence that Epo links this adaptational mechanism. We

hypothesize that cerebral Epo, probably pushing ventila-

tory adaptation, was the option for lower energetic cost in

the evolution of Himalayan people, while renal-synthesized

Epo was the better option for the Andean population. We

are convinced that these data will contribute to our

understanding of respiratory physiology and the way to

treat the associated diseases.

Conclusion

Little is known about the physiological implication of Epo

in neural-controlled processes, and in addition, this is a

very fertile field for investigation. Our work establishing a

key implication of Epo in the neural control of hypoxic

ventilation, and the link of two complementary systems

(ventilatory and erythropoietic) in the process to augment

the general oxygen availability upon hypoxia, is very novel

and requires more investigation. Keeping in mind that Epo

is a safe drug, it will find many more applications in the

clinic. However, as only intravenous or subcutaneous drug

application is feasible in human patients, systemically

applied Epo must cross the blood–brain barrier to also be

useful in the central nervous system. In addition, an Epo

isoform able to minimize the danger of excessive eryth-

ropoiesis that could result from high levels and repeated

application of Epo needs to be developed. In other words, a

small and new erythropoietic Epo analogue is required.
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