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Abstract
Purpose This work aims to develop a methodology for
automated atlas-guided analysis of small animal positron
emission tomography (PET) data through deformable regis-
tration to an anatomical mouse model.
Methods A non-rigid registration technique is used to put
into correspondence relevant anatomical regions of rodent
CT images from combined PET/CT studies to corresponding
CT images of the Digimouse anatomical mouse model. The
latter provides a pre-segmented atlas consisting of 21 ana-
tomical regions suitable for automated quantitative analysis.
Image registration is performed using a package based on
the Insight Toolkit allowing the implementation of various
image registration algorithms. The optimal parameters
obtained for deformable registration were applied to simu-
lated and experimental mouse PET/CT studies. The accura-
cy of the image registration procedure was assessed by
segmenting mouse CT images into seven regions: brain,
lungs, heart, kidneys, bladder, skeleton and the rest of the
body. This was accomplished prior to image registration
using a semi-automated algorithm. Each mouse segmenta-
tion was transformed using the parameters obtained during
CT to CT image registration. The resulting segmentation

was compared with the original Digimouse atlas to quantify
image registration accuracy using established metrics such
as the Dice coefficient and Hausdorff distance. PET images
were then transformed using the same technique and auto-
mated quantitative analysis of tracer uptake performed.
Results The Dice coefficient and Hausdorff distance show
fair to excellent agreement and a mean registration mis-
match distance of about 6 mm. The results demonstrate
good quantification accuracy in most of the regions, espe-
cially the brain, but not in the bladder, as expected. Normal-
ized mean activity estimates were preserved between the
reference and automated quantification techniques with rel-
ative errors below 10 % in most of the organs considered.
Conclusion The proposed automated quantification tech-
nique is reliable, robust and suitable for fast quantification
of preclinical PET data in large serial studies.
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Introduction

One of the most significant advantages of positron emission
tomography (PET) over other forms of functional imaging
techniques is its capability to quantify absolute regional
radiotracer concentration. Therefore, PET can generate
quantitative dynamic images of regional radiotracer uptake,
resulting in regional measurements of kinetic parameters.
Quantification provides the direct relationship between the
activity concentration measured in vivo in organs/tissues
and the underlying physiological or pharmacokinetic pro-
cesses occurring in the structure of interest [1]. It correlates
the variation over time of the activity concentration to
physiologically relevant quantitative parameters. In preclin-
ical studies, quantitative assessment of tissue uptake permits
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better management of the therapy for an individual animal
model and eventually enables assessment of overall re-
sponse to a therapy in a population of transgenic animals
[2]. However, quantitative PET is challenged by the need for
appropriate compartmental or kinetic models to derive esti-
mates of such parameters from dynamic PET measurements
of regional activity concentrations, which is difficult to
achieve in a clinical setting. Moreover, to take full advan-
tage of the quantitative capabilities of PET imaging, patient-
specific correction of background and physical degrading
factors must be performed.

Automated quantitative assessment of metabolic PET
data is appealing given its usefulness in terms of facilitating
experimental molecular imaging investigations, since it can
reduce variability across institutions and may improve the
reliability of image interpretation independent of reader
experience. For example, the development of tracer-
specific small animal PET probabilistic atlases [3] correlated
with anatomical (e.g. MRI) templates enabled automated
volume of interest (VOI) or voxel-based analysis of small
animal PET data with minimal end-user interaction [4]. One
such software tool was developed by Kesner et al. [5] to
enable assessment of the biodistribution of PET tracers
using small animal PET data. This is achieved though
non-rigid registration of a digital mouse model with the
animal PET image set followed by automated calculation
of tracer concentrations in 22 predefined VOI representing
the major organs and remaining whole body. The develop-
ment of advanced anatomical models including both styl-
ized and more realistic voxel-based mouse [6–8] and rat [9,
10] models obtained from serial cryosections or dedicated
high-resolution small animal CT and MRI scanners will
certainly help to support ongoing research in this area [11].

Our objective in this work is to develop and assess
the performance of atlas-guided automated analysis of
small animal PET data based on computerized anatom-
ical models and retrospective registration-guided meth-
ods enabling correct localizat ion and accurate
quantification of molecular targets. Our approach is
different from the one adopted by Kesner et al. [5] in
the sense that we are aiming at developing a fully
automated analysis procedure which does not require
user interaction and does not rely on the use of exter-
nal fiducial markers or internal landmarks.

A substantial number of techniques have been pro-
posed to achieve the goal of multimodal medical image
registration [12, 13]. However, image registration algo-
rithms widely used in clinical studies have not been
well characterized in the small animal setting. A number
of investigators focused on the utility of popular image
registration techniques in various scenarios and using
different imaging technologies and reported various
degrees of success [14–22]. Some techniques rely on

the use of external fiducial markers or specially
designed hardware devices [23] to aid the registration
process, whereas other approaches rely on fully auto-
mated algorithms that do not involve user interaction.
Current state-of-the-art image registration techniques al-
low for automatic image registration through a rigid
body transformation, thus ignoring organ deformation.
There has also been noticeable progress in non-rigid
registration algorithms that can compensate for per-
ceived organ deformation for different imaging modali-
ties or align images from different subjects [24].
However, despite progress made during the last few
years, many image registration problems, particularly
for small animal imaging, remain unsolved, and this is
likely to continue to be an active field of research in the
future [25].

The rationale of the automated 3-D image registration
procedure used in this work to register PET images of the
actual animal to an atlas for automated analysis is that it
should be easier to find the correct alignment of anatomical
CT images of the animal and those of the atlas than it is for
noisy low-resolution PET images. This is achieved through
non-rigid registration based on a multi-resolution approach.
The transformation parameters obtained from CT to CT
registration are then applied to corresponding PET images
followed by automated quantitative analysis of tracer uptake
in predefined regions.

Materials and methods

Mouse atlas

The Digimouse atlas [7], composed of preregistered
slices of PET, CT and cryosection images and the
corresponding atlas, was used in this work. The latter
results from a segmentation of 21 VOI including the
skin, skeleton, eye, medulla, cerebellum, olfactory bulbs,
external cerebrum, striatum, heart, the rest of the brain,
masseter muscles, lachrymal glands, bladder, testis,
stomach, spleen, pancreas, liver, kidneys, adrenal glands
and lungs. Two versions of this data set are available:
processed images coded in 8-bit (256 grey levels) and
raw images coded on 32-bit floating-point format. The
use of processed images would lead to loss of informa-
tion during the registration process owing to the lower
dynamic range. For this reason, we have reprocessed the
raw images to obtain a data set similar to the processed
one but with an isotropic voxel having a size of
0.2 mm and with coding to match typical CT and
PET images in terms of dynamic range (16 and 32 bits,
respectively) and scale (HU for CT). A representative
coronal slice of the resulting images is shown in Fig. 1.
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Mouse PET/CT studies

Experimental studies

The sample of laboratory animals included in this work is
composed of eight mouse PET/CT studies acquired using
three different radiotracers with segmentations performed in
our laboratory. Most of these mice had tumour xenografts
producing large morphological deformations that increased
the difficulty of the image registration process and
challenges of automated quantification tasks (Fig. 2):

& One 18F-fluorodeoxyglucose (FDG) mouse acquired on
the FLEX Triumph™ preclinical PET/CT scanner (Gam-
ma Medica-Ideas, Northridge, CA, USA) [26], consisting

of 16-bit CT images of 256 × 256 × 512 voxels of 0.17 ×
0.17 × 0.17 mm3, and 32-bit PET images of 256 × 256 ×
256 voxels of 0.4 × 0.4 × 0.4 mm3.

& Four mouse studies (three 18F-FDG and one 18F-NaF)
acquired on the Siemens MicroFocus scanner kindly pro-
vided by the Crump Institute at UCLA composed of CT
images of 256 × 256 × 496 voxels of 0.2 × 0.2 × 0.2 mm3

coded in 16 bits and PET images of 128 × 128 × 95 voxels
of 0.4 × 0.4 × 0.8 mm3 coded in 32 bits.

& Three mice from the Applied Sciences Laboratory at
Uppsala acquired for 60 min in list-mode format on
the FLEX Triumph™ preclinical PET/CT scanner
(Gamma Medica-Ideas, Northridge, CA, USA), com-
posed of CT images of 240 × 240 × 63 voxels of 0.25
× 0.25 × 1.175 mm3 coded in 16 bits and PET images of

Fig. 1 Spatially registered
multimodality images for a
coronal slice through the
Digimouse model. From left to
right: X-ray CT, PET, cryosec-
tion, segmented atlas and over-
lay of the atlas onto cryosection

Fig. 2 Example of coronal and
sagittal slices of PET/CT
studies (a-c) and overlay of the
atlas onto CT images (d-f) of
the experimental mouse studies
acquired using 18F-FDG (left),
18F-NaF (middle) and bispecific
antibody labelled with 68Ga
(right) radiotracers
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240 × 240 × 63 voxels of 0.25 × 0.25 × 1.175 mm3

coded in 16 bits. These three mice were injected with a
bispecific antibody labelled with 68Ga.

Since our approach relies on 3-D image registration, seg-
mented images of experimental animal images are needed for
objective assessment of the accuracy of the image registration
algorithm. Therefore, corresponding images were segmented
into seven regions/organs: brain, lungs, heart, kidneys, blad-
der, skeleton and “remaining organs & skin”. Segmentation of
CT images was performed using the ITK-SNAP software
[27], which provides flexible tools for semi-automated medi-
cal image segmentation. The choice of segmented organs/
regions was dictated by the need to have organs located at
various portions of the mouse provided that soft tissue contrast
of CT images is high enough to enable reliable segmentation.

The size and organ volume variation of this sample of
laboratory mice is shown in Table 1. The sizes (e.g.
cephalad-caudad length) were calculated from mouse seg-
mentations by calculating the number of transaxial slices
containing the mouse and multiplying this number by the
slice thickness. The calculation of organ volumes was per-
formed by counting the number of voxels belonging to each
organ (example voxels labelled as brain) and multiplying it
by the voxel volume. These measurements relied on com-
plete whole-body mouse images for all mice except three
where the assessment did not include the head since this part
was outside the field of view.

Simulated studies

More elaborate analysis under controlled conditions (ground
truth known) was carried out using 17 simulated PET/CT data
sets. The simulated mouse sample was generated using the
Moby digital mouse model [6], which creates two 3-D vox-
elized phantoms, one containing the activity map and the
second the attenuation map (μ-map) at 511 keV. These two

voxelized phantoms take into account respiratory and cardiac
motions during an acquisition of 120 s.

Mice simulations were performed to produce a normal
mouse sample and to complement the relatively small ex-
perimental mouse sample size by increasing the overall
sample size. Mouse sizes (Table 2) and activity concentra-
tions in the various organs/tissues were randomly chosen for
each simulation with a normal probability based on typical
biodistribution studies reported in the literature [5]. The
sizes of simulated mice were read from the output log file
of the Moby software, whereas the volumes were calculated
as described earlier for the experimental studies.

The Moby software was also used to produce segmented
images by modifying the input parameters to simulate tracer
uptake in only one organ at a time, leading to an image for
each segmented region/organ. All images were then com-
bined using an exclusive operator to avoid having voxels
labelled as two different organs, thus producing one unique
image corresponding to the mouse segmentation serving as
reference. This image is finally corrected by filling holes in
the heart and lung regions using the ITK-SNAP software to
simulate the Digimouse segmentation. An example of the
three voxelized images is shown in Fig. 3.

We used the CT projector provided with the Moby mouse
software to generate realistic mouse CT images corresponding
to the simulated PET data [28]. The projector was used to
obtain 360 projections, one per degree, with the characteristics
of the cone-beam microCT device used in our laboratory [29]:

& Object to source distance022.2 cm
& Object to detector distance06.8 cm
& Half-fan angle019°
& Pixel size of 0.2 × 0.2 mm2

CT images were then reconstructed from the simulated
projection data with a voxel size of 0.2 × 0.2 × 0.4 mm3

using Feldkamp’s algorithm [30] as implemented in the

Table 1 Physical characteristics
of mice used in the experimental
group

Minimum Maximum Mean SD

Whole-body dimensions (mm) Cephalad-caudad 84.830 97.160 92.640 5.200

Ventral-dorsal 19.720 31.750 25.310 4.190

Lateral 23.970 40.000 32.120 4.460

Volume (ml) Brain 0.314 0.358 0.344 0.018

Heart 0.188 0.367 0.267 0.051

Lungs 0.280 0.515 0.380 0.082

Kidneys 0.154 0.418 0.291 0.086

Bladder 0.021 0.458 0.172 0.141

Skeleton 1.332 1.904 1.697 0.247

Remaining organs & skin 12.373 20.761 17.843 3.342

Total 15.345 23.865 20.889 3.489
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MATLAB image reconstruction toolbox developed by Dr.
Fessler.1 PET images of the simulated Moby model were
reconstructed with attenuation correction using the Software
for Tomographic Image Reconstruction (STIR) package
[31] by means of the ordered subsets version of Green’s
maximum a posteriori (MAP) using the one-step late algo-
rithm [32] with 24 subsets, 25 sub-iterations and inter-
update Metz filtering [33]. Example images of X-ray pro-
jections and CT and PET reconstructed slices are shown in
Fig. 3.

Automated analysis and qualification

As explained earlier, the proposed approach is based on 3-D
non-rigid image registration between actual mice (source or
moving image) and the Digimouse atlas (target or fixed im-
age). The main restriction of our method is that PET/CT
images (as opposed to PETonly images) of the movingmouse
are required since the high-resolution anatomical CT image
serves as the basis for actual mouse to atlas registration. The
second constraint is that similar fields of view for source and
target images have to be made available.

Following CT to CT image coregistration, the generated
spatial transformation resulting from this procedure is used
to transform the moving PET image. This will produce a
new PET/CT data set of the actual mouse in the atlas space.
Thereafter, atlas segmentation is used to automatically de-
fine VOI to measure the radiotracer’s activity concentration
in various organs of the actual mouse. Therefore, the image
registration process is the key point of this approach. For

this reason, the methodology followed and the main param-
eters used as well as the algorithm’s performance assess-
ment are described in detail below.

Image registration

Image registration was performed using the Elastix software
suite [34]. The package consists of a collection of algo-
rithms based on the Insight Toolkit (ITK) libraries that can
be run from command line. One of the advantages of this
software is that it enables saving the calculated transforma-
tion following the coregistration into an ASCII file that can
be further used to transform other images using the same
transformation parameters by means of the Transformix tool
[34]. This software was conceived as a set of modules that
can be parameterized individually depending on the needs
of the user to handle particular situations. In our case, the
following choices were made:

& All calculations were carried out with floating-point
precision.

& Multi-resolution registration was performed at 5 levels with
down-sampling factors of 32, 16, 8, 4, and 2 times, each
with first-order B-spline image smoothing using 4,096,
4,096, 2,048, 2,048 and 1,024 iterations, respectively.

& Normalized correlation coefficient was used as the cost
function metric since it was reported to perform slightly
better (compared to mutual information) in intra-
modality image coregistration [34].

& The image sampler used to compute the cost function is
composed of 2,500 random points that were updated for
each iteration.1 http://www.eecs.umich.edu/∼fessler

Table 2 Physical characteristics
of mice used in the simulated
group

Minimum Maximum Mean SD

Body dimensions (mm) Cephalad-caudad 87.270 91.340 88.980 1.050

Ventral-dorsal 15.150 21.710 19.120 2.090

Lateral 26.440 34.480 29.120 2.400

Volume (ml) Brain 0.297 0.511 0.401 0.062

Heart 0.154 0.277 0.209 0.033

Lungs 0.412 0.724 0.548 0.082

Kidneys 0.204 0.354 0.273 0.042

Bladder 0.038 0.068 0.052 0.008

Liver 1.111 1.930 1.492 0.230

Pancreas 0.215 0.376 0.289 0.045

Spleen 0.066 0.109 0.084 0.012

Stomach 0.316 0.545 0.419 0.062

Testis 0.196 0.337 0.259 0.038

Skeleton 1.041 1.708 1.350 0.189

Remaining organs & skin 14.203 24.250 18.726 2.818

Total 18.253 31.187 24.101 3.618
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& The adaptive stochastic gradient descent was used as the
optimization method to adapt the step size sequence.

& The final interpolation is a third-order B-spline function.

The registration was performed in three steps:

1. Affine registration: mainly used to pre-align both CT
images to facilitate the task of the non-rigid registration
procedure. It is composed of 12 degrees of freedom, 3
for each of the possible transformations: translation,
rotation, scaling and shearing.

2. B-spline non-rigid registration: applied to obtain a good
alignment of CT images in size and shape. This step
produces very good results for mouse shapes, but in
most cases it does not suffice for internal organs. This
transformation step allows an infinite number of degrees
of freedom.

3. Masked B-spline non-rigid registration: applied to ob-
tain a finer registration of internal organs. This step was
added to improve the quality of image registration with-
out spending considerable computational resources out-
side the mouse surface. We used one unique mask based
on the Digimouse atlas shape since, based on previous
registration steps, the actual mouse CT image now has
the same shape.

Once the three steps are completed, we apply the same
transformation parameters to PET images of the same mouse
as well as its segmented image to obtain a PET/CT and
segmented data set corresponding to the Digimouse space.
The performance of the image registration algorithm was
assessed using two well-established metrics [35]:

1. Dice coefficient (Dcoeff) or mean overlap. This is a
volume overlap metric which quantifies the intersection
between source and target regions divided by their mean
volume:

Dcoeff ¼ 2
S \ Tj j
Sj j þ Tj j ð1Þ

The Dice coefficient [36] is a special case of kappa
statistical coefficient [37] which can be interpreted as
follows:

& Less than 0.20 ➔ poor agreement
& 0.20 to 0.40 ➔ fair agreement
& 0.40 to 0.60 ➔ moderate agreement
& 0.60 to 0.80 ➔ good agreement
& 0.80 to 1.00 ➔ excellent agreement

2. Hausdorff distance (HD). This is the most frequently
used discrepancy measure, which represents the maxi-
mum distance one would need to move the boundaries
of the source region to completely cover the target
region:

HDS!T ¼ max
s2S

min d s; tð Þf g
t2T

� �
ð2Þ

where s and t are points inside the source (S) and the target
(T) regions, respectively, and d(s,t) is the distance between s
and t. The measure of the directional Hausdorff distance
HDS→T is oriented and in most of the cases is not equal to
HDT→S. For this reason, the generalized Hausdorff distance
(HD) is defined as:

HD ¼ max max
s2S

min d s; tð Þf g
t2T

� �
;max

t2T
min d t; sð Þf g

s2S

� �� �

¼ max HDS!T ;HDT!Sf g

ð3Þ

PET normalized mean activity measurement

The mean activity concentrations in various regions of the
PET images were calculated and normalized to the maxi-
mum activity concentration to obtain the normalized mean
activities (NMAs). The NMAs from the pre-registered PET
images prior to transformation for the seven segmented

Fig. 3 Coronal views of a
voxel-based mouse model gen-
erated using the Moby software
for simulation of an 18F-FDG
study showing from left to
right: activity map, attenuation
map, segmented image, simu-
lated X-ray projection image,
simulated CT image and
corresponding simulated PET
image
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regions were used as reference. The automated PET analysis
results are then compared to reference values by calculating
the NMAs in the same seven regions based on the original
Digimouse segmentation. The relative error between these
two NMAs values is also calculated (in %).

Results

The assessment of the accuracy of the image registration
algorithm using well-established metrics is important be-
cause it will condition the automated activity quantification
procedure. To avoid image segmentation bias, we have
measured both metrics (Dcoeff and HD) using the original
Digimouse segmentation and our own segmentation of the
Digimouse atlas, similar to the procedure followed for the
segmentation of the experimental mouse sample. Statistical
analysis performed to compare the means of all the regions
using the paired t test for correlated samples is reported in
terms of p values (0.05 was used as threshold for statistically
significant differences). The analysis of the Dice coefficient
revealed that the mean Dcoeff was significantly improved (p
<0.0001) from 0.4557 to 0.5032 using our segmentation of
the Digimouse CT image. However, the improvement of
mean Hausdorff distance, from 6.33 to 6.16 mm, was not
statistically significant (p00.143).

Similar to the procedure followed for assessment of im-
age registration, we have tested if our segmentation of the
Digimouse improved the results of the NMA analysis com-
pared to the original Digimouse segmentation. This was
performed by comparing the relative difference between
quantitative estimates in the original and spatially trans-
formed images using both segmentations of the Digimouse
atlas, namely the original segmentation and our own seg-
mentation. The t test for correlated samples revealed that the
slight improvement of the mean relative difference (from
32.1 to 30.9 %) was not statistically significant (p00.214)
when using our segmentation approach. Considering that
only the Dice coefficient is influenced by the segmentation,
we hypothesize that both Digimouse segmentations are
equivalent and will not bias the results. For this reason, the
results shown below are all calculated using the original
Digimouse segmentation.

Typical image registration results between experimen-
tal mouse studies and the Digimouse atlas are shown in
Figs. 4 and 5 as representative of the best (mouse 4)
and worst (mouse 6) cases, respectively, considering the
Dice coefficient as metric for assessment.

As discussed earlier, a large variability was expected for
the experimental studies given the heterogeneity of the
considered sample. To illustrate this variability, Table 3
summarizes the results for the Dice coefficient and the

Fig. 4 Illustration of the best
deformable registration
example between the
Digimouse and one of the
experimental mouse studies
(mouse 4) showing: a overlay
of the Digimouse atlas onto
corresponding CT images, b
actual 18F-FDG PET/CT mouse
study, c mouse study shown in
b with overlay of the
segmentation onto CT image
(seven organs), d CT to CT
registration of the Digimouse
and actual mouse study shown
in c, e overlay of the
transformed segmentation
(seven organs) using
registration parameters obtained
in d onto CT image and f
transformed PET/CT study
using registration parameters
obtained in d
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Hausdorff distance for all segmented regions of the experi-
mental and simulated mice. One should note the large dif-
ference among Dice coefficients corresponding to best
(0.594±0.208) and worst (0.308±0.276) registration results
(Figs. 4 and 5).

Dice coefficient, Hausdorff distance and normalized
mean activity estimates before deformation (prior to
image registration) as well as the mean relative differ-
ence for the NMAs introduced by the automated quan-
titative analysis procedure for the seven segmented
regions for both experimental and simulated mice stud-
ies are shown in Table 4. Some representative results of
these metrics are presented in box-and-whisker plots for
different regions corresponding to experimental and sim-
ulated mouse studies in Fig. 6.

Paired t test analysis for independent samples was per-
formed to test the null hypothesis that mean values (Dcoeff,
HD, NMA before transformation and automated NMA rela-
tive difference) obtained with the experimental mouse sam-
ple is different from the mean value obtained with simulated
mice. One can see that statistically significant differences
between experimental and simulated samples were found for
lungs, bladder and remaining organs & skin regions for Dice
coefficient, whereas this was only the case for the brain for
Hausdorff distance. With regard to NMA before registration,
one can observe that there is evidence of statistically signif-
icant differences between experimental and simulated mice
activity concentration for kidneys, lungs and remaining
organs & skin regions, probably because three different
radiotracers were utilized for the experimental mice sample,
whereas only FDG was used for simulated studies using the
Moby model. Finally, a statistically significant difference is

Fig. 5 Same as Fig. 4 for the
worst deformable registration
example between the
Digimouse and one of the
experimental mouse PET/CT
studies (mouse 6) acquired
using 68Ga-labelled
ethylenediaminetetraacetic acid
(EDTA)

Table 3 Summary of mouse registration results for the 8 experimental
mice and 17 simulated mice studies when using the original Digimouse
segmentation

Mouse Dice
coefficient

Hausdorff distance
(mm)

Mean SD Mean SD

Experimental Mouse 1 .457 .284 6.41 3.46

Mouse 2 .430 .275 7.55 5.13

Mouse 3 .489 .271 7.02 5.15

Mouse 4 .594 .208 5.24 3.83

Mouse 5 .527 .247 5.10 2.92

Mouse 6 .308 .276 6.83 2.17

Mouse 7 .473 .251 5.62 2.88

Mouse 8 .332 .306 6.88 1.74

Simulated Moby 1 .445 .257 5.96 2.68

Moby 2 .443 .261 6.04 2.70

Moby 3 .445 .257 5.93 2.65

Moby 4 .455 .258 5.97 2.68

Moby 5 .444 .259 5.95 2.70

Moby 6 .451 .263 5.93 2.75

Moby 7 .453 .265 6.00 2.66

Moby 8 .428 .268 6.25 2.77

Moby 9 .455 .259 5.91 2.68

Moby 10 .459 .263 5.93 2.82

Moby 11 .449 .261 6.11 2.68

Moby 12 .450 .260 5.98 2.76

Moby 13 .451 .262 5.98 2.72

Moby 14 .447 .262 5.95 2.66

Moby 15 .461 .261 5.99 2.74

Moby 16 .447 .263 6.11 2.71

Moby 17 .408 .263 6.49 2.48
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observed only for the kidneys between experimental and
simulated mouse sample results.

Based on the foregoing statistical analysis, we can in
some cases unify experimental and simulated studies into a
unique sample which will be more representative of the
performance of the developed automated quantification
method. The results of this unified analysis are shown in
Table 5, where two estimates are shown for regions where
there is a statistically significant difference between exper-
imental and simulated studies. The 95 % confidence interval
was also calculated taking into account the sample size.

A similar approach to the one adopted by Kesner et al. [5]
was used to assess the accuracy of the automated analysis
algorithm, which consists in measuring the so-called har-
vested standardized uptake value (hSUV) that reflects the
actual measurement of the activity concentration in dissect-
ed organs of the mice. This metric is then correlated through
linear regression to VOI-based analysis. The accuracy of the
automated quantitative method is evaluated using the corre-
lation coefficient (R2) of this regression.

By analogy, we define the harvested NMA (hNMA) metric
as the activity concentration used as input in the voxelized
Moby phantom, which is correlated to the activity concentra-
tion estimated using the automated analysis technique through
linear regression analysis. Table 6 shows the mean correlation
coefficient calculated for all organs for each individual mouse,

whereas Table 7 shows the mean correlation coefficient cal-
culated with all mice for each individual organ. The results
obtained by Kesner et al. [5] using their semi-automated
algorithm are also shown in both tables. It can be seen that
the accuracy of our fully automated approach is comparable to
that of Kesner et al.’s semi-automated method.

Discussion

Automated quantitative analysis of PET data potentially
may play a pivotal role in large-scale clinical trials and
longitudinal serial preclinical studies involving the acquisi-
tion of a large sample of small animal imaging data. This
work proposes and evaluates the performance of an atlas-
guided automated quantification algorithm using simulated
and experimental studies. The performance of the image
registration algorithm is the critical issue in our automated
quantification approach. In the experimental sample, we
noticed a large variability in the results reported for the
various metrics evaluated. For example, Dice coefficient
results vary between 0.308 and 0.594 (mean00.451)
(Table 3). Similar variability was observed for the Hausdorff
distance, with values varying from 5.10 to 7.55 mm (mean0
6.33 mm), with larger regions having larger Hausdorff dis-
tances (HDHeart00.85 mm;HDSkeleton010.76 mm) (Table 4).

Table 4 Summary of image registration performance metrics and normalized mean activity measurements of original mice (before transformation)
and the relative difference between the original and the automated quantification procedure when using the Digimouse segmentation

Region Type of study Dice coefficient Hausdorff distance (mm) Normalized mean activity

Original (before transformation)
quantification

Automated quantification
relative difference (%)

Mean SD p value Mean SD p value Mean SD p value Mean SD p value

Braina Simulated .848 .008 0.081 1.70 0.13 0.029c 5.07E02 1.66E03 0.523 1.01 1.46 0.451

Experimental .827 .018 2.57 0.64 4.09E02 3.52E02 3.75 8.08

Heart Simulated .536 .024 0.369 3.34 0.47 0.247 3.51E02 1.48E03 0.827 2.77 1.47 0.517

Experimental .485 .146 3.75 0.85 3.80E02 3.58E02 19.26 67.12

Lungs Simulated .548 .018 0.046c 3.76 0.08 0.097 4.11E02 1.83E03 0.049c -1.37 1.00 0.378

Experimental .357 .213 4.97 1.72 2.12E02 2.24E02 16.43 52.38

Kidneys Simulated .455 .019 0.076 4.01 0.30 0.288 1.23E01 6.79E03 <0.0001c -34.54 1.25 0.040c

Experimental .387 .086 4.48 1.05 2.44E02 1.42E02 -8.10 28.20

Bladder Simulated .000 .000 0.045c 9.42 0.25 0.051 5.22E01 2.07E02 0.158 -94.35 0.22 0.064

Experimental .185 .230 6.80 2.99 3.98E01 2.13E01 -64.57 36.83

Skeletona Simulated .313 .008 0.202 9.23 0.13 0.231 3.23E02 1.23E03 0.492 3.70 1.37 0.179

Experimental .280 .064 10.76 3.20 5.25E02 7.75E02 -3.37 12.88

Remaining
organs & skinb

Simulated .766 .004 0.005c 9.45 0.07 0.927 3.82E02 1.64E03 0.037c -4.83 1.28 0.100

Experimental .808 .027 9.56 3.16 1.79E02 2.12E02 250.27 367.46

a In three of the eight experimental mouse studies, the brain region is absent and the skeleton region is truncated
b The definition of the “remaining organs & skin” region is not the same between experimental and simulated mouse studies
c Regions where there are statistically significant differences (p<0.05) between experimental and simulated sample means
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In contrast to the experimental sample, the performance of
image registration was less widely dispersed for the simu-
lated sample, with a dispersion of Dice coefficients between
0.408 and 0.461 but with a mean (0.447) close to the one
achieved for the experimental sample. The same trend was
observed for the Hausdorff distance metric (min.05.91 mm;
max.06.49 mm; mean06.03 mm). The most probable rea-
son for the difference in dispersion of results is the presence
of very large morphological deformations on the experimen-
tal mice owing to the presence of tumour xenografts. Nev-
ertheless, one can observe that, in the overall sample
composed of simulated and experimental mice, a final mod-
erate agreement was reached regarding the performance of
the image registration procedure (Dcoeff00.448), with a
mean mismatch of approximately 6 mm.

The analysis of the image registration procedure on a
region-by-region basis (Table 4) reveals again that the algo-
rithm performs better when using simulated compared to

experimental mice owing to the presence of tumour xeno-
grafts, except for the bladder and to a smaller extent remain-
ing organs & skin, where Dice coefficients of experimental
mice are higher than those of simulated mice. One can also
see that the brain and remaining organs & skin regions
registration show good to excellent agreement (Dcoeff>
0.76) for both experimental and simulated samples. Poor
agreement was obtained for time varying organs such as the
bladder owing to periodic filling and emptying (for experi-
mental and simulated mice) and small structures such as the
pancreas (for the simulated sample) (Table 5). A fair to good
agreement was found for the other regions (0.289≤Dcoeff

≤0.657).
The statistical analysis revealed that, in most of the cases,

experimental and simulated samples can be combined to
obtain a unified larger sample with a higher statistical pow-
er. Some exceptions with respect to Dice coefficient are the
lungs, likely because of the presence of some poorly aligned

Fig. 6 Box-and-whisker plots of image registration metrics (DC and
HD) and automated quantitative analysis (NMA) results for the 8 ex-
perimental and 17 simulated mice studies for the 3 and 8 segmented

regions, respectively. a Dice coefficients, b Hausdorff distance and c
normalized mean activity (NMA) relative difference
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cases, since the median shown in Fig. 6 (Dcoeff00.420) is
much closer to the simulated mice results. The second
exception is the bladder region, though this was expected
owing to the poor performance of the image registration
procedure for this organ. The last exception applies to
remaining organs & skin region, which presents a good to
excellent agreement and where the difference in the image
registration results is influenced by the way the regions of
interest are defined. It should be noted that in the experi-
mental mouse segmentation remaining organs & skin in-
clude liver, pancreas, spleen, stomach and testis regions,
owing to the low soft tissue contrast, while in the simulated
mouse these consist of independent regions. The only ex-
ception with respect to the Hausdorff distance is surprisingly
the brain region.

Several studies have reported on various algorithms
implementing deformable image registration of actual mice
to an atlas. For instance, the method proposed by Baiker et
al. [38] is based on manual extraction of the skeleton and
lung from source and target mice to be registered with a
hierarchical realistic model of the skeletal joint movement.
This method achieved Dice coefficients comparable to those
reported in this work for kidneys (0.48), liver (0.62) and
heart (0.50) regions. Worse results were obtained for the

brain (0.75), whereas better results were achieved for the
lungs (0.65) and skeleton (0.5). The most remarkable result
achieved is the skin correspondence (maximum mismatch
below 3.5 mm) from mice that are in different positions.
Wang et al. [39, 40] performed image registration of mouse
CT images with the Moby phantom, Digimouse atlas and
their own statistical atlas constructed using microCT images
of 45 mice. The registration is performed only for the torso
by manually segmenting high-contrast organs to be regis-
tered; low-contrast organ positions are estimated from this
transformation. Dice coefficients corresponding to this
method are particularly high following registration with
the authors’ statistical atlas (Dcoeff>0.70 except for the
spleen, Dcoeff≈0.45). However, when the registration is per-
formed with the Digimouse atlas, the performance is similar
to that achieved in this work for low-contrast organs such as
the liver (0.68), spleen (0.38) and kidneys (left kidney≈
0.39, right kidney≈0.61), while better results were achieved
for high-contrast organs such as the lungs (0.75) and heart
(0.68).

When analysing the performance of automated activity
quantification, one can see that, similar to the image regis-
tration procedure, lower relative errors were obtained for the
simulated sample except for the bladder, where the results

Table 5 Summary of the pooled performance evaluation of the automated coregistration procedure and quantitative analysis of PET data using the
95 % confidence interval

Region Dice coefficient Hausdorff distance (mm) Normalized mean activity

Unmodified manual
quantification

Automated quantification
relative difference (%)

Braina .844±.006 1.70±0.07c 4.85E02±0.71E02 1.63±1.74
2.57±0.79d

Heart .520±.035 3.47±0.25 3.60E02±0.80E02 8.04±15.29

Lungs .548±.009c 4.14±0.45 4.11E02±0.08E02c 4.33±12.17
.357±.178d 2.12E02±1.86E02d

Kidneys .433±.024 4.16±0.27 1.23E01±0.34E02c -34.52±0.64c

2.44E02±1.18E02d -8.10±23.53d

Bladder .000±.000c 8.58±0.84 4.82E01±0.54E01 -84.82±10.06
.185±.192d

Skeletona .302±.016 9.72±0.77 3.87E02±1.77E02 1.44±3.22

Remaining organs & skinb .766±.002c 9.49±0.70 3.87E02±0.08E02c 76.80±95.86
.808±.022d 1.79E02±1.77E02d

Liver .657±.009 5.97±0.15 5.23E02±0.11E02 6.12±0.60

Pancreas .036±.006 8.49±0.06 1.89E02±0.04E02 -129.80±5.75

Spleen .387±.029 4.84±0.28 4.93E02±0.13E02 8.17 ±1.23

Stomach .524±.016 4.82±0.31 3.65E02±0.08E02 -5.37±1.06

Testis .289±.005 7.30±0.06 3.60E02±0.06E02 -208.50±10.05

a In three of the eight experimental mouse studies, the brain region is absent and the skeleton region is truncated
b The definition of the “remaining organs & skin” region is not the same between actual and simulated mouse
c Simulated mice mean values with 95 % confidence interval
d Experimental mice mean values with 95 % confidence interval
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reflect poor image registration. The same observations were
made for the kidneys, probably because of the relatively
high activity concentration for the simulated sample, where
a small mismatch might result in a non-negligible reduction
in the estimated activity concentration due to the small size
of the region. Considering the statistical analysis results of
the two samples, one can see that a statistically significant
difference in the relative error was obtained only for the
kidneys. Therefore, all remaining regions can be analysed as
a pooled sample. Table 5 shows that in 7 of the 12 analysed
regions the relative error of the automated quantification
procedure is below 9 %. In particular, the relative error for
the brain, lungs and skeleton is below 5 %. The kidneys’
activity concentration estimation error was estimated to be
around 20 %, while larger errors were obtained for other
regions owing to poor image registration, except remaining
organs & skin” region, where an excellent image registra-
tion was achieved but with a correspondingly large relative
error in terms of tracer uptake quantification (76.8 %). This
result is highly influenced by large errors (∼250 %) associ-
ated with three experimental studies owing to the presence
of tumour xenografts, where the tracer is taken up by one leg
belonging to remaining organs & skin region. When de-
formable registration handles this large deformation, it sig-
nificantly changes the shape and reduces the volume of the

lesions, thus introducing a large difference in tracer uptake
estimation. This also explains the high standard deviation in
the NMA metric for this region (367 %), since it reflects the
analysis of three mouse studies presenting with large dis-
torting tumour xenografts while the remaining five mouse
studies present a mean relative error of 20.1 % (SD of
25.7 %).

The comparison of the proposed automated quantifica-
tion method results with those of Kesner et al. [5] shows that
similar performance could be achieved using both methods
(Tables 6 and 7). The main strength of our fully automated
approach is that only minor preprocessing of the images is
required to select the same field of view, while most other
approaches rely on partially segmented images and/or the
use of external fiducial markers.

Conclusion

We propose a novel atlas-guided approach for automated
quantification of small animal PET studies. To this end,
preprocessing for adaptation of PET/CT images of the actual
mouse study and atlas fields of view is required. Automated
quantification is achieved through 3-D image registration
between CT images of the actual mouse and the Digimouse
atlas. The transformations achieving this are afterwards
applied to corresponding PET images to put them in the
Digimouse image space. The Digimouse segmentation is
used to define the regions of interest for quantitative
analysis.

The method proved to provide similar performance com-
pared to other proposed techniques requiring user interven-
tion [5, 39, 40]. Normalized mean activity estimation was

Table 6 Correlation coefficients (R2) resulting from linear regression
analysis between actual (harvested) and PET-derived activity concen-
tration for simulated studies. The results obtained by Kesner et al. [5]
for experimental studies using manual and semi-automated software
approaches are also shown

Automated (this work) Semi-automated Kesner et al. [5]

Software Manual

Moby 1 0.954 Mouse 1 0.943 0.083

Moby 2 0.961 Mouse 2 0.957 0.973

Moby 3 0.950 Mouse 3 0.947 0.956

Moby 4 0.952 Mouse 4 0.893 0.825

Moby 5 0.965 Mouse 5 0.908 0.560

Moby 6 0.800 Mouse 6 0.999 0.276

Moby 7 0.797 Mouse 7 0.934 0.915

Moby 8 0.879 Mouse 8 0.483 0.424

Moby 9 0.764 Mouse 9 0.996 0.992

Moby 10 0.961

Moby 11 0.767

Moby 12 0.832

Moby 13 0.842

Moby 14 0.749

Moby 15 0.890

Moby 16 0.796

Moby 17 0.749

Mean ± SD 0.859±0.084 0.896±0.159 0.667±0.341

Table 7 Correlation coefficients (R2) resulting from linear regression
analysis between actual (harvested) and PET-derived activity concen-
tration for different regions of simulated mouse studies. The results
obtained by Kesner et al. [5] for experimental studies using manual and
semi-automated software approaches are also shown

Automated (this work) Semi-automated Kesner et al. [5]

Software Manual

Heart 0.526 0.579 0.358

Brain 0.309 0.331 0.237

Lung 0.677 0.799 0.303

Liver 0.489 0.589 0.192

Spleen 0.229 0.038 0.193

Kidneys 0.584 0.636 0.513

Stomach 0.432 NA NA

Skin 0.490 NA NA

Skeleton 0.299 NA NA

Pancreas 0.441 NA NA

Testis 0.033 NA NA
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preserved between reference and automated measures in
most of the regions considered, with relative errors below
10 %. The only regions resulting in higher relative errors are
those corresponding to small organs presenting a large var-
iability among mice such as the testicles, bladder, kidneys
and pancreas. This can also be explained by physiological
respiratory motion, cardiac motion and periodic filling and
emptying of the bladder. This was, however, expected from
image registration assessment results. Further refinement of
the latter procedure is underway.
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