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Abstract We describe the null-cone of the representation of G on Mp, where either
G = SL(W) × SL(V) and M = Hom(V, W) (linear maps), or G = SL(V) and M is
one of the representations S2(V∗) (symmetric bilinear forms), �2(V∗) (skew bilinear
forms), or V∗ ⊗ V∗ (arbitrary bilinear forms). Here V and W are vector spaces over
an algebraically closed field K of characteristic zero and Mp is the direct sum of p of
copies of M. More specifically, we explicitly determine the irreducible components of
the null-cone on Mp. Results of Kraft and Wallach predict that their number stabilises
at a certain value of p, and we determine this value. We also answer the question
of when the null-cone in Mp is defined by the polarisations of the invariants on M;
typically, this is only the case if either dim V or p is small. A fundamental tool in our
proofs is the Hilbert–Mumford criterion for nilpotency (also known as unstability).
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1 Introduction

For a group G and a finite-dimensional G-module M over an algebraically closed field
K, we denote by K[M]G the algebra of G-invariant polynomials on M. An element
m ∈ M is called nilpotent (or unstable) if it cannot be distinguished from 0 by K[M]G,
or, in other words, if all G-invariant polynomials on M without constant term vanish
on m. The nilpotent elements in M form a (Zariski-)closed cone in M, called the
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null-cone in M (G being understood) and denoted N (M) = NG(M); it is a central
object of study in representation theory. In this paper we will describe the irreducible
components of the null-cone in some concrete representations.

We will, in fact, be studying the null-cone in a direct sum Mp of p copies of M,
regarded as a G-module with the diagonal action. We recall some relations between the
invariants and the null-cone of Mq and those of Mp, where p and q are natural numbers.
It is convenient, for this purpose, to identify Mp with Kp ⊗M where G acts trivially on
the first factor, and also, given a linear map π : Kp → Kq, to use the same letter π for
the G-homomorphism Mp → Mq determined by π(x⊗m) = π(x)⊗m, x ∈ Kp, m ∈ M.

First, from an invariant f ∈ K[Mq]G we can construct G-invariants on Mp as fol-
lows: for any linear map π : Kp → Kq the function f ◦ π is an invariant on Mp. The
functions obtained in this way as π varies are usually called polarisations of f if q ≤ p
and restitutions of f if q ≥ p. Using this construction, due to Weyl [18], it is easy to see
that any linear map π : Kp → Kq maps N (Mp) into N (Mq): indeed, an element v of
the former null-cone cannot be distinguished from 0 by any G-invariants on Mp, let
alone by those of the form f ◦ π with f ∈ K[Mq]G; hence π(v) ∈ N (Mq). Using this
observation, we can prove that the number c(Mp) of irreducible components of the
N (Mp) behaves as follows.

Proposition 1 If p ≥ q, then c(Mp) ≥ c(Mq). If in addition q ≥ dim M, then c(Mp) =
c(Mq) and the polarisations to Mp of the invariants on Mq without constant term define
the null-cone set-theoretically.

Proof Fix any surjective linear map π : Kp → Kq; we claim that it maps N (Mp)

surjectively onto N (Mq). Indeed, if σ : Kq → Kp is a right inverse of π , then any
v ∈ N (Mq) is the image under π of σv ∈ N (Mp). This shows the first statement. For
the second statement it suffices to prove that the map

φ : Hom(Kq, Kp) × N (Mq) → N (Mp), (σ , v) 	→ σv

is surjective for q ≥ dim M, because the right-hand side has precisely c(Mq) irreducible
components. To prove surjectivity of φ, let v = (m1, . . . , mp) ∈ N (Mp). As q ≥ dim M,
we can find a w ∈ Mq whose components span the K-subspace 〈m1, . . . , mp〉K in M.
It follows that there exist linear maps π : Kp → Kq and σ : Kq → Kp such that
πv = w and σw = v. We conclude that w = πv lies in N (Mq) and v = φ(σ , w). The
last statement is proved by a similar argument: suppose that all polarisations f ◦ π

with π ∈ Hom(Kp, Kq) and f ∈ K[Mq]G without constant term vanish on v ∈ Mp, and
let h ∈ K[Mp]G be without constant term. We can choose π and σ with σπv = v as
before, and we find that h(v) = ((h ◦ σ) ◦ π)v = 0, because (h ◦ σ) ◦ π is a polarisation
of the G-invariant h ◦ σ on Mq.

Remark 1 In characteristic zero the last statement of Proposition 1 also follows from
from Weyl’s stronger result that the invariant ring on Mp is generated by the polar-
isations of invariants on Mq for q ≥ dim V [18]. Weyl’s theorem no longer holds in
positive characteristic, though a weaker statement is still true [12]. However, an ana-
logue of Weyl’s theorem, for separating invariants, is true in arbitrary characteristic
[6]—and, again, implies the last statement of Proposition 1.

Proposition 1 shows that c(Mp) is an ascending function of p that stabilises at some
finite p ≤ dim M. This phenomenon was first observed by Kraft and Wallach in the
case of reductive group representations [14], to which we turn our attention now.
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Suppose that G is a connected, reductive affine algebraic group over K and M is a
rational finite-dimensional G-module. One of the most important results on the null-
cone in this setting is the Hilbert–Mumford criterion [15,16] for nilpotency: v ∈ M lies
in N (M) if and only if there exists a one-parameter subgroup λ : K∗ → G such that
limt→0 λ(t)v = 0; we then say that λ annihilates v. In this setting much more can be
said about the irreducible components of the null-cone in Mp: one verifies that for
every one-parameter subgroup λ, the set

G · {v ∈ Mp | lim
t→0

λ(t)v = 0} (1)

is a closed G-stable irreducible subset of N (Mp), and that a finite number of them cover
N (Mp). Moreover, for p sufficiently large, there are only the “obvious” inclusions
among these sets [14] and this observations gives rise to a combinatorial algorithm
for counting the irreducible components of N (Mp), p >> 0 [4]. However, for smaller
values of p, there are usually many more inclusions, and our goal in this paper is to
determine the exact “stabilising” value of c(Mp) for the pairs (G, M) in the abstract.

We note that the notion of “optimal” one-parameter subgroups for elements of
the null-cone gives yet a finer description of the geometry of N (M) [11,16]—but this
notion is not needed here.

Summarising, we will settle the following two fundamental problems for the pairs
(G, M) of the abstract: first, we describe the irreducible components of N (Mp) and
determine at which value of p their number stabilises; and second, we determine when
N (Mp) is defined by the polarisations of the invariants on M. Note that in this case,
by a result of Hilbert, the invariant ring of Mp is finite over the subring generated by
these polarisations [13, Section II.4.3]. The remainder of this paper has the following
transparent organisation: Sections 2, 3, 4, and 5 deal with tuples of linear maps, sym-
metric bilinear forms, skew bilinear forms, and arbitrary bilinear forms, respectively.
In the rest of the text we assume that K has characteristic 0; this allows for the use of
some “differential” arguments in the case of linear maps, while avoiding problems in
small characteristics in the case of bilinear forms. However, most of what is proved
here remains valid in arbitrary characteristic.

2 Nilpotent tuples of linear maps

For an m-dimensional vector space V and an n-dimensional vector space W, both over
our fixed algebraically closed field K of characteristic 0, the group G = SL(W)×SL(V)

acts on the space M = Hom(V, W) of linear maps by (g, h)A := gAh−1. By duality we
may assume that 0 < m ≤ n, and we let q := � n

m be the smallest integer ≥n/m. Then
N (Mp) is as follows.

Theorem 1 The null-cone of SL(W) × SL(V) in Mp = Hom(V, W)p consists of all
p-tuples (A1, . . . , Ap) of linear maps for which there exist subspaces V′ of V and W′ of
W such that n · dim V′ > m · dim W′ and AiV′ ⊆ W′ for all i.

The p-tuples for which V′ can be chosen of a fixed dimension k ∈ {1, . . . , m} form
a closed irreducible subset of N (Mp), denoted C(p)

k . For p < q the sets C(p)

k are all
equal to Mp, and for p > q they are precisely the distinct irreducible components of
N (Mp). For p = q there are still inclusions among the C(q)

k , unless m = 1, in which

case C(q)

1 = C(n)

1 = N (Mn) is the irreducible null-cone consisting of singular n×
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n-matrices; or n = (q − 1)m + 1 with q ≥ 3, in which case the C(q)

k are already the
distinct components of the null-cone.

This theorem does not completely answer the question of how many irreducible
components the null-cone on q copies has. Some remarks on this matter can be found
after the proof of the theorem, just before Example 2.

Somewhat prematurely, we will from now on call a pair V′, W′ as in the theorem a
witness for the nilpotency of (A1, . . . , Ap). In the proof that follows we use a theorem
from elementary optimisation theory, the max-flow-min-cut theorem, which states that
the maximal size of a flow from a source s to a sink t in a network equals the minimal
capacity of a cut disconnecting s from t. Here a network is a directed graph with two
distinguished vertices s and t and a prescribed real-valued capacity function c on the
arrows; a flow is a real-valued function f on the arrows that is bounded by c and for
which at every vertex other than s and t the sum of the f -values on the incoming arrows
equals the sum of the f -values on the outgoing arrows; a cut is a set of arrows whose
removal disconnects s from t; and the capacities of a flow and of a cut are defined in
the obvious manner. See [2, Chapter 3] for details.

Proof (Proof of Theorem 1, part one.) Suppose that A = (A1, . . . , Ap) lies in the null-
cone and let (μ, λ) : K∗ → SL(V)×SL(W) be a one-parameter subgroup annihilating
A. Let v1, . . . , vm be a basis of V with λ(t)vj = taj vj, where aj ∈ Z, let w1, . . . , wn be
a basis of W with μ(t)wi = tbi wi, where bi ∈ Z, and note that det λ(t) = det μ(t) = 1
implies

∑
j aj = ∑

i bi = 0.
Now construct a directed graph � with arrows of capacity n from a source s to

m vertices 1, . . . , m, arrows of capacity m from n vertices 1̂, . . . , n̂ to a sink t, and an
arrow—for convenience, of infinite capacity—from j to î if and only if bi − aj > 0. See
Fig. 1 for an example with m = 4 and n = 6. From

lim
t→0

μ(t)Akλ(t)−1vj = lim
t→0

μ(t)Akt−aj vj = 0

it is clear that each Ak maps vj into the space spanned by the wi with j → î in �. We
claim that the maximal flow from s to t in � is strictly smaller than the obvious upper

Fig. 1 The graph � with a cut
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bound mn. Indeed, suppose that this upper bound were attained by a flow in which
cj,i is the flow from j to î. Then

∑
i cj,i = n for all j and

∑
j cj,i = m for all i, so that

0 = m
∑

i

bi − n
∑

j

aj =
∑

j,i

cj,i(bi − aj);

but cj,i = 0 whenever bi − aj ≤ 0, so that the right-hand side is strictly positive, a
contradiction. Now the max-flow-min-cut theorem assures the existence of a cut of
capacity strictly smaller than mn and in particular not containing edges of infinite
capacity. Let T ⊆ {1̂, . . . , n̂} be the set of vertices cut off from t, and let S ⊆ {1, . . . , m}
be the set of vertices not cut off from s. By definition of a cut, no vertex j of S is
connected to any vertex î outside of T, so that V′ := 〈vj | j ∈ S〉K is mapped by every
Ak into W′ := 〈wi | î ∈ T〉K. Finally, the capacity of the cut is equal to

m|T| + n(m − |S|) and by assumption < mn,

so that m dim W′ < n dim V′ as required.
Conversely, suppose that V′, W′ is a witness for the nilpotency of A, set (k, l) :=

(dim V′, dim W′), and choose complements V′′ and W′′ of V′ and W′, respectively. Let
λ be the one-parameter subgroup of SL(V) having weights a1 := n(m − k) on V′ and
a2 := −nk on V′′; note that ka1 + (n − k)a2 = 0. Similarly, let μ be the one-parameter
subgroup of SL(W) having weights b1 := m(n − l) on W′ and b2 := −ml on W′′. From
the inequalities

b1 − a1 > 0, b1 − b2 > 0, b2 − a1 ≤ 0, and b2 − a2 > 0

we infer that (μ, λ) annihilates any linear map sending V′ into W′, so that A ∈ N (Mp).
This proves the first statement of the theorem.

The sets C(p)

k from Theorem 1 are closed and irreducible by a general argument:
they are of the form (1). Hence to prove the theorem we need only determine for
what values of p there are inclusions among the C(p)

k . For this we need some auxiliary
notation and results, which are of independent interest and which also give a formula
for the dimensions of the irreducible components of N (Mp). We write Ma,b for the
space of a × b-matrices with entries in K.

Definition 1 Let a, b, c, d, and p be non-negative integers and let

Xi ∈ Mc,a and Yi ∈ Mb,d for i = 1, . . . , p.

Define the cut-and-paste map CP = CP(Xi,Yi)i : Ma,b → Mc,d by

CP A =
p∑

i=1

XiAYi.

Now the rank of the linear map CP is clearly a lower semi-continuous function of the
p-tuple (Xi, Yi)i, and we let cp(p)(a, b, c, d), the cut-and-paste rank, be the maximal
possible rank of CP, i.e., the rank for a generic p-tuple (Xi, Yi)i.

Remark 2 The following properties of the cut-and-paste rank are easy to check:

cp(p)(c, d, a, b) = cp(p)(a, b, c, d) = cp(p)(b, a, d, c).
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Indeed, the second equality comes from the fact that, upon composition with transpo-
sition on both sides, the cut-and-paste map CP(Xi,Yi)i : Ma,b → Mc,d yields CP(Yt

i ,Xt
i )i

:
Mb,a → Md,c; and the first equality reflects the fact that the transpose of CP(Xi,Yi)i can
be identified, via the trace form, with CP(Xt

i ,Yt
i )i

: Mc,d → Ma,b. Moreover, if a ≤ c
and b ≤ d then cp(p)(a, b, c, d) = ab for all p ≥ 1. Thus we reduce the computation of
the cut-and-paste-rank to the case where ab ≤ cd, a ≥ c, and b ≤ d. Then each of the
maps A 	→ XiAYi generically has rank bc, so that

cp(p)(a, b, c, d) ≤ min{ab, pbc}
Moreover, for p ≤ a/c it is easy to see that cp(p)(a, b, c, d) is in fact equal to pbc:
by using suitable Xi and Yi, one can “cut” p non-overlapping c × b-blocks from an
a × b-matrix, and “paste” them in a non-overlapping way into a c × d-matrix. The
same argument shows that for p sufficiently large cp(p)(a, b, c, d) equals ab; this is the
case, for example, as soon as one can cut an a × b-matrix into p non-overlapping
rectangular blocks that fit without overlap into a c × d-matrix. One might think that
the inequality for the cut-and-paste-rank given above is always an equality, but this is
not true: for (a, b, c, d) = (5, 4, 3, 7), for instance, we find cut-and-paste-ranks 12, 19, 20
for p = 1, 2, 3, respectively. In short, we have no closed formula for cp and it would
be interesting—but too much of a digression at this point in the paper—to find such
a formula. In small concrete cases, however, the cut-and-paste rank can be computed
easily; see below for some examples.

Proposition 2 Let k, l, m, n, p be integers satisfying 0 < k ≤ m, 0 ≤ l < n, and p ≥ 0.
Then

Q := {(A1, . . . , Ap) ∈ Mp
n,m | ∃U ⊆ Km : dim U = k and dim(

p∑

i=1

AiU) ≤ l}

is an irreducible closed subvariety of Mp
n,m , and a sufficient condition for Q to be strictly

smaller than Mp
n,m is

p >
l
k

+ m − k
n − l

.

Moreover, dim Q equals pmn if pk ≤ l and

pmn − (pk − l)(n − l) + cp(p)(m − k, k, min{p(m − k), n − l}, pk − l)

otherwise.

Proof The set Q is an irreducible closed variety because it is of the form (1), that is,
the result of a vector space stable under a Borel subgroup of G = SLn × SLm being
“smeared” around by G. For pk ≤ l the proposition is evident: any p-tuple maps any
k-space into an l-space. Suppose therefore that pk ≥ l. In the diagram

Mp
n,m × (Mm,k)reg

μ ��

π̃

��

Mn,pk

Mp
n,m
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μ maps (A1, . . . , Ap, B) to (A1B| · · · |ApB), π̃ is the projection, and (Mn,k)reg is the
set of rank k matrices. Hence Q = π̃(μ−1(Xl)), where Xl is the variety of matrices in
Mp

n,pk having rank at most l. We will first compute the dimension of Z := μ−1(Xl) and
then the dimension of a generic fibre of π := π̃ |Z : Z → Q; the difference between
these numbers is the dimension of Q.

First, μ is surjective and all its fibres have the same dimension km + pn(m − k).
Indeed, for (A1, . . . , Ap, B) to lie in the fibre over (C1, . . . , Cp) we may choose B ∈
(Mm,k)reg arbitrarily, and then each Ai is determined on the k-dimensional image of
B, but can still be freely prescribed on an (n − k)-dimensional complement. As Xl has
dimension nl + pkl − l2 [10], Z has dimension km + pn(m − k) + nl + pkl − l2. Now
GLk acts freely on the fibres of π by g((Ai)i, B) := ((Ai)i, Bg−1), so that

dim Q = dim π(Z) ≤ dim Z − k2 = pnm − (pk(n − l) − k(m − k) − l(n − l)).

This implies the first statement of the proposition.
For the dimension of Q we compute the dimension of a generic fibre π−1π(z) by

computing the Zariski tangent space Tzπ
−1π(z), as follows. First, we show that Z is

irreducible and determine TzZ for generic z ∈ Z. Observe for this that the group
GLm acts on the fibres of μ by g((Ai)i, B) := ((Aig−1)i, gB). Now the map

φ : GLm × Mn,pk × Mp
n,m−k → Mp

n,k × Mm,k,

(g, (C1| · · · |Cp), (Ei)i) 	→ g
(

(Ci|Ei)i,
(

Ik
0m−k,k

))

maps GLm × Xl × Mp
n,m−k surjectively onto Z, so Z is irreducible as claimed. Further-

more, the map

s : Mp
n,m−k → Mp

n,k × Mm,k, x 	→ φ(1, x, (0)i)

is a right inverse of μ, so by the chain rule dzμ maps Mp
n,m × Mm,k surjectively onto

Tμ(z)Xl for all z ∈ Mp
n,m × Mm,k. In particular, if z lies in Z and μ(z) has rank exactly

l so that it is a smooth point of Xl, then we have

TzZ = (dzμ)−1Tμ(z)Xl. (2)

Now recall that if μ(z) has rank l, then

Tμ(z)Xl = {N ∈ Mn,pk | N ker μ(z) ⊆ im μ(z)}; (3)

see [10, Example 14.16]. This will enable us to interpret the right-hand side in (2). On
the other hand, because char K = 0, we have

Tzπ
−1π(z) = ker(dzπ : TzZ → Tπ(z)Q) (4)

for generic z ∈ Z. Now let z = ((Ai)i, B) ∈ Z be generic. In particular, we require (2)
and (4), and what further open conditions on z are needed will become clear along
the way. By the action of GLm above we may assume that B is of the form

B =
[

Ik
0m−k,k

]

,

and we split each Ai = (Ai,1|Ai,2), accordingly. By genericity of the Ai the matrix
μ(z) = (A1,1| · · · |Ap,1) has rank l, and by (2), (3), and (4) we find that Tzπ

−1(π(z)) is
isomorphic to the space of all m × k-matrices
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D =
[

D1
D2

]

such that

(A1,1D1 + A1,2D2| . . . |Ap,1D1 + Ap,2D2) ker μ(z) ⊆ im μ(z).

This is clearly the case for D2 = 0 (this reflects the GLk-action used earlier), hence to
determine what other D have this property we may assume that D1 = 0. The kernel
of μ(z) has dimension pk − l, so we can choose p matrices Y1, . . . , Yp ∈ Mk,pk−l such
that the columns of the matrix

⎡

⎢
⎣

Y1
...

Yp

⎤

⎥
⎦

form a basis of the kernel of μ(z). Again by genericity—the Ai,2 are “independent”
of the Ai,1—the pre-image of im μ(z) under (A1,2| . . . |Ap,2) has codimension c :=
min{p(m − k), n − l} in Kp(m−k), and we may choose matrices X1, . . . , Xp ∈ Mc,m−k
such that the rows of (X1| · · · |Xp) give linear equations for that inverse image. We
now have

{D2 ∈ Mm−k,k | (A1,2D2| · · · |Ap,2D2) ker(A1,1| · · · |Ap,1) ⊆ im(A1,1| · · · |Ap,1)}
= {D2 ∈ Mm−k,k |

∑

i

XiD2Yi = 0}

= ker(CP(Xi,Yi)i : Mm−k,k → Mc,pk−l).

Finally, because the Xi and Yi are generic along with the Ai, the dimension of this
space is (m − k)k − cp(p)(m − k, k, c, pk − l). The dimension of the fibre π−1(π(z)) is
therefore k2 plus this number, and we find

dim π(Z) = dim Z − dim π−1π(z)

= km + pn(m − k) + nl + pkl − l2

−(k2 + (m − k)k − cp(p)(m − k, k, min{p(m − k), n − l}, pk − l))

= pmn − (pk − l)(n − l)

+ cp(p)(m − k, k, min{p(m − k), n − l}, pk − l),

as claimed.

Remark 3 The difference dim π−1(π(z)) − k2, expressed above as the nullity of a cer-
tain cut-and-paste map, is the dimension of the variety of k-dimensional subspaces U
for which

∑
i AiU is at most l-dimensional.

Example 1 Proposition 2 is particularly useful to prove the existence of tuples of
matrices not mapping any subspace of dimension k into a subspace of dimension l.
Consider the following two questions.

1. Do all triples (A1, A2, A3) of 8 × 5-matrices map some four-dimensional sub-
space into some seven-dimensional subspace? Set (m, n, k, l, p) = (5, 8, 4, 7, 3) and
compute

l
k

+ m − k
n − l

= 7
4

+ 1
1

< 3 = p,
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hence by the proposition the answer is no: there exist triples (A1, A2, A3) such that
for all U of dimension 4 we have

∑
AiU = K8. This may not come as a surprise;

however, it is not entirely obvious how to construct such a “generic” triple. For
instance, we cannot choose them such that each Ai is monomial in the sense that
it maps every standard basis vector of K5 to some multiple of a standard basis
vector of K8: if this is the case, then the inequality 8 · 2 > 5 · 3 implies that there
is a basis vector ei of K8 which is “hit only once” by some Ap applied to some ek.
But then U = ⊕

l �=k Kel is mapped into
⊕

j �=i Kej.
2. Do all triples of 5×5-matrices map some two-dimensional space into some three-

dimensional space? Set (m, n, k, l, p) = (5, 5, 2, 3, 3) in the proposition. Now we
find

l
k

+ m − k
n − l

= 3
2

+ 3
2

= 3 = p,

so we need a more detailed analysis. The cut-and-paste rank in the proposition is

cp(3)(3, 2, 2, 3),

which is 3 · 2 = 6 as one can cut a 3 × 2-matrix into p = 3 rectangular pieces that
can be put together without overlap to make up a 2 × 3-matrix. It follows that
the dimension in the proposition is in fact pmn, i.e., that indeed, every triple of
5 × 5-matrices maps some two-dimensional space into some three-dimensional
space. To prove this is a nice exercise for students in linear algebra. (It is also true
in positive characteristic.)

To conclude the proof of Theorem 1 we need the following lemma.

Lemma 1 Let V, W, m = dim V, n = dim W, and the C(p)

k for k = 1, . . . , m and p ∈ N

be as in Theorem 1. Fix k ∈ {1, . . . , m} and let l be the maximal integer with l/k < n/m.
Then the following two statements are equivalent:

1. C(p)

k is not contained in C(p)

k′ for any k′ �= k.
2. There exist a p-tuple (A′

1, . . . , A′
p) ∈ Mp

l,k such that
∑

i

A′
iK

k = Kl (5)

and

dim

(
∑

i

A′
iU

′
)

≥ n
m

dim U′ (6)

for all proper subspaces U′
� Kk; as well as a p-tuple (A′′

1, . . . , A′′
p) ∈ Mn−l,m−k

such that

l + dim

(
∑

i

A′′
i U′′

)

≥ n
m

(k + dim U′′) (7)

for all non-zero subspaces 0 �= U′′ ⊆ Km−k.

Proof First suppose that the second condition is not satisfied, let (A1, . . . , Ap) be in

C(p)

k , and let V′, W′ be subspaces of V, W of dimensions k, l, respectively, such that
AiV′ ⊆ W′ for all i = 1, . . . , p.
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Suppose that no p-tuple (A′
i) as above exists. Then for some k′ < k the closed

set consisting of all (A′
i) ∈ Mp

l,k for which there is a k′-dimensional U′ satisfying

dim(
∑

i A′
iU) < k′n/m fills the entire space Mp

l,k. Taking for the A′
i the restrictions

Ai|V′ : V′ → W′ we conclude that C(p)

k ⊆ C(p)

k′ .
Similarly, if no p-tuple (A′′

i ) as above exists, then some k′′ ∈ {1, . . . , m − k} has the
property that any p-tuple (A′′

i ) ∈ Mn−l,m−k maps some k′′-dimensional space into a
space of dimension <(k + k′′)n/m − l. In particular, for the p-tuple of induced linear
maps Ai : V/V′ → W/W′ there is a k′′-dimensional space U′′ for which dim

∑
i AiU′ <

(k + k′′)n/m − l. But then the preimage U of U′′ in V is a space of dimension k + k′′
that is mapped into a space of dimension <(k + k′′)n/m − l + l = (k + k′′)n/m, and
we conclude that C(p)

k ⊆ C(p)

k+k′′ .
Conversely, suppose that p-tuples (A′

i) and (A′′
i ) as above do exist. For i = 1, . . . , p

let Ai ∈ Mn,m be the block matrix

Ai =
[

A′
i

A′′
i

]

,

and let U be a subspace of Km unequal to Kk. Let U′ be the intersection of U with
Kk and let U′′ be the projection of U on Km−k along Kk. Then dim U = dim U′+dim U′′
and one readily sees that

dim

(
∑

i

AiU

)

≥ dim

(
∑

i

A′
iU

′
)

+ dim(
∑

i

A′′
i U′′). (8)

Now there are two possibilities: either U′ �= Kk, or U′ = Kk but U′′ �= 0. In the first
case one finds that the right-hand side is at least

n
m

dim U′ + n
m

dim U′′ = n
m

dim U,

where we have used (6) for the first term, and (7) with k and l replaced by 0 for the
second term—note that under this replacement (7) remains valid for U′′ �= 0 by the
choice of l, and becomes valid for U′′ = 0, as well.

If, on the other hand, U′ = Kk but U′′ �= 0, then using (5) and (7) we find that the
right-hand side in (8) is at least

l + dim

(
∑

i

A′′
i U′′

)

≥ n
m

(k + dim U′′) = n
m

dim U.

In other words, the pair (Kk, Kl) is the only witness for the nilpotency of (A1, . . . , Ap),

and a fortiori this p-tuple lies in a unique C(p)

k .

Proof (Proof of Theorem 1, part two). It is clear that if p < q := � n
m, then for any

subspace V′ of V we have dim(
∑p

i=1 AiV′) ≤ p dim V′ < n
m dim V′, so that all C(p)

k are
equal to Mp = Hom(V, W)p. In other words: there are no invariants on Mp for p < q.

Next suppose that p ≥ q + 1; then we have to show that there are no inclusions
among the C(p)

k . For every k ∈ {1, . . . , m} let lk := �k n
m − 1 denote the maximal

l ∈ {0, . . . , n − 1} with l
k < n

m . One readily verifies that

1 ≤ lk+1 − lk ≤ q for all k ∈ {1, . . . , m − 1} (9)
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(the first inequality follows from our standing assumption n ≥ m). Fix k ∈ {1, . . . , m}
and set l := lk, so that every p-tuple in C(p)

k maps some k-space into an l-space. We
will prove the existence of p-tuples (A′

i) ∈ Mp
l,k and (A′′

i ) ∈ Mp
n−l,m−k as in Lemma 1,

so that C(p)

k is not contained in any C(p)

k′ with k′ �= k.
To find the A′

i we show that for all k′ ∈ {1, . . . , k − 1} and l′ ∈ {0, . . . , l − 1} with
l′
k′ < n

m the dimension of the set of p-tuples (A′
1, . . . , A′

p) ∈ Ml,k that map a k′-space
into an l′-space is smaller than plk. To this end we want to apply the sufficient condition
of Proposition 2 with m, n, k, l replaced by k, l, k′, l′, respectively. Compute therefore

l′

k′ + k − k′

l − l′
<

n
m

+ 1 ≤ q + 1 ≤ p,

where for the second term we used l′ ≤ lk′ and the strict increasingness of the lk. This
shows the existence of A′

1, . . . , A′
p as required.

Similarly, to find the A′′
i we show that for all k′ ∈ {k+1, . . . , m} and l′ ∈ {l, . . . , n−1}

with l′
k′ < n

m there exists a p-tuple (A′′
1, . . . , A′′

p) ∈ Mm−k,n−l that does not map any
(k′ −k)-dimensional space into an l′ − l-dimensional space. Again, we apply the prop-
osition, but now with m, n, k, l replaced by m − k, n − l, k′ − k, l′ − l, respectively.
Consider therefore the expression

l′ − l
k′ − k

+ m − k′

n − l′

As l′ ≤ lk′ and l = lk the first term is at most q by (9). On the other hand, as l′ < n
m k′,

the denominator of the second term satisfies

n − l′ > n − n
m

k′ = n
m

(m − k′) ≥ m − k′,

hence the second term is smaller than 1. We conclude that

p ≥ q + 1 >
l′ − l

k′ − k
+ m − k′

n − l′
,

hence by Proposition 2 there exists a p-tuple (A′′
i ) as required, and by Lemma 1 we

conclude that C(p)

k is not contained in any C(p)

k′ with k′ �= k. This concludes the case
where p > q.

Finally, we assume that p = q. First suppose that there exists a k ∈ {1, . . . , m − 1}
with lk+1 − lk = q. Then any q-tuple (A1, . . . , Aq) ∈ C(q)

k maps a k-space into an
lk-space, and adding one arbitrary dimension to that k-space yields a (k + 1)-space
mapped by all Ai into a space of dimension lk + q = lk+1. In other words, we have
C(q)

k ⊆ C(q)

k+1, so that there are indeed inclusions among the C(q)

k . Next suppose that
no such k exists. Then we have

n − 1 = lm ≤ l1 + (m − 1)(q − 1) = m(q − 1) < m
n
m

= n,

so that n = m(q − 1) + 1, where q ≥ 2. In this case lk = (q − 1)k for all k, and for
q > 2 the inequalities

lk′

k′ + k − k′

lk − lk′
= (q − 1) + 1

q − 1
< q for k′ < k
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and

lk′ − lk
k′ − k

+ m − k′

n − lk′
= (q − 1) + m − k′

(q − 1)(m − k′) + 1
< q for k′ > k

readily imply that the construction of the Ai above still works to show that C(q)

k is not

contained in any other C(q)

k′ . The last case to be considered is q = 2 and n = m + 1.
Then lk = k for all k, and any pair of matrices mapping a k-space into a k-space also
maps a (k − 1)-space into a (k − 1)-space, so that the null-cone on q = 2 copies is
irreducible.

We should point out that, although Theorem 1 does settle the question of when all
irreducible components of the null-cone in Hom(V, W)p become visible, it does not
conclusively describe the irreducible components in the case where p = q := �n/m.
Frankly, we do not fully understand the null-cone in this representation: although
an easy dimension count shows that SL(V) × SL(W) cannot have a dense orbit on
Hom(V, W)q, so that the null-cone does not fill up the entire space, it seems hard to
predict which inclusions there exist among the C(q)

k . The only thing that we venture to
say in general is that there seem to be many inclusions when n is close or equal to qm
and few inclusions when q ≥ 3 and n is close to (q − 1)m. In concrete cases, however,
Lemma 1 and Proposition 2 allow one to determine explicitly which of the C(q)

k are
maximal. We have thus reduced the problem of determining the irreducible compo-
nents of the null-cone on q copies to the computation of cut-and-paste ranks—as this
is the only non-trivial thing one has to do to apply Lemma 1 and Proposition 2. We
conclude the discussion of the null-cone on Hom(V, W)q with a few examples.

Example 2.

1. If n = qm, then C(q)

k is the set of q-tuples mapping some k-
dimensional space into a (kq − 1)-dimensional space. Clearly, they form a chain
C(q)

1 ⊆ C(q)

2 ⊆ · · · ⊆ C(q)
m , so that the null-cone is equal to the last term and

irreducible.
2. Let m = 4, n = 6, p = q = 2. Then Ck := C(2)

k is the set of pairs of linear maps
K4 → K6 mapping some k-dimensional space into an lk-dimensional space, where
lk = 1, 2, 4, 5 for k = 1, 2, 3, 4, respectively. One has the inclusions C1, C2, C4 ⊆ C3,
so that the null-cone is equal to C3 and irreducible (we do not claim that these
are all inclusions among the Ci). Indeed, the inclusion C2 ⊆ C3 is easy. To see
that C4 ⊆ C3 we apply Proposition 2 with (m, n, k, l, p) equal to (4, 5, 3, 4, 2): the
dimension of the variety Q there equals

40 − 2 · 1 + cp(2)(1, 3, 1, 2) = 40,

so that every pair of 5 × 4-matrices maps some three-dimensional space into a
four-dimensional space (this can, of course, also be seen directly).
Similarly, to see that C1 ⊆ C3 we apply Proposition 2 with (m, n, k, l, p) equal to
(3, 5, 2, 3, 2). The dimension of Q is now

30 − 1 · 2 + cp(2)(1, 2, 2, 1) = 30,

so that every pair of 5 × 3-matrices maps some two-dimensional space into a
three-dimensional space. Applying, as in Lemma 1, this fact to the linear maps
induced by a pair (A1, A2) ∈ C1, which go from a three-dimensional quotient
space to a five-dimensional quotient space, we find that C1 ⊆ C3.
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3. Let m = 5, n = 12, p = 3. Then lk = 2, 4, 7, 9, 11 for k = 1, 2, 3, 4, 5, respectively;
write Ck := C(3)

k . We readily find C2 ⊆ C3. We claim that no Ck with k �= 2 is
contained in any Ck′ with k′ �= k. Again, one can prove this using Lemma 1 and
Proposition 2. Indeed, it turns out that for k = 1, 3, 4, 5 the sufficient criterion

3 = p > l′/k′ + (m′ − k′)/(n′ − l′)

of Proposition 2 is verified for all values m′ := k, n′ := lk, k′ < k, l′ := lk′ as well
as for all values m′ := m − k, n′ := n − lk, 1 < k′ ≤ m − k, l′ := lk+k′ − lk. Using
Lemma 1, this proves that the null-cone has four irreducible components, namely
C1, C3, C4, C5.

As promised in the Introduction, we now investigate when the polarisations of in-
variants on one copy of Hom(V, W) define the null-cone on p copies. This question is
interesting only in the case where there are non-trivial invariants on one copy—hence
if dim V = dim W, in which case we may as well assume V = W. The invariant ring
of SL(V) × SL(V) on End(V) is generated by the determinant; this readily follows
from the fact that every invertible matrix A has the matrix diag(det A, 1, . . . , 1) in its
orbit. Note that by Theorem 1 the p-tuples in the null-cone on End(V)p are precisely
those whose span in End(V) is a “compression space” in the sense that it maps some
subspace of V into a strictly smaller subspace; see [7] for this terminology. On the
other hand, the p-tuples on which all polarisations of det vanish are those that span a
“singular space”, i.e., a vector space in which every linear map is singular. Hence, the
polarisations of det define the null-cone on End(V)p if and only if every singular space
in End(V) spanned by p matrices is is a compression space. See [5] for interesting small
examples of singular non-compression spaces.

Theorem 2. The null-cone in End(V)p is defined by the polarisations of det if and only
if dim V ≤ 2 or p ≤ 2.

Proof (Proof of Theorem 2). The result for p = 2 follows from the Kronecker–
Weierstrass theory of matrix pencils, see [8]; for completeness we include a short
proof in our terminology. By Theorem 1 we have to show that if A, B ∈ End(V) sat-
isfy det(sA + tB) = 0 for all s, t ∈ K, then there exists a witness V′, W′ ⊆ V for the
nilpotency of (A, B). Indeed, regarding s, t as variables, sA + tB has a non-zero vector
u(s, t) in K[s, t] ⊗K V in its kernel. But then any non-zero homogeneous component
of u(s, t), say of degree d, is also annihilated by sA + tB; hence we find u0, . . . , ud ∈ V
such that (sA+ tB)(sdu0 +sd−1tu1 +· · ·+ tdud) = 0, where we may assume that u0 �= 0.
Taking the of coefficients of sd+1, sdt, . . . , td+1, we find

Au0 = 0, Au1 = −Bu0, . . . , Aud = −Bud−1, and Bud = 0.

But then every element of KA + KB maps the space V′ := ∑
i Kui into the space

U′ := ∑
i KAui, which is strictly smaller because Au0 = 0 while u0 �= 0.

The statement for dim V = 2 is easy: in a linear space of matrices of rank ≤1 either
all matrices have the same image, or all matrices have the same kernel (otherwise the
space contains an A = λ ⊗ u and a B = μ ⊗ v such that both λ, μ ∈ V∗ and u, v ∈ V
are linearly independent—but then A + B has rank 2). Now suppose that m, n ≥ 3. To
show that the null-cone in End(V)3 is then not defined by the polarisations of det, it
suffices to construct a three-dimensional singular subspace of End(V) for which there
do not exist V′, W′ as above. The space
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 a b
−a 0 c
−b −c 0

a
a

. . .
a

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

| a, b, c ∈ K

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(empty entries are always zero),

is such a space, as one easily verifies.

3 SL(V) on symmetric bilinear forms

The group SL(V) acts on bilinear forms as follows: if α is a bilinear form and g ∈ SL(V),
then (gα)(v, w) = α(g−1v, g−1w). It will be convenient to associate to every bilinear a
linear map as follows: we fix, once and for all, a non-degenerate, symmetric bilinear
form (., .) on V, and denote the transpose of A ∈ End(V) relative to this form by At. If
α is a bilinear form on V, then we associate to α a linear map A by the requirement
that α(x, y) = (x, Ay) for all x, y ∈ V. Then g acts on A by g · A := (g−1)tAg−1. Note
that the image of SL(V) in GL(End(V)) under this representation is contained in the
image of SL(V) × SL(V) under the representation of Sect. 2.

If α is a symmetric or skew symmetric bilinear form on V, and if U is a subspace of
V, then we will call the space {v ∈ V | α(v, U) = 0} the α-perp of U. If A is the linear
map associated to α, then this also the (., .)-perp of AU.

As in Sect. 2 the invariants of SL(V) on S2(V∗) are generated by the determinant
of (the linear map associated to) the form, and the null-cone on one copy is therefore
the irreducible variety of singular forms.

Theorem 3. For p ≥ 2 and n := dim V, the null-cone of SL(V) on S2(V∗)p has �n+1
2 �

irreducible components given by

C(p)

k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k, dim W = n − k + 1, and

αi(U, W) = 0 foralli = 1, . . . , p}, k = 1, . . . , �n + 1
2

�.

In contrast to our proof for tuples of matrices, we will give explicit pairs of symmet-
ric forms representing the various components of the null-cone; for this the following
lemma is useful.

Lemma 2. Let m, n, k be non-negative integers and let π1, . . . , πp be partially defined
strictly increasing functions {1, . . . , m} → {1, . . . , n}, that is, every πl is defined on a
subset dom(πl) of {1, . . . , m} and satisfies

i < j ⇒ πl(i) < πl(j) whenever the right-hand side is defined.

For l = 1, . . . , p let Al : Km → Kn be a linear map mapping ei to a non-zero multiple
of eπl(i) if πl is defined at i, and to zero otherwise. Let U be a subspace of Km and set

gr U := {i ∈ {1, . . . , m} | U ∩ (ei + 〈e1, . . . , ei−1〉K) �= ∅}.
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Then

dim
∑

l

AlU ≥
∣
∣
∣
∣
∣

⋃

l

πl(gr U ∩ dom πl)

∣
∣
∣
∣
∣

We will call a p-tuple (A1, . . . , Ap) of linear maps as in this lemma standard.

Proof. We have | gr(U)| = dim U, and defining gr W for subspaces W of Kn in a similar
way the conditions on the Ai guarantee that

gr

(
∑

l

AlU

)

⊇
⋃

l

πl(gr U ∩ dom πl),

whence the lemma follows immediately.

Proof (Proof of Theorem 3). Suppose that (α1, . . . , αp) lies in the null-cone, and let
Ai be the linear map associated to αi. Then (A1, . . . , Ap) lies in the null-cone of SL(V)

acting on End(V) as indicated above and, a fortiori, in the null-cone of SL(V)×SL(V)

on End(V) discussed in Section 2. Hence by Theorem 1 there exist subspaces U′ and
W′ of V with dim W′ = n−dim U′+1 and such that every Ai maps U′ into the (., .)-perp
of W′ relative to (., .) (So W′ here is the (., .)-perp of the space W′ in Theorem 1.) But
then αi(w, u) = (w, Aiu) = 0 for all u ∈ U′ and w ∈ W′. Now set U := U′ ∩ W′ and
W := U′ + W′. Then clearly U ⊆ W, dim U + dim W = dim U′ + dim W′ = n + 1, and
αi(U, W) = 0 for all i.

The C(p)

k are closed and irreducible as usual (see Sect. 1), and so it only remains
to check that there are no inclusions among them for p ≥ 2. To this end, let k ∈
{1, . . . , �n+1

2 �}; we will construct a pair (α, β) ∈ C(2)

k that does not lie in any C(2)

k′ with
k �= k′. Take V = Kn and (x, y) := ∑n

i=1 xiyn+1−i, so that transposition relative to this
form corresponds to reflection of the matrix in the “skew diagonal”; we will refer to
this symmetric form as the skew diagonal symmetric form. Now take the standard pair
(A, B) for which

where the diagonal block sizes are, from top left to bottom right, (k − 1) × k, (n −
2k + 1) × (n − 2k + 1), and k × (k − 1). Let α and β be the forms defined by A and B,
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respectively. Now if U and W are subspaces of Kn with dim U + dim W = n + 1 and
α(U, W) = β(U, W) = 0, then one finds dim(AU + BU) < dim U. But by Lemma 2
the only pair of subspaces of Kn having this property are U = 〈e1, . . . , ek〉K and
W = 〈e1, . . . , ek, . . . , en−k+1〉K. This shows that (U, W) is the unique witness for the
nilpotency of (α, β), and hence (α, β) does not lie in any other component C(2)

k′ .
We now proceed with our second fundamental problem: for which p, n is the null-

cone on p-tuples of symmetric bilinear forms on V defined by the polarisations of det?
Suppose that (α1, . . . , αp) lies in C(p)

k , and that U and W are a witness of its nilpotency
as in Theorem 3. A dimension argument shows that U must intersect the radical of
each αi non-trivially; in particular, if αi has rank n − 1, then its radical is contained in
U, and W is precisely the αi-perp of U.

Suppose now that all αi have rank n−1. Then a geometric interpretation of U, W as
in the theorem is the following: PU is a linear subspace of PV common to all quadrics
Qi = {x ∈ PV | αi(v, v) = 0} and containing their radicals, and for each i, PW is the
space tangent to Qi at all of PU. For example, if n = 4 and p = 2, then a pair (α1, α2)

of rank 3 forms lies in C(2)

1 if and only if α1 and α2 have the same radical (a projective

point); if (α1, α2) �∈ C(2)

1 , then the pair lies in C(2)
2 if and only if the quadrics Q1, Q2 are

tangent along the (projective) line through their radicals. This interpretation yields a
nice proof of the following theorem.

Theorem 4. The null-cone on S2(V∗)p is defined by the polarisations of det if and only
if dim(V) ≤ 4 or p ≤ 2.

Proof (Proof of Theorem 4). On p = 2 copies the null-cone is defined by the polarisa-
tions of the determinant. This follows either from the Kronecker–Weierstrass theory
of pencils of forms [8] or from a direct construction of U and W as in Theorem 3 for
any two-dimensional space of singular forms.

Next we prove that for n ≤ 4 the null-cone on any number p of copies is defined
by the polarisations of det, or, in other words, that any space A of singular symmetric
bilinear forms is spanned by a tuple (α1, . . . , αp) lying in some C(p)

k ; slightly inaccu-
rately, we will then say that A lies in Ck. Note that we need only prove this for maximal
spaces of singular forms; in particular, we may assume that A contains forms of rank
n − 1, because if it does not, we may add any rank 1 form to A without creating non-
degenerate forms. In what follows we heavily use the fact that any two-dimensional
space of singular forms does already lie in some Ck.

For n = 2, the quadric of a rank 1 form is a point on the projective line PV. As
for any two non-zero forms in A this point coincides, it is the same for all forms in A.
Hence A lies in C1.

For n = 3, the quadric of a rank 2 form α is the union of two lines in the projective
plane PV, whose intersection is the radical of α. If the radicals of any two forms in A
of rank 2 coincide, then A lies in C1; suppose, therefore, that there exist forms α0, α1
in A of rank 2 whose radicals are distinct. We have (α0, α1) ∈ C2, so that their quadrics
Q0 and Q1 have a line L in common (see Fig. 2). Now a generic element β ∈ A has
rank 2, does not have the same radical as α0 or α1, and its quadric Qβ is not the union
of the non-common lines of Q0 and Q1. But Qβ must have lines in common with both
Q0 and Q1, and therefore it contains L. But then L is isotropic relative to all forms in
A, and A lies in C2.

For n = 4, suppose that there exist forms α0, α1 ∈ A of rank 3 whose radicals
do not coincide (otherwise A lies in C1). The corresponding quadrics Q0, Q1 ⊆ PV
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Fig. 2 Proof of Theorem 4 for
n = 3

1rad(Q  )

rad(Q  )0

L

rad(Q  )0

rad(Q  )
1

rad(Q  )t

L

P

rad(Q  )
1 rad(Q  )0

L

Fig. 3 Proof of Theorem 4 for n = 4

are tangent along the line L connecting their radicals (see Fig. 3, left). For t ∈ K set
αt := (1 − t)α0 + tα1 and

T := {t ∈ K | rk(αt) = 3}.

For each t ∈ T, the quadric Qt of αt is tangent to Q0 along L, and its radical lies on L;
the set of all radicals thus obtained forms a dense set of L.

If all rank 3 forms in A have their radicals on L, then their quadrics are all tangent
to Q0 along L and A lies in C2. Suppose, on the other hand, that there exists a rank 3
form β ∈ A whose radical does not lie on L. Then its quadric Qβ is tangent to each
Qt with t ∈ T along the line connecting P := P rad(β) and P rad(αt); in particular, Qβ

contains all lines connecting P with a dense subset of L (see Fig. 3, right). The closure
of the union of these lines—the projective plane spanned by L and P—is therefore
contained in Qβ . Hence, the pre-image in V of this plane is a three-dimensional
β-isotropic space—but this contradicts the assumption that rk(β) = 3.

Finally, we need to show that if n ≥ 5 and p ≥ 3, then the null-cone is not defined
by the polarisations of det. To this end, take for (., .) on V = Kn the orthogonal sum
of the skew diagonal symmetric form on K5 and the skew diagonal symmetric form
on Kn−5. Consider the triple (α1, α2, α3) of bilinear forms on Kn for which the linear
map associated to sα + tβ + uγ relative to (., .) equals
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sA1 + tA2 + uA3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

s t 0 0 0
0 s t 0 0

−u 0 0 t 0
0 2u 0 s t
0 0 −u 0 s

sIn−5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A direct computation shows that det(sA1 + tA2 + uA3) = 0. On the other hand, by
Lemma 2 there exists no subspace U of Kn with dim(

∑
i AiU) < dim U. We conclude

that (α1, α2, α3) is not nilpotent, and this concludes the proof of Theorem 4.

Remark 4. The description of the null-cone in Theorem 3 already appears in [17,
Theorem 0.1(ii)]. However, Wall claims in Corollary 1 of loc. cit. that the null-cone on
any number of copies is defined by the polarisations of det—which, as we have just
seen, is only the case for n < 5.

4 SL(V) on skew-symmetric forms

Our results for skew–symmetric forms are similar to those for symmetric forms, except
that the irreducible components of the null-cone become visible only from 3 or 4 cop-
ies onwards. Recall that if n := dim(V) is odd, then all skew bilinear forms are singular
and there are no invariants on one copy of

∧2
(V∗), so that the null-cone is the whole

space. If n is even, then the invariant ring is generated by the Pfaffian and the null-cone
is irreducible.

Theorem 5. The null-cone SL(V) on
∧2

(V∗)p is equal to

{(α1, . . . , αp) | ∃U ⊆ W ⊆ V with dim U + dim W = n + 1

and αi(U, W) = 0 for all i = 1, . . . , p}.
Let C(p)

k denote the subset of the null-cone where U can be chosen of dimension
k(= 1, . . . , �n

2  =: q). Then the irreducible components of the null-cone are as follows.

1. If n = 2q ≥ 2 is even, then the null-cone on p = 2 copies is C(2)
q (hence irreducible),

while the null-cone on p ≥ 3 copies has precisely q components, namely C(p)

k for
k = 1, . . . , q.

2. If n = 2q − 1 ≥ 3 is odd, then the null-cone on p = 2 copies is all of
∧2

(V∗)p; on
p = 3 copies there are non-trivial invariants, and the components of the null-cone
are precisely the C(3)

k with k ∈ {1, 2, . . . , q − 4, q} (in particular, for n ≤ 7 the null-
cone is irreducible); on p = 4 copies the components of the null-cone are precisely
the C(4)

k with k ∈ {1, 2, . . . , q−3, q} (in particular, for n ≤ 5 the null-cone is irreduc-

ible); and on p ≥ 5 copies the components of the null-cone are precisely the C(p)

k
with k ∈ {1, 2, . . . , q − 2, q} (in particular, for n ≤ 3 the null-cone is irreducible).

For the proof of this theorem we need a result from [3], which uses the following
notation: d(n, p) is the minimum, taken over all p-tuples (α1, . . . , αp) of skew bilinear
forms on Kn, of the maximal dimension of a subspace that is isotropic with respect
to all αi. In other words, d(n, p) is the maximal dimension of a common isotropic
subspace of a generic p-tuple of skew bilinear forms on Kn.



The Hilbert null-cone on tuples of matrices and bilinear forms 803

Theorem 6 ([3, Main Theorem]). d(n, p) = � 2n+p
p+2 �.

Corollary 1. For n = 0, 2, 4, 6 any triple of skew bilinear forms on Kn has a common
isotropic subspace of dimension n/2. On the other hand, for all odd n ≥ 3 and for all
even n ≥ 8 there exist triples (α1, α2, α3) of skew bilinear forms on Kn for which there
are no subspaces 0 � U ⊆ W of Kn with dim U +dim W = n and αi(U, W) = 0 for all i.

Proof. The first statement is immediate from Theorem 6. Now let n = 2q ≥ 8 be
even, fix k ∈ {1, . . . , q}, and suppose that for any triple α1, α2, α3 of skew bilinear
forms on Kn there exist subspaces 0 �= U ⊆ W of Kn with dim U = k = n−dim W and
αi(U, W) = 0 for all i = 1, 2, 3. The induced forms ᾱi, i = 1, 2, 3, on the space W/U
of dimension 2(q − k) have a common isotropic subspace U′ ⊆ W/U of dimension
d(2(q − k), 3), by definition of the latter quantity. The pre-image of U′ in W is then
isotropic relative to all αi and has dimension d(2(q − k), 3) + k. We thus find the
inequality d(2q, 3) ≥ d(2(q − k), 3) + k, which by Theorem 6 reads

⌊
4q + 3

5

⌋

≥
⌊

4(q − k) + 3
5

⌋

+ k =
⌊

4q + 3
5

+ k
5

⌋

. (10)

For n = 2q = 8, however, this inequality does not hold for any k ∈ {1, 2, 3, 4}. For
n = 2q = 10 the only k ∈ {1, . . . , 5} for which it holds is k = 1, but it is easy to
construct a triple of bilinear forms on K10 for which there are no U, W as above of
dimensions 1, 9—indeed, one can use for this the construction that follows.

Suppose that n = 2q ≥ 12, and note that inequality (10) can only hold for k ≤ 5.
On the other hand, let α1, α2, α3 be the skew bilinear forms on Kn corresponding to
the triple (A1, A2, A3) of matrices, standard in the sense of Lemma 2, satisfying

t1A1 + t2A2 + t3A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2 t3

t1 t2
. . .

. . .
. . . t3
t1 t2

−t2 −t3

−t1
. . .

. . .
. . . −t2 −t3

−t1 −t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using Lemma 2 one verifies that any subspace U of Kn satisfying dim(A1U + A2U +
A3U) ≤ dim U has dimension 0, n/2, or n. In particular, we should have k ∈ {0, q, n}—
but we saw above that 1 ≤ k ≤ 5, a contradiction.

We conclude that for n = 2q ≥ 8 and fixed k ∈ {1, . . . , q} there exist triples
(α1, α2, α3) of skew bilinear forms on Kn for which there are no subspaces U ⊆ W
of Kn with dim U = k = n − dim W and αi(U, W) = 0 for all i. As the non-existence
of such a pair U, W with dim U = k is an open condition on the triple (α1, α2, α3),
there also exist triples for which there is no pair (U, W) with U of any dimension. This
proves the corollary for even n.

For n = 2q − 1 ≥ 3 odd we can construct α1, α2, α3 explicitly by a construction
similar to that above: choose them corresponding to a standard triple (A1, A2, A3) of
matrices satisfying
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t1A1 + t2A2 + t3A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2 t3

t1
. . .

. . .
. . . t2 t3

t1 0 −t3

−t1 −t2
. . .

. . .
. . . −t3
−t1 −t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using Lemma 2 one verifies that there are no subspaces U �= 0, Kn of Kn with
dim(

∑
i AiU) ≤ dim U.

Proof [Proof of Theorem 5]. The description of the null-cone is proved in exactly the
same way as for symmetric bilinear forms; we do not repeat the argument here. We
proceed to prove the inclusions C(p)

k ⊆ C(p)
q for the following values of the parameters:

1. n arbitrary, k arbitrary, and p = 2;
2. n = 2q − 1 ≥ 3, k = q − 1, and p arbitrary;
3. n = 2q − 1 ≥ 5, k = q − 2, and p ∈ {3, 4}; or
4. n = 2q − 1 ≥ 7, k = q − 3, and p = 3.

These statements are proved as follows: let (α1, . . . , αp) ∈ C(p)

k and let U ⊆ W be a
pair with dim U = k, dim W = n − k + 1, and αi(U, W) = 0 for all i. Then the αi induce
bilinear forms ᾱi on the space W/U of dimension n−2k+1, and we find a subspace U′
of W/U of dimension d(n − 2k + 1, p) that is isotropic relative to all ᾱi. The pre-image
of U′ in W is then a space of dimension d(n − 2k + 1, p) + k and isotropic relative
to all αi. Using Theorem 6 one finds that for the above values of the parameters this
value d(n − 2k + 1, p)+ k is at least �n

2 �+ 1, which shows that (α1, . . . , αp) ∈ C(p)
q . This

proves all inclusions above.
Now we prove that there are no other inclusions among the C(p)

k for other values of
n, k, and p. Suppose first that n = 2q is even, p ≥ 3 and k ∈ {1, . . . , q}. Then we find a
p-tuple in C(p)

k not lying in any other C(p)

k′ by a construction similar to the constructions
in the proof of Corollary 1: Let α1, α2, α3 be forms with matrices A1, A2, A3 for which
t1A1 + t2A2 + t3A3 equals

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2 t3
t1 t2 t3

. . .
. . .

. . .
t1 t2 t3

t1A′
1 + t2A′

2 + t3A′
3 −t3

−t2
. . .

−t1
. . . −t3
. . . −t2 −t3

−t1 −t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)
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where the diagonal blocks have sizes (k−1)×k, (n−2k+1)×(n−2k+1), and k×(k−1)

from top left to bottom right, and where the A′
i are chosen such (skew relative to the

skew diagonal) that they map no subspace U �= 0, Kn−2k+1 of Kn−2k+1 into a sub-
space of dimension < dim U; such A′

i exist by Corollary 1. Write V1 := 〈e1, . . . , ek〉K,
V2 := 〈ek+1, . . . , en−k〉K, and V3 := 〈en−k+1, . . . , en〉K. Now suppose that U is a sub-
space of Kn for which dim

∑
AiU < dim U. Let U1 := U ∩V1, let U2 be the projection

of U ∩ (V1 ⊕V2) to V2 along V1, and let U3 be the projection of U to V3 along V1 ⊕V2.
Then dim

∑
i AiU1 ≥ dim U1 unless U1 = V1, dim

∑
i AiU2 > dim U2 unless U2 = 0

or V2, and dim
∑

i AiU3 > dim U3 unless U3 = 0. Summing up these dimensions, we
find dim

∑
i AiU < dim U implies U1 = V1, U2 = 0 or U2 = V2, and U3 = 0. We

conclude that (V1, V1 ⊕ V2) is the only pair of subspaces U ⊆ W with αi(U, W) = 0
and dim U + dim W > n. Hence (α1, α2, α3) lies in C(3)

k but not in any other C(3)

k′ .

Next suppose that n = 2q − 1 ≥ 9 is odd. Then we have to show that that C(3)

k for

k �∈ {q − 1, q − 2, q − 3} is not contained in any other C(3)

k . This goes using a construc-
tion similar to that above for even n, choosing the A′

i—now square skew matrices of
size n − 2k + 1 = 2(q − k) ≥ 8—such that for all spaces U with 0 � U � K2(q−k) we
have dim A′

1U + A′
2U + A′

3U > dim U; such matrices exist by Corollary 1.
Next, assuming n = 2q − 1 ≥ 7, suppose that p ≥ 4 and k ∈ {1, . . . , q − 3, q}. By

writing down an appropriate standard quadruple of skew matrices (A1, . . . , A4) we
show that C(p)

k is not contained in any other C(p)

k′ : take A1, A2, A3, A4 such that
∑

i tiAi
has the block shape of (11), where the outer two blocks are unchanged (i.e., A4 has
no non-zero entries there), but the inner block of size 2(q − k) ≥ 6 is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2 t3 t4

0 t2
. . .

. . .

t1 0
. . . t3 t4

. . .
. . . t2 0 −t4

t1 0 −t2 −t3
. . .

−t1 0
. . .

. . . −t4
. . .

. . . −t2 −t3
−t1 0 −t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Again, applying Lemma 2, one readily verifies that this quadruple of skew matrices
does not map any space U into a space of dimension ≤ dim U.

A similar construction for n = 2q − 1 ≥ 5 with the following 4 × 4-block in the
middle:

⎡

⎢
⎢
⎣

t3 t4 t5 0
t2 t3 0 −t5
t1 0 −t3 −t4
0 −t1 −t2 −t3

⎤

⎥
⎥
⎦

shows that on p ≥ 5 copies the set C(p)

q−2 is not contained in any other C(p)

k , either.

Finally, we settle the question, for n even, of when the null-cone on p copies of∧2
(V∗) is defined by the polarisations of the Pfaffian.
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Theorem 7. The null-cone N (
∧2

(V∗)p) with dim V =: n even is defined by the polari-
sations of the Pfaffian if and only if either p = 2 or n ∈ {2, 4}.
Proof. The proof for p = 2 goes exactly as for symmetric bilinear forms, and for n = 2
the statement is trivial.

Suppose therefore that n = 4. As the referee of this paper kindly pointed out, the
theorem for this case can be proved using classical invariant theory: the image of SL4
in GL(

∧2 K4) is precisely SO6, hence by the First Fundamental Theorem for SO6 [9]
one knows precisely the invariants on p copies of this representation, and from this
knowledge one can deduce that the null-cone is defined by the polarisations of the
invariants on one copy.

In keeping with the more geometrical arguments used for the case of symmetric
bilinear forms, we include a short, self-contained proof for the case where n = 4
that does not rely on classical invariant theory: Let A be a vector space consisting of
singular skew forms on K4. We have to show that either the radicals of all forms in
A intersect in a projective point, or there exist a line U and a plane W ⊇ U in P

3

with α(U, W) = 0 for all α ∈ A. By the statement for p = 2 we know that any pair of
elements in A is of one of these two types.

We prove that in fact every pair α, β ∈ A is of the first type. Indeed, take α, β ∈ A
non-zero (and hence of rank 2), suppose that rad α and rad β are disjoint lines in P

3,
and let U ⊆ W be a line and a plane in P

3 such that α(U, W) = β(U, W) = 0. For
dimension reasons, U must intersect both rad α and rad β, and hence U is distinct from
both of these lines. But then the α-perp of U and the β-perp of U are both planes
containing W, and hence equal to W. On the other hand, the radicals of α and β

are contained in the α-perp and the β-perp of U, respectively, hence in W. But this
contradicts the assumption that the projective lines P rad α and P rad β do not intersect.

We conclude that all radicals of elements in A intersect. But then they all lie in
some plane W. Now if U is any line in W, then α(U, W) = 0 for all α ∈ A, so that A
“lies in” C2. This proves the theorem for n = 4.

Finally, for n ≥ 6, we have to exhibit a triple of skew bilinear forms that is not
nilpotent but whose span lies in the null-cone on

∧2 V∗. Choose for instance α1, α2, α3
with matrices A1, A2, A3 such that

t1A1 + t2A2 + t3A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2
. . .

t2
0 S
S 0

−t2
. . .

−t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where S =
⎡

⎣
t2 t3 0
t1 0 −t3
0 −t1 −t2

⎤

⎦ .

Using arguments like those for Lemma 2 one verifies that no subspace of Kn is mapped
by all Ai into a strictly smaller subspace. This concludes the proof of the theorem.

5 SL(V) on arbitrary bilinear forms

The invariants of SL(V) on (V∗⊗V∗) are known [1], but in contrast to the situation for
linear maps and symmetric bilinear forms, it is not clear from them that the null-cone
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on one copy of V∗ ⊗ V∗ is irreducible. The following theorem states that it is, and also
describes the components in several copies.

Theorem 8. For p ≥ 2, the null-cone of SL(V) on (V∗⊗V∗)p has q := �n+1
2 � irreducible

components given by

C(p)

k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k, dim W = n − k + 1,

and αi(U, W) = αi(W, U) = 0 for all i = 1, . . . , p}, k = 1, . . . , q.

On p = 1 copy the sets C(1)

k form a chain C(1)

1 ⊆ · · · ⊆ C(1)
q , and hence the null-cone

equals the irreducible set C(1)
q .

In the proof of this theorem we use the following lemma.

Lemma 3. Let β be a symmetric form and γ a skew form on the vector space V of
dimension ≥2. Then there exists a β-isotropic v0 ∈ V for which

dim{v ∈ V | β(v0, v) = γ (v0, v) = 0} ≥ dim V − 1

Proof. If the radical of γ has dimension ≥2, we may take for v0 any β-isotropic vector
in rad γ . If rad γ has dimension 1 and is spanned by v1, then there are two cases: either
v1 is β-isotropic and we may set v0 := v1, or V = Kv1 ⊕ V′, where V′ := v

⊥β

1 . Then
γ is non-degenerate on V′ and if we find a v0 in V′ satisfying the conclusion of the
lemma for V′ instead of V, it also does the trick for V, as β(v1, v0) = γ (v1, v0) = 0.

Hence the case remains where γ is non-degenerate. Let B, C be the linear maps
corresponding to β, γ relative to (., .) and choose any eigenvector v0 of C−1B. Then
we have Bv0 ∈ KCv0 so that γ (v, v0)(= (v, Cv0)) = 0 implies β(v, v0)(= (v, Bv0)) = 0.
In particular, v0 is β-isotropic, and the vector space on the left-hand side in the lemma
is the γ -perp of v0.

Proof (Proof of Theorem 8). For the first statement, let (α1, . . . , αp) be a nilpotent
p-tuple of bilinear forms and write αi = βi + γi for all i, with βi symmetric and
γi skew. Let Bi, Ci be the linear maps associated βi, γi, respectively. By assumption
there exists a one-parameter subgroup λ : K∗ → SL(V) with limt→0 λ(t)αi = 0 for
all i. But this implies that also λ(t)βi, λ(t)γi → 0 for t → 0. A fortiori, the 2p-tuple
(B1, . . . , Bp, C1, . . . , Cp) is nilpotent under the larger group SL(V) × SL(V), and by
Theorem 1 there exist subspaces U′, U′′ ⊆ V of dimensions k and k − 1 such that
BiU′, CiU′ ⊆ U′′ for all i. Let W′ be the perp of U′ relative to our fixed form (., .),
set U := U′ ∩ W′ and W := W′ + U′. Then U ⊆ W, dim U + dim W = n + 1, and
βi(U, W) = γi(U, W) = 0. But then also αi(U, W) = αi(W, U) = 0, as claimed.

Now we prove C(1)

k ⊆ C(1)

k+1 for k < q. To this end, let U ⊆ W be subspaces of V
with dim U + dim W = n + 1. We want to prove that a form α ∈ V∗ ⊗ V∗ lying in
C(1)

k by virtue of α(U, W) = α(W, U) = 0 also lies in C(1)

k+1. Indeed, write α = β + γ ,
where β is symmetric and γ is skew. The forms β, γ induce a symmetric form β̄ and
a skew-symmetric form γ̄ on W/U, respectively, and by the preceding lemma there
exists a w̄0 ∈ W/U for which

dim{w̄ ∈ W/U | β̄(w̄, w̄0) = γ̄ (w̄, w̄0) = 0} ≥ dim W/U − 1.

Let w0 be a pre-image of w̄ in W, set U′ := U ⊕ Kw0, and let W′ ⊆ W be a sub-
space of codimension 1 that contains w0 and whose image in W/U is contained in the
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space above. Then we still have α(U′, W′) = 0 and dim U′ + dim W′ = n + 1, but now
dim U′ = k + 1, as claimed.

Finally, we have to show that on p ≥ 2 copies there are no inclusions among the
sets C(k) with k = 1, . . . , q are distinct. But their intersections with the set of p-tuples
of symmetric bilinear forms are already distinct, see Theorem 3.

The last question to be answered here is whether the polarisations of the invariants
on one copy of V∗ ⊗ V∗ define the null-cone on more copies. The answer can be
deduced from the answers for symmetric forms and for skew forms.

Theorem 9. The null-cone of SL(V) on (V∗ ⊗ V∗)p is defined by the polarisations to
p ≥ 2 copies of the invariants on V∗ ⊗ V∗ if and only if dim V ≤ 2.

Proof. For dim V = 1 the statement is trivial. Suppose that dim V = 2 and let A be a
space of nilpotent bilinear forms on V. If α ∈ A, then by Theorem 8 both the symmet-
ric component and the skew component of α are singular. As the skew component has
even rank, it is then zero. Hence A consists of symmetric forms only, and therefore
the existence of a common radical for forms in A follows from Theorem 4.

Suppose now that n ≥ 3. Let β1, β2, γ1 be the bilinear forms on Kn whose matrices
B1, B2, C1 relative to the orthogonal sum (., .) of the skew diagonal forms on K3 and
Kn−3 satisfy

s1B1 + s2B2 + t1C1 =

⎡

⎢
⎢
⎣

s1 s2 0
t1 0 s2
0 −t1 s1

sIn−3

⎤

⎥
⎥
⎦ .

A direct computation shows that det(s1B1 + s2B2 + t1C1) is identically zero. We claim
that actually A := 〈β1, β2, γ1〉K consists entirely of nilpotent bilinear forms; as the
determinant is not the only invariant, the preceding computation does not prove this
yet. But let α be in A with matrix A. Then At—where transposition, as always, is rela-
tive to the form (., .)—defines the form αt, which by the definition of A also lies in A and
the singular matrix pencil 〈A, At〉K has a subspace U of Kn for which W′ := AtU +AU
has dimension < dim U. But then the perp W of W′ relative to (., .) is a subspace of Kn

of dimension > n − dim U satisfying α(W, U) = αt(W, U)(= α(U, W)) = 0. Replacing
(U, W) by the pair (U ∩ W, U + W) as usual, we find a witness for the nilpotency of α.

However, the pair (β1 + γ1, β2) of bilinear forms is not nilpotent. Indeed, if it were,
then there would be U ⊆ W with dim U +dim W = n+1 and β1(U, W) = β2(U, W) =
γ1(U, W) = 0, i.e., with dim B1U + B2U + C1U < dim U. By Lemma 2 no U with this
property exists.
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