
Abstract The fully developed free convection flow in

a differentially heated vertical slot with open to capped

ends investigated recently by Bühler (Heat Mass

Transf 39:631–638, 2003) and Weidman (Heat Mass

Transf Online First, February 2006) is revisited in this

paper. A new method of solution of the corresponding

fourth order boundary value problem, based on its

reduction to ‘‘normal modes’’ by a complex matrix

similarity transformation is presented. As a byproduct

of the method, some invariant relationships involving

the heat flux and the shear stress in the flow could be

found.

1 Introduction

The present report is closely related to the recent

papers by Bühler [1] and Weidman [2] in which the

conduction [1] and convection [2] regime of the free

convection flow in a differentially heated tall vertical

slot with open to capped ends has been investigated.

For the quasi-static transition from the open to the

capped end situation, in both cases a continuum of

solutions have been found.

The fully developed steady convection flow is

governed by the fourth order system of coupled

differential equations

u00 þGh ¼ 0; h00 � Eu ¼ 0 ð1Þ

along with the boundary conditions

u �1=2ð Þ ¼ 0; h �1=2ð Þ ¼ �h0; h 1=2ð Þ ¼ 1� h0; ð2Þ

where u = u(y) and h = h(y) are the dimensionless

velocity and temperature fields, G and E the Grashof

and Elder numbers, respectively, and the primes de-

note differentiation with respect to the dimensionless

horizontal coordinate –0.5 £ y £ +0.5 of the slot [2].

We mention that the boundary conditions given here in

(2) are the intended boundary conditions for Eqs. (12)

of P.D. Weidman (private communication).

The features of the fully developed flow are inde-

pendent of the vertical coordinate x. The variation

range of the dimensionless temperature parameter h0 is

0 £ h0 £ 1/2, such that the value h0 = 0 corresponds to

the open and h0 = 1/2 to the capped slot, respectively.

The intermediate values of h0 are associated with

permeable caps of which porosity decreases from 1 to 0

as h0 increases from 0 to 1/2. The coordinate system is

chosen symmetrically, [2], such that y = –1/2 corre-

sponds to the cold and y = +1/2 hot wall of the slot, in

agreement with the boundary conditions (2).

The continuum of convection solutions has been

obtained by Weidman, [2], by eliminating the velocity

u from Eqs. (1) and solving the fourth order boundary

value problem resulting in this way for the temperature

variable h. The aim of the present paper is to report a

new method of solution which is based on the reduc-

tion of the problem (1), (2) to its ‘‘normal modes’’

(known from lattice dynamics) by applying a complex

matrix similarity transformation. This quite general

matrix diagonalization method allows one to find the
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solutions without increasing the order of equations

(from 2 to 4). In addition, it makes possible a trans-

parent and powerful complex analysis of the mathe-

matical and physical features of the problem. As a

byproduct of the method, some new invariant rela-

tionships involving the heat flux and the shear stress in

the flow will be reported.

2 Solution by reduction to normal modes

We first transcribe Eqs. (1) to the matrix-differential

form

L G
�E L

� �
u
h

� �
¼ 0; ð3Þ

where L = d2/dy2. Then we subject Eq. (3) to the ma-

trix-similarity transformation

S�1 L G
�E L

� �
S S�1 u

h

� �
¼ 0; ð4Þ

where S is some non-singular 2 · 2 matrix with the

constant matrix elements Sij and S–1 stands for the in-

verse matrix of S. Now further denote

S�1 u
h

� �
¼ Z1

Z2

� �
which in turn yields

u
h

� �
¼ S

Z1

Z2

� �

ð5Þ

and chose S such that in Eq. (4) the transformed matrix

S–1(...)S becomes diagonal. This requirement is satis-

fied by the choice

S¼ i
ffiffiffiffiffiffiffiffiffiffi
G=E

p
1

1 i
ffiffiffiffiffiffiffiffiffiffi
E=G

p
� �

; S�1¼�1

2

i
ffiffiffiffiffiffiffiffiffiffi
E=G

p
�1

�1 i
ffiffiffiffiffiffiffiffiffiffi
G=E

p
� �

:

ð6Þ

The diagonalized Eq. (4) reads

Lþ x2
1 0

0 Lþ x2
2

� �
Z1

Z2

� �
¼ 0; ð7Þ

where

x1 ¼ i� 1ð Þm;x2 ¼ iþ 1ð Þm;m ¼ GE=4ð Þ1=4; i ¼
ffiffiffiffiffiffiffi
�1
p

:

ð8Þ

The matrix equation (7) yields for Z1 and Z2 the

decoupled differential equations

Z001;2 ¼ �x2
1;2Z1;2: ð9Þ

Equations (9) may formally be seen as the differential

equations of motion of two independent linear oscil-

lators of ‘‘mass’’ = 1 with (complex) frequencies x1

and x2, and with y being the time variable of motion.

Accordingly, the general solutions for the two ‘‘normal

oscillation modes’’ Z1 and Z2 can be written down

immediately,

Z1;2 yð Þ ¼ A1;2 sin x1;2yþ a1;2

� �
; ð10Þ

where A1,2 and a 1,2 are integration constants. Thus the

solution (u, h) of our boundary value problem is ob-

tained from the second matrix equation (5) in terms of

the ‘‘normal modes’’ Z1 and Z2 in the form

u ¼ i G=Eð Þ1=2 Z1 þ Z2;

h ¼ i E=Gð Þ1=2 Z2 þ Z1:
ð11Þ

Boundary conditions (2) lead via Eqs. (10) and (11) to

the following conditions for Z1 and Z2:

Z1 �1=2ð Þ ¼ �h0=2;Z1 1=2ð Þ ¼ 1� h0ð Þ=2;

Z2 �1=2ð Þ ¼ i G=Eð Þ1=2h0=2;Z2 1=2ð Þ ¼
� i G=Eð Þ1=2 1� h0ð Þ=2:

ð12Þ

Thus we easily obtain for the integration constants the

expressions

a1;2 ¼ arctan 1� 2h0ð Þ tan x1;2=2
� �� �

ð13Þ

A1¼
1

4cosa1 sin x1=2ð Þ ; A2¼�
i G=Eð Þ1=2

4cosa2 sin x2=2ð Þ : ð14Þ

In this way we obtain for the fields (u, h) the explicit

results

u yð Þ¼ i

4

ffiffiffiffiffi
G

E

r
sin x1yþa1ð Þ

cosa1 sin x1=2ð Þ�
sin x2yþa2ð Þ

cosa2 sin x2=2ð Þ

� 	
;

h yð Þ¼1

4

sin x1yþa1ð Þ
cosa1 sin x1=2ð Þþ

sin x2yþa2ð Þ
cosa2 sin x2=2ð Þ

� 	
:

ð15Þ

For convenience, in Table 1 of Appendix A the

values of a1,2, A1,2 and Z1,2 have been summarized for

the limiting cases of the open (h0 = 0) and capped

(h0 = 1/2) slot, respectively.

3 Complex analysis

It is easy to see that under the operation of complex

conjugation, which we denote by the symbol *, the

quantities introduced in Sect. 2 behave as follows:
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x�2 ¼ �x1; a
�
2 ¼ �a1;A

�
2 ¼ �i G=Eð Þ1=2A1;

Z�2 ¼ i G=Eð Þ1=2Z1: ð16Þ

In this way the expressions (11) of the velocity and

temperature fields become

u yð Þ ¼ iG

2m2
Z1 � Z�1
� �

;

h yð Þ ¼ Z1 þ Z�1;
ð17Þ

or

u yð Þ ¼ � G

m2
Im Z1 yð Þ½ �;

h yð Þ ¼ 2Re Z1 yð Þ½ �;
ð18Þ

where Im and Re stand for the imaginary and real

part of the complex normal mode Z1. Equations (18)

show explicitly that u and h are real quantities (as

expected). At the same time Eqs. (18) show that u

and h can be expressed in terms of the (complex)

normal mode Z1 alone. This is a direct consequence

of the features (16) and represents a substantial

advantage of the complex calculus. Hence we may

ignore the index 1 in favour of the simpler notation

x1 ” x = (i – 1)m.

The compact expressions (18) for the fields u and h
and are equally suitable for both symbolical and

numerical calculations (by using standard library

programs). As a first example, for the dimensionless

planar volume flux of the flow,

Q ¼
Z1=2

�1=2

udy ð19Þ

we easily obtain the expression

Q ¼ G

m2
h0 �

1

2

� �
Im

1

x
tan

x
2

� 	
: ð20Þ

This agrees with the expression given in Eq. (20) of

Weidman [2] when the denominator term v2 + 1 is

replaced by W2 + 1.

As it is well known, every function f = f(x) can be

represented as a sum of a symmetric and antisymmetric

function (more precisely of an even and odd function

of x), f(x) = fs(x) + fa(x) where 2fs(x) = f(x) + f(–x)

and 2fa(x) = f(x) – f(–x). In the present case, with the

aid of Eqs. (10)–(18) we obtain

u yð Þ ¼ � G

2m2
Im

1

2
� h0

� �
cos xy

cos x=2ð Þ þ
1

2

sin xy

sin x=2ð Þ

� 	
;

h yð Þ ¼ Re
1

2
� h0

� �
cos xy

cos x=2ð Þ þ
1

2

sin xy

sin x=2ð Þ

� 	
:

ð21Þ

Now all the quantities of physical and engineering

interest, namely the volume flux Q, the dimensionless

skin frictions s± = u¢(±1/2) and the dimensionless wall

heat fluxes q± = –h¢(±1/2), can be calculated from Eqs.

(20) and (21) in terms of the parameters of the problem

easily. The results are

Q ¼ G

2m3
h0 �

1

2

� �
sin m� sinh m

cos mþ cosh m
; ð22Þ

s� � u0 �1=2ð Þ

¼� G

4m

sinhm� sinm

coshm� cosm
� 1�2h0ð Þ sinhmþ sinm

coshmþ cosm

� 	
;

ð23Þ

q� ��h0 �1=2ð Þ

¼�m

2

sinhmþ sinm

coshm� cosm
� 1�2h0ð Þ sinhm� sinm

coshmþ cosm

� 	
:

ð24Þ

The content of Eqs. (21) and (22) is the same as those

of Eqs. (13)–(20) of Weidman [2]. For convenience, in

Table 2 of Appendix B the quantities u(y), h(y), Q, s±

and q± have been summarized for the limiting cases of

open (h0 = 0) and capped (h0 = 1/2) slots, respectively.

The limiting case of steady convection in the con-

duction regime which corresponds to E fi 0, can also

easily be obtained from the above equations. Indeed,

according to Eqs. (8), E fi 0 implies m fi 0 which in

turn implies x fi 0. Thus, expanding Eqs. (21)–(24) in

Taylor series of powers of m, we obtain in the con-

duction regime limit m = 0 equations (38–44) listed in

Appendix C.

4 Invariant quantities

In addition to its quite general applicability and

transparency, the ‘‘normal-mode’’-approach presented

above facilitates the determination of some invariant

(coordinate independent) relationships between the

shear stress and the heat flux in the fluid. Indeed, the

total mechanical energies Zn
¢ 2/2 + xn

2Zn
2/2, n = 1,2 of

the individual ‘‘normal oscillators’’ are conserved

quantities (i.e. independent of ‘‘time’’ y). Having in
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mind Eqs. (10), we see that these constants are equal to

xn
2An

2/2 such that the two ‘‘integrals of motion’’ are

Z0
2
n þ x2

nZ2
n ¼ x2

nA2
n; n ¼ 1; 2; ð25Þ

where, according to the second equations (5) and (6),

Z1 ¼
1

2
h� i

ffiffiffiffiffi
E

G

r
u

 !
;Z2 ¼

1

2
u� i

ffiffiffiffiffi
G

E

r
h

 !
: ð26Þ

Now, taking into account the fact that the two nor-

mal modes Z1,2 are related to each other by the

operation of complex conjugation (see Eqs. (16)), it

is sufficient to consider only one of Eqs. (25). Thus,

choosing the normal mode ‘‘1’’ and dropping its

subscript for simplicity of notation, we obtain from

Eqs. (25) and (26)

h0 � i

ffiffiffiffiffi
E

G

r
u0

 !2

þ x2 h� i

ffiffiffiffiffi
E

G

r
u

 !2

¼ 4x2A2: ð27Þ

These relationships between the dimensionless shear

stress u¢(y) and the dimensionless heat flux h¢(y) hold

for all values –0.5 £ y £ 0.5 of the coordinate y, as

anticipated above. Of practical interest are obviously

the values of these quantities at the walls. Thus,

substituting in Eq. (27) y = 1/2 and y = –1/2, and

taking into account the boundary conditions (2), we

obtain that between the corresponding skin frictions

u¢(±1/2) ” s± and wall heat fluxes h¢(±1/2) ” q± the

following relationships hold

qþ þ i

ffiffiffiffiffi
E

G

r
sþ

 !2

þ x2 1� h0ð Þ2 ¼ 4x2A2;

q� þ i

ffiffiffiffiffi
E

G

r
s�

 !2

þ x2h2
0 ¼ 4x2A2:

ð28Þ

Furthermore, we obtain by subtraction

qþ þ i

ffiffiffiffiffi
E

G

r
sþ

 !2

� q� þ i

ffiffiffiffiffi
E

G

r
s�

 !2

¼ x2 2h0 � 1ð Þ:

ð29Þ

Having in mind that x2 = –2 im2 and identifying the

real and imaginary parts of Eq. (29) we deduce the

relationships

q2
þ � q2

�
E

¼
s2
þ � s2

�
G

or
q2
þ

E
�

s2
þ

G
¼ q2

�
E
� s2
�

G
; ð30Þ

qþsþ � q�s� ¼
1

2
� h0

� �
G: ð31Þ

Equations (30) and (31) represent interesting con-

nections between the heat fluxes and shear stresses at

the two walls of the slot and show their connection to

the physical parameters E, G and h 0 of the problem.

They are somewhat reminiscent of the classical

Reynolds analogy resulting from the momentum and

temperature boundary layer equations at unity Pra-

ndtl number.

5 Integral momentum and energy balance

In the preceding section the invariant relationship (27)

between the dimensionless shear stress u¢(y) and the

dimensionless heat flux h¢(y) has been established

which, when specified for the walls, yields several

relationships between the skin frictions s± = u¢(±1/2)

and wall heat fluxes q± = h¢(±1/2) [see Eqs. (28)–(31)].

Further interesting relationships between the quanti-

ties s±, q± and Q can be obtained by integrating Eqs.

(1) between the walls. By doing so we easily obtain

s� � sþ ¼ Ghm; ð32Þ

q� � qþ ¼ EQ; ð33Þ

where Q is the planar volume flux (19) and hm the

average temperature

hm ¼
Z1=2

�1=2

hdy: ð34Þ

Thus, Eqs. (32), (33) and (30) yield the relationship

hm

Q
¼ qþ þ q�

sþ þ s�
ð35Þ

while from Eqs.(32) and (23) for the average temper-

ature the explicit expression

hm ¼
G

m

1

2
� h0

� �
sinh mþ sin m

cosh mþ cos m
ð36Þ

results. According to Eqs. (32) and (33) the change of

the skin friction across the slot equals the average

temperature hm scaled with the Grashof number and

the change of the wall heat flux equals the planar

volume flux Q scaled with the Elder number, respec-

tively.
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The main physical message emerges from the inte-

gral energy balance equation (33). Indeed, the slot can

be viewed as a heat transfer device which transfers heat

from the warm right wall to the cold left one. In this

sense q– – q+, which on account of Eqs. (24) is given by

q� � qþ ¼ 2m
1

2
� h0

� �
sinh m� sin m

cosh mþ cos m
ð37Þ

represents the heat lost during the transfer process.

Obviously, this amount of heat is ‘‘washed away’’ by

the convecting fluid, so by this physical mechanism, the

transmission loss q– – q+ is proportional to the volume

flux Q. Accordingly, for the capped slot (h0 = 1/2)

where Q = 0, we obtain q– = q+ (in agreement with

Table 2 of Appendix B). In other words, the closed slot

is a loss-free heat transfer device. The same holds for

the conduction limit m = 0, regardless the value of h0

(see Appendix C). This circumstance can also be seen

in Fig. 1 where the transmission heat loss q– – q+ is

plotted as function of the parameter m. The larger m,

the larger the heat lost by transmission through the slot

for any specified value h0 „ 1/2. For a specified m,

however, q– – q+ decreases as h0 approaches the value

h0 = 1/2 corresponding to capped end situation.

6 Summary and conclusions

The convection model of the fully developed flow in a

differentially heated vertical slot with open to capped

ends proposed recently by Weidman [2] has been

examined in this paper. The main results can be sum-

marized as follows.

1. A new method of solution of the corresponding

fourth order boundary value problem, based on

its reduction to ‘‘normal modes’’ (known from

the lattice dynamics) by a complex matrix simi-

larity transformation, has been presented. The

use of complex analysis confers to this method a

high degree of transparency as well as an alge-

braic and computational efficiency (similarly to

its use in electrical network theory and in heat

conduction of harmonically excited slabs). As a

byproduct, some new invariant relationships

involving the heat flux and the shear stress in the

flow could be found.

2. It has been emphasized that the dimensionless

temperature field h(y) and the velocity field

scaled by the Grashof number, u(y)/G, are char-

acterized by only two physical parameters: the

temperature parameter 0 £ h0 £ 0.5 (such that the

lower bound of h0 corresponds to the open and

the upper one to the capped slot) and a second

parameter m which depends on the product of

the Grashof and Elder numbers in the form

m = (GE/4)1/4, [2].

3. The capped slot (h0 = 0) is an ideal heat transfer

device; it transfers heat from the warm to the cold

wall without any loss. The same holds for the

conduction limit m = 0, regardless the value of h0.

The larger m, the larger the heat lost by trans-

mission through the slot for any specified value

h0 „ 1/2 (see Fig. 1).
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Appendix A

0 1 2 3 4 5

1

2

3

4

5

m

0 0.0θ =

0.4

0.1

0.2

0.3

0 0.5θ =

q- −q+

Fig. 1 Heat transmission loss q– – q+ of the slot plotted as
function of m for six different values of h0

Table 1 Overview of the values of a1,2, A1,2 and Z1,2 for the
limiting cases of open (h0 = 0) and capped (h0 = 1/2) slot,
respectively

Open slot: h0 = 0 Capped slot: h0 = 1/2

a1
x1

2 0

a2
x2

2 0

A1
1

2 sin x1

1
4 sin x1=2ð Þ

A2 � i G=Eð Þ1=2

2 sin x2
� i G=Eð Þ1=2

4 sin x2=2ð Þ

Z1
sin x1 yþ0:5ð Þ

2 sin x1

sin x1y
4 sin x1=2ð Þ

Z2 �i G
E

� �1=2 sin x2 yþ0:5ð Þ
2 sin x2

�i G
E

� �1=2 sin x2y
4 sin x2=2ð Þ

The values of x1,2 are given by Eqs. (8)
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Appendix B

Appendix C

The conduction limit (m = 0) is obtained as the leading

order terms of the following equations obtained by

Taylor expansions of Eqs. (21)–(24) to powers of m.

u yð Þ ¼ G

6

1

4
� y2

� �
yþ 3

1

2
� h0

� �� 	
; ð38Þ

h yð Þ ¼ 1

2
� h0 þ y; ð39Þ

Q ¼ G

12

1

2
� h0

� �
; ð40Þ

sþ � u0 þ1=2ð Þ ¼ G

2
h0 �

2

3

� �
; ð41Þ

s� � u0 �1=2ð Þ ¼ �G

2
h0 �

1

3

� �
; ð42Þ

qþ � �h0 þ1=2ð Þ ¼ �1; ð43Þ

q� � �h0 �1=2ð Þ ¼ �1: ð44Þ

Equations (38)–(40) coincide with Eqs. (16)–(18) of

Bühler [1], as well as with Eqs. (21)–(23) of Weidman

[2].
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Table 2 Overview of the expressions of u(y), h(y), Q, s± and q±

for the limiting cases of open (h0 = 0) and capped (h0 = 1/2) slot,
respectively

Open slot: h0 = 0 Capped slot: h0 = 1/2

u(y) � G
2m2 Im sin x yþ0:5ð Þ

sin x

h i
(non-symmetric)

� G
4m2 Im sin xy

sin x=2ð Þ

h i
(antisymmetric)

h(y) Re sin x yþ0:5ð Þ
sin x

h i
(non-symmetric)

1
2 Re sin xy

sin x=2ð Þ

h i
(antisymmetric)

Q G
4m3

sinh m�sin m
cosh mþcos m 0

s+
G
4m

sinh 2m�sin 2m
cos2 m�cosh2 m

sþ ¼ s� ¼ � G
4m

sinh m�sin m
cosh m�cos m

s–
G
2m

cos m sinh m�sin m cosh m
cos2 m�cosh2 m

q+ �m
2

sinh 2mþsin 2m
cosh2 m�cos2 m

qþ ¼ q� ¼ �m
2

sinh mþsin m
cosh m�cos m

q– �m sin m cosh mþcos m sinh m
cosh2 m�cos2 m

In the above equations the notations x = (i – 1)m and
m = (GE/4)1/4 have been used
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