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Abstract. Many real-time embedded systems process event streams that are composed of a finite number of
different event types. Each different event type on the stream would typically impose a different workload to
the system, and thus the knowledge of possible correlations and dependencies between the different event types
could be exploited to get tighter analytic performance bounds of the complete system. We propose an abstract
stream model to characterize such an event stream. The model captures the needed information of all possible
traces of a class of event streams. Hence, it can be used to obtain hard bounded worst-case and best-case analysis
results of a system. We show how the proposed abstract stream model can be obtained from a concrete stream
specification, and how it can be used for performance analysis. The applicability of our approach and its advantages
over traditional worst-case performance analysis are shown in a case study of a multimedia application.
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1. Introduction

A large class of real-time embedded systems contain processing units, in which tasks are
triggered by the events of an incoming event stream. These events can often be classified
into a finite number of different event types, where each event type typically triggers dif-
ferent tasks and therefore imposes a different workload to the processing unit. In particular,
each different event type will usually have different worst-case and best-case execution
requirements (WCET and BCET) on the processing unit. Typical examples of such systems
are multimedia applications (Hughes et al., 2001).

When confronted with the problem of performance analysis of such a system, we would
usually be interested in finding upper and lower bounds for the workload imposed by the
whole event stream rather than by individual events within the stream. This would enable
us to exploit the knowledge of possible correlations and dependencies between different
event types present on the stream. And since usually not all event types have the same
WCET (BCET), this analysis would often lead to tighter worst-case (best-case) performance
bounds, without sacrificing guaranteed bounds.

Common existing analysis methods however have no means to exploit the correlations
and dependencies of different event types in an event stream, they usually not even have a
notion of different event types. To obtain hard bounds for the above mentioned system, these
methods would assume each event to have the largest possible WCET (smallest BCET) any
event could have on the processing unit (Liu and Layland, 1973). They would therefore
approximate the worst-case (best-case) stream as consisting of a sequence of only the single

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159147793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


206 WANDELER, MAXIAGUINE AND THIELE

event type with this largest WCET (smallest BCET). While this approach can be used for
hard real-time analysis of a system, it will in general lead to overly pessimistic bounds and
therefore to unnecessary expensive system designs (Bernat et al., 2002).

A common technique used to get tighter bounds and therefore less expensive system
designs, is to use a set of benchmark applications to obtain the bounds for their specific
workload (Lee et al., 1997). Such a straightforward approach however suffers from the
major disadvantage of all simulation- and trace-based methods, that is the limitation to a
particular realization of a workload. Since any concrete realization of a workload can in
general not guarantee to cover all corner cases, this approach does not lead to guaranteed
worst-case and best-case bounds and can therefore not be used in the analysis of hard
real-time systems.

Other existing techniques use probabilistic models to describe the timing behavior of
real-time systems (Tia et al., 1995). Such models can capture whole families of systems
with similar statistical characteristics. The resulting bounds obtained from an analysis with
these probabilistic models will however again be of probabilistic nature and hence are also
not applicable for the analysis of hard real-time systems.

It becomes apparent that in order to obtain tighter, and at the same time guaranteed bounds
for the workload imposed by an event stream, we need to develop proper abstractions that
characterize such streams. The abstractions should thereby capture all possible traces of
a class of streams in order to contain the information needed for obtaining hard bounded
worst-case and best-case results.

Recently, several methods were presented that try to address this problem. A logic of
constraints (LOC) developed in Balarin et al. (2001) can be used to capture in abstract
form desirable properties of event streams such as event arrival patterns and the workload
variability. The main purpose of LOC is to provide a formal way to specify system require-
ments instead of providing stream abstractions suitable for use in analytical methods for
performance analysis.

Baruah (2003) uses demand bound functions to model variable workload produced by
a task execution sequence under real-time constraints. Although the model captures con-
ditional execution, it does not try to distinguish between different event types within the
triggering event sequence of an individual task and, therefore, it cannot exploit knowledge
about correlations among the event types within the stream.

In Jersak et al. (2004), propose a performance analysis technique that uses system contexts
to improve analytic bounds. The system contexts represent various kinds of correlations in
task execution sequences within a system. They show that exploiting knowledge about the
structure of correlated event streams may result in improved bounds than without using it.
However, the methods and models described in Jersak et al. (2004) are confined to particular
problem instances and cannot be applied in a general context.

In the domain of communication networks, powerful abstractions have been developed to
model flow of data (packets) through a network. The theoretical framework, called Network
Calculus (Le Boudec and Thiran, 2001), provides means to deterministically reason about
timing properties of the data flows. In our research, we extend the basic concepts of the
Network Calculus to the domain of real-time embedded systems. More specifically, we
provide means to model structure and variable execution demand of streams.
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Contributions

In this research, we propose a new abstract model for event streams containing a finite
number of different event types. The model has simple and clear semantics and implicitly
captures all possible traces of a whole class of streams. Therewith, it contains the information
needed to quantitatively reason on hard bounds for the stream.

We then present an analytic method, that can be used to obtain our proposed abstract
stream models for any event stream that is specified by a finite state machine. Further we
present a method, how the so obtained abstract stream models can be used to compute the
workload characteristics, which the stream imposes on a particular processing unit.

We show the applicability of the presented methods in a detailed case study of a multime-
dia application, where we obtain tighter bounds for the systems worst-case performance than
with conventional methods. Using the obtained results, the system could be implemented
more power efficient and cheaper without violating its real-time constraints.

2. Abstract Stream Models

Suppose we have a system, where an event stream with different event types, generated by
a stream generator, triggers the input of a processing unit. Each different event type will
typically put a different workload on the processing unit, i.e. will have a different WCET
and BCET.

The upper part of Figure 1 depicts a physical representation of such a system. On the
left side, we have the stream generator that generates an instance of an event stream con-
taining different event types. Further, we have a table with WCET’s and BCET’s for every
event type, which we obtain from the processing unit. When the event stream arrives at
the processing unit, every event on the stream imposes a workload, which is bounded
by the WCET and the BCET of its event type. From the performance analysis point of
view, we can therefore imagine the event stream as a stream of workloads. This work-
load stream represents the workload, that the event stream is imposing on the processing
unit.

Figure 1. Relations between concrete streams and their abstract stream models.
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For the performance analysis of such a system, we need an abstract stream representation,
that represents all possible traces of a class of streams, and hence contains the information
needed to obtain hard bounded worst-case and best-case results.

The lower part of Figure 1 depicts such an abstract representation of the system, where on
the right side, γ (e) represents the abstract workload stream. γ (e) is called workload curve
and was first introduced in Maxiaguine et al. (2004).

The concept of the abstract workload curves is very generic and allows their usage in
several different contexts. In particular, workload curves can be used

• to model the usage of communication or computation resources by streams, where the
workload they represent is expressed either in number of data bits or processing cycles,

• for performance analysis of multiprocessor stream architectures in frameworks as for
example (Chakraborty et al., 2003) and

• to improve bounds in classical schedulability analysis of real-time systems, see e.g. (Liu
and Layland, 1973).

So far, there are no methods to analytically deduce workload curves from available
information about the system. To this end, we introduce the concept of type rate curves,
that represent the abstract event stream with its different event types. In the lower part of
Figure 1, the type rate curves σA(e), σB(e) and σC (e) are shown on the left side.

3. A Quantitative Model for Event Streams

3.1. Type Rate Curves

Consider an event stream s, in which events of n different event types ti may be present
and let Ei (u) be a counter, that counts the number of events of type ti , occurring during u
consecutive events on the event stream.

Definition 1 (Type Rate Curve). For any event stream s and for any event type ti occurring
on the stream, the lower type rate curve σ l

i and the upper type rate curve σ u
i satisfy the

relation:

σ l
i (v − u) ≤ Ei (v) − Ei (u) ≤ σ u

i (v − u) ∀0 ≤ u ≤ v

Therefore, in any sequence of e consecutive events of the event stream s, at least σ l
i (e)

and at most σ u
i (e) events are of type ti .

Using the above definition, an event stream s can quantitatively be characterized by the
complete set of type rate curves {σ u

i , σ l
i } of all event types occurring in it.

Example 1. As a simple example let us consider an event stream containing three different
event types A, B and C respectively, that always occur strictly following one of two patterns,
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Figure 2. A short sequence of the event stream of Example 1 and its type rate curves.

either “ABCBCA” or “AACB”. The order in which the patterns themselves occur on the
stream is assumed to be completely random.

In Figure 2, a short sequence of the above specified event stream is shown, together with
the complete set of type rate curves for the stream. On the x-axis of the type rate curves,
the sequence length is given in number of events, whereas the values on the y-axis give the
maximum and minimum number of times, an event of the specific type can occur in any
sequence of this length.

Using these type rate curves, we can directly obtain information on possible type compo-
sitions in event sequences of the stream. For example we can see that in any event sequence
of length 12, at least 4 and at most 7 events are of type A and at least 2 and at most 5 events
are of type B, whereas the number of events of type C must lie between 3 and 4.

Type rate curves are an abstract representation of an event stream, describing in a compact
way the event type correlations in it. It is thereby important to note that a set of type rate
curves does not only describe a single instance of an event stream sequence, but rather a
whole class of event streams. Only by that it is possible that type rate curves contain the
information needed in worst case analysis.
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A set of type rate curves is a very generic model of an event stream, that can capture
arbitrarily complex dependencies and correlations on the occurrence of event types in the
stream. In case of completely uncorrelated event types, that are statistically independent
from each other, the event rate curves abstracting such a stream would have the form
σ u(e) = e and σ l(e) = 0 respectively. The existence of any dependencies and correlations
on the other hand will immediately become apparent by event rate curves having the form
σ u(e) < e and σ l(e) > 0 for some values of e.

3.2. Obtaining Type Rate Curves

In order to be applicable in the analysis of hard real-time systems, the set of type rate curves
of a stream must represent guaranteed bounds on the possible occurrence of different event
types. In consequence of this requirement, they must be obtained from a formal stream
specification or description, by using analytical methods.

There exist a variety of alternatives to formally specify event streams with different event
types, some of which are finite state machines, arrival curves (Le Boudec and Thiran, 2001),
where every event type as well as the complete stream itself would each be specified by a
separate arrival curve, or some sort of formal notation like Logic of Constraints (Balarin
et al., 2001), where stream properties such as rate, jitter or burstiness can be formally
specified.

From virtually any of these specification methods we can analytically derive the set of
type rate curves that abstract the event stream they describe. Exemplary, we introduce in
the remaining part of this section a method to compute type rate curves for an event stream
which is specified by a finite state machine.

Note, in practice it would sometimes also be useful to obtain type rate curves from
simulation traces, especially if not enough knowledge is available of the correlations of
different event types on the particular event stream. Even though the so obtained curves
must not be used for the analysis of hard real-time systems, they can be useful for the
analysis of soft real-time systems.

Computing Type Rate Curves From Finite State Machines
Event streams that are made up from a finite number of event patterns that may occur in a
non-deterministic order, can be specified by a non-deterministic finite state machine, which
we will call FSMS , with a set of vertices V , a set of directed edges E and an alphabet
� consisting of the different event types occurring on the stream. Every edge is labelled
with a symbol of � and any run in FSMS is a valid instance of a stream specified by the
machine.

To compute the type rate curves of a given event type ti for a stream specified by such a
machine, we need to follow a procedure that can be broken down into three steps and that
is described below.

Step 1: First we need to transform FSMS into a type-specific finite state machine FSMti .
FSMti has the same set of vertices V and edges E , but its edges are not labelled by the
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Figure 3. FSMS and its FSMtA .

alphabet �, but are instead annotated with a weight w, such that every edge initially
labelled with a symbol ti has weight 1, while all other edges have weight 0. Figure 3
shows FSMS and FSMtA for the stream specified in Example 1.

Step 2: In the type-specific finite state machine FSMti , the value of the upper type rate
curve σ u

i (e) equals the weight wu(e) of the maximum-weight path with length e, while the
value of the lower type rate curve σ l

i (e) equals the weight wl(e) of the minimum-weight
path with length e.

We can use Algorithm 1 to compute the weights wu(e) and wl(e) of the maximum-weight
and minimum-weights paths of a finite state machine respectively up to a path length of
n. The finite state machine thereby corresponds to a directed weighted graph G(V, E, W )
with vertices V , edges E and weights W .

The computational complexity of Algorithm 3.2 is O(n|V ||E |), while the memory re-
quirement has a complexity of O(|V |).

Algorithm 1. Computing the weights of the maximum-weight and minimum-weight paths
in a weighted graph G(V,E,W)

Given a function pred(v), that returns the set of all predecessor vertices of vertex v.
Given a function weightu(u, v) and a function weightl(u, v), that return the maximum
weight and the minimum weight respectively, of all edges starting at vertex u and ending
at vertex v.

wu
v (0) = 0, ∀v ∈ V

wl
v(0) = 0, ∀v ∈ V

for i = 1 to n do
for ∀v ∈ V do

if |pred(v)| > 0 then
wu

v (i) = maxp∈pred(v){wu
p(i − 1) + weightu(p, v)}

wl
v(i) = minp∈pred(v){wl

p(i − 1) + weightl(p, v)}
else
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wu
v (i) = −∞

wl
v(i) = +∞

end if
end for
wu(i) = maxv∈V {wu

v (i)}
wl(i) = minv∈V {wl

v(i)}
end for

Step 3: The values wu(e) represent σ u
i (e) for e ≤ n, while for larger e, we can use their

periodic continuation:

σ u
i (e) =

⌊ e

n

⌋
· σ u

i (n) + σ u
i

(
e −

⌊ e

n

⌋
n

)

Since for the weights of maximum-weight paths in a weighted graph the relation wu(e1 +
e2) ≤ wu(e1) + wu(e2) holds true for ∀e1, e2 ∈ Z≥0 (subadditivity), it can be shown that this
periodic continuation provides a hard upper bound on the weight of the maximum-weight
path of any length e ∈ Z≥0 and thus is a valid upper type rate curve for event type ti .

Similarly, it can be shown that the periodic continuation of wl(e) is a valid lower type
rate curve σ l

i (e) for event type ti :

σ l
i (e) =

⌊ e

n

⌋
· σ l

i (n) + σ l
i

(
e −

⌊ e

n

⌋
n

)

Using the presented method, tight (i.e. exact) type rate curves of a stream specified by
FSMS can be computed up to an arbitrary sequence length n, while hard upper and lower
bounds can be obtained for any larger lengths.

For strongly connected graphs and with some more effort, it is also possible to obtain
the tight type rate curves of a stream specified by FSMS for all e ∈ Z≥0. The according
techniques are described in Cohen et al. (1985) and (Karp, 1978).

3.3. A Formal Method to Compute Workload Curves

Since type rate curves are an abstract representation of only an event stream, they are
completely independent from any concrete system. However, in order to use type rate
curves for the analysis of a specific system, we need to combine the information contained
in the type rate curves with the information available of the system. The result of this
combination will be workload curves, that are an abstract representation of the workload
generated in the system by the incoming event stream.

We will now present a formal method to compute workload curves for a given event
stream by using its set of type rate curves. For this, we will first recall the definition of
workload curves.

Given an event stream s, that is translated into a workload stream w. Let W (u) be a
counter that accumulates the total workload imposed to a processing unit by u consecutive
events of the event stream.
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Definition 2 (Workload Curve). For any workload stream w, the lower workload curve γ l

and the upper workload curve γ u satisfy the relation:

γ l(v − u) ≤ W (v) − W (u) ≤ γ u(v − u) ∀0 ≤ u ≤ v

Therefore, any sequence of e consecutive events on the workload stream w, will impose
a total workload of at least γ l(e) and at most γ u(e) to a processing unit.

Since workload curves always describe the workload imposed by a stream to a specific
system, we need some information about this system, which in our case is expressed by the
set of WCET and BCET for every event type occurring on the event stream.

Before we can compute the workload curves, we first need to collect all available data
for each of the n event types into a data set datai = (σ u

i , σ l
i , wceti , bceti ). The indices of

these data sets must then be reordered, such that data1 contains the data of the event type
with the largest wcet, while data2 represents the event type with the second largest wcet,
and so on. Using the data in these reordered data sets, the following formula can be used to
compute the upper workload curve γ u(e) for the specified system:

γ u(e) =
n∑

i=1

min

{
max

{
e −

(
i−1∑
k=1

σ u
k (e) +

n∑
k=i+1

σ l
k(e)

)
, σ l

i (e)

}
, σ u

i (e)

}
· wceti

The above formula computes for every e ∈ Z≥0 the worst-case workload, that an event
sequence of length e could possibly impose to the system. In this worst-case event sequence,
at least σ l

i (e) events of every event type ti must be present. After fulfilling all these minimum
requirements, the remaining sequence is filled up using events of the type ti with largest
possible wcet, while still considering the upper bound σ u

i (e) on the possible occurrence for
every event type.

The lower workload curve γ l(e) can be computed in a very similar way. We only need
to replace wceti by bceti in the above formula and reorder the indices of the data sets, such
that data1 contains the data of the event type with the smallest bcet.

Figure 4 shows the workload curve of the event stream of Example 1, that was computed
using the type rate curves from Figure 2 and the WCET and BCET from the table in
Figure 1. The x-axis denotes the sequence length in number of events, whereas the values
on the y-axis give the workload imposed to a system by the stream. The upper and lower
straight lines show the worst- and best-case workload bounds of the stream, that we would
get without distinguishing between different event types.

4. Case Study

By giving an example of a simple design problem, we demonstrate the advantage of using
type rate curves in performance analysis of real-time systems. For the solution of the
problem, we employ in one case type rate curves and in the other we follow a common
way to characterize event streams, i.e. we do not make a distinction between various event
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Figure 4. The workload curve for the event stream of Example 1.

types in a stream. We compare results obtained from both of the approaches to show the
gain resulting from the application of type rate curves.

4.1. Application Scenario

For our example design problem, let us consider an application scenario as depicted in
Figure 5.

Figure 5 shows a basic system model of a networked multimedia device. The device
receives on its inputs real-time audio and video streams, compresses them and sends them
to a network. The compression is performed by tasks running on a media processor.

Audio and video frames periodically arrive into corresponding input FIFO buffers. For
each incoming audio or video frame the media processor executes an associated compression
task. The audio stream is processed by a MP3 task, whereas the video stream is compressed
by a MPEG-2 encoding task. After the processing, the streams are sent to output FIFO
buffers.

Figure 5. Application scenario.
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Figure 6. Task graph of the MPEG-2 encoder showing processing of different frame types.

In our example we will use workload curves to characterize processing load imposed by
the MPEG-2 encoding task on the media processor. We will obtain the workload curves
from the the type rate curves of the video stream. For this, we need to know some details
about the behavior of the MPEG-2 encoder, which we explain here.

The MPEG-2 compression scheme exploits three types of frames to encode video infor-
mation. These are I-, P- and B-frames. Before the compression, each input video frame is
assigned one of these types. Depending on the frame type, the encoder will execute different
subtasks to compress the frame, as shown in Figure 6. As a result, different frame types will
impose different execution demands on the processor.

The MPEG-2 standard1 does not specify any particular implementation of the encoder
algorithm. A designer, therefore, can choose between many different implementation op-
tions. In particular, the standard does not specify specific frame patterns that can be used by
the encoder to compress a video sequence. Advanced encoders use several predefined pat-
terns and can arbitrary switch between them based on the characteristics of the input video
sequence. Likewise our encoder can generate three commonly used patterns: IPB, IPBB
and IPBBPBB. Furthermore, if a scene change has been detected in the input video stream,
the encoder can interrupt the currently generated pattern at any place and start generation
of a new one. This behavior is, however, subject to a constraint: whenever a scene change
has been detected and a new pattern has been started, at least three consecutive frames must
be encoded without pattern interruption. An FSM describing the frame pattern generation
process is shown in Figure 7.

The processing capacity of the media processor is shared between the video and audio
streams. We assume that the video stream has a higher priority than the audio stream and
the processor scheduler is preemptive. Further, we assume that no other tasks except for the
video and audio encoding tasks are running on the processor.

The video and audio streams must be processed in real time. Since the audio stream
has lower priority than the video stream, audio frames may experience a processing delay,
that depends on interference from the video encoding task. To ensure quality of the audio
stream, we impose a constraint on the delay. We require the delay to be not greater than
some value.

Our design problem is to determine minimum clock rate of the media processor such that
the delay constraint for the audio stream is satisfied.



216 WANDELER, MAXIAGUINE AND THIELE

Figure 7. FSM specifying frame patterns generated by the MPEG-2 encoder.

We will provide a general solution to the problem based on the theory of Real-Time
Calculus (Chakraborty et al., 2003), that has its roots in Network Calculus (Cruz, 1991;
Le Boudec and Thiran, 2001). In the next subsection we give the necessary theoretical
background.

4.2. Theoretical Background: Real-Time Calculus

Real-Time Calculus uses abstract models to capture timing properties of event streams and
capabilities of processing resources. Timing properties of event streams are modelled by
arrival curves, whereas the capabilities of processing resources are represented by service
curves.

Definitions of arrival and service curves are similar to that of workload curves. An arrival
curve ᾱ(�) of an event stream is defined as an upper bound on the number of events seen
in the stream within any time interval �.

The processing capabilities of a processor (or communication bus) are usually expressed
in number of processor (bus) cycles per time unit. Thus, a service curve β(�) is defined as
a lower bound on the number of cycles available to an event stream within any time interval
�.

To obtain useful performance metrics for a system we combine the arrival and service
curves in a computation. However, before we can combine the curves we must be able to
transform event-based quantities into cycle-based quantities and vice versa. For this purpose,
we introduce the following notation. α(�) denotes the upper bound on processor cycles that
may be requested by an event stream in any time interval �. β̄(�) denotes the lower bound
on number of events that can be processed by a resource within any time interval �. Then,
we can employ the upper workload curve to do the transformations:

α(�) = γ u(ᾱ(�)) (1)

β(�) = γ u(β̄(�)) (2)

One performance metric that can be calculated using Real-Time Calculus is an upper
bound on the delay, that may be experienced by an event stream due to processing on a
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Figure 8. Abstraction of stream processing (a), calculation of the upper bound on the processing delay (b) and
abstraction of fixed-priority scheduling (c).

communication or computational resource. To compute the upper bound on the processing
delay we combine the arrival curve of an event stream and the service curve provided to
this stream as follows:

delay ≤ sup
�∈R≥0

{inf{τ ≥ 0 : ᾱ(�) ≤ β̄(� + τ )}} (3)

Figure 8(b) gives a graphical representation of (3).
When several event streams are processed by a single resource, each of them gets only

a portion of the full processing capacity of the resource. A scheduler decides which of the
streams gets the service at every instant of time. If a stream has not completely used the
portion of the service assigned to it, the remaining part of the service can be transferred
for processing of other streams. The remaining service can be computed using the formula
below.

βr (τ ) = sup
∀�∈[0,τ ]

{β(�) − α(�)} (4)

In (4) β and α denote service and arrival curves of the stream respectively, and βr designates
the remaining service curve. Figure 8)c) shows how the curve processing described by (4)
is done in the case of a fixed priority scheduler.

Finally, we have to introduce a notion of pseudo-inverse functions (Le Boudec and Thiran,
2001). All arrival and service curves satisfy the following properties: φ(�1) ≤ φ(�2) iff
�1 < �2, and φ(�) = 0 ∀� ≤ 0, where φ denotes an arrival or a service curve. Hence,
we define the pseudo-inverse of φ as follows:

φ−1(e) = inf
e∈Z≥0

{� : φ(�) ≥ e, � ∈ R≥0} (5)

Now, with this theoretical background we are ready to compute the minimum clock
rate of the media processor satisfying a given delay constraint for the audio stream in our
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application scenario. First, we derive an analytical bound on the minimum clock rate, and
after that, we explain how it can be computed in a practical setting.

4.3. Analytical Bound on the Minimum Clock Rate

Let D denote the delay constraint that we wish to satisfy for the audio stream. Then, using
(3) we have to require that

D ≥ sup
�∈R≥0

{inf{τ ≥ 0 : ᾱa(�) ≤ β̄a(� + τ )}} (6)

where ᾱa and β̄a designate event-based arrival and service curves of the audio stream,
respectively.

Let e denote a number of events. Then the delay constraint (6) can be expressed via
pseudo-inverse functions of arrival and service curves

β̄−1
a (e) ≤ D + ᾱ−1

a (e), ∀e ∈ Z≥0 (7)

Using definition (5) we can restate (7) as follows

β̄a
(
D + ᾱ−1

a (e)
) ≥ e, ∀e ∈ Z≥0 (8)

The constraint (8) is expressed in terms of event-based quantities. It says that in order to
satisfy the delay constraint D for the audio stream, we have to ensure that at least e audio
frames are completely processed within the time interval of length D + ᾱ−1(e). Since, we
are interested in finding the minimum clock rate of the media processor, we need to translate
(8) into a requirement expressed in number of clock cycles. We do it by using the upper
workload curve γ u

a of the audio stream:

βa
(
D + ᾱ−1

a (e)
) ≥ γ u

a (e), ∀e ∈ Z≥0 (9)

The right-hand side of (9) denotes the upper bound on the number of processor cycles that
may be needed to completely process any number e of consecutive audio frames.

From the problem definition we know that the video encoding task has a higher priority
than the audio task. Hence, the video stream can acquire the full processor capacity, while
the audio stream can get only the service that has been left after the processing of the video
stream. To find the remaining service for the audio stream we can use (4).

βa(τ ) = sup
∀�∈[0,τ ]

{βv(�) − αv(�)} (10)

where βv and αv denote the service and arrival curves of the video stream, respectively.
Using (10) and by noting that the service curve corresponding to the full processor

capacity is determined as f �, where f denotes the processor clock rate, we can restate
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constraint (9) as follows.

sup
∀�∈[0,D+ᾱ−1

a (e)]

{ f � − αv(�)} ≥ γ u
a (e), ∀e ∈ Z≥0 (11)

To satisfy (11) for a given value of e, it is sufficient to select f large enough such that
there exists �′ ∈ [0, D + ᾱ−1

a (e)] for which

f (e)�′ ≥ αv(�′) + γ u
a (e)

holds true. Since we are looking for the minimum clock rate we can require that

f (e) ≥ inf
∀�∈[0,D+ᾱ−1

a (e)]

{
αv(�) + γ u

a (e)

�

}
, ∀e ∈ Z≥0 (12)

To ensure that for any e ∈ Z≥0 the above constraint is satisfied we take the maximum
value of all possible values of f (e).

fmin = sup
∀e∈Z≥0

{
inf

∀�∈[0,D+ᾱ−1
a (e)]

{
αv(�) + γ u

a (e)

�

}}
(13)

or, equivalently,

fmin = sup
∀e∈Z≥0

{
inf

∀�∈[0,D+ᾱ−1
a (e)]

{
γ u

v (ᾱv(�)) + γ u
a (e)

�

}}
(14)

Equation (14) gives the analytical bound on the minimum clock rate of the media pro-
cessor required to satisfy the delay constraint D for the audio stream.

4.4. Computation of Minimum Clock Rate

To see the gain from the application of the type rate curves, we compute the minimum
processor clock rate for two different cases. In one case we obtain the upper workload
curve for the video encoding task γ u

v by employing the type rate curves of the video stream.
Like this we can take into account the per-frame execution demand variability of the video
stream. In the other case, we use a conventional worst-case analysis approach: we get the
workload curves under the pessimistic assumption that all frames within the video stream
take the same (largest possible) WCET for their processing.

To compute γ u
v from the type rate curves of the video stream, first we have to obtain the

type rate curves themselves. To do this we apply the method described in Section 3.2 to the
finite state machine of the MPEG-2 encoder shown in Figure 7. After that, we follow the
method described in Section 3.3 to derive γ u

v from the obtained type rate curves.
Figures 9 and 10 show results of these computation steps. We can see the obtained type

rate curves in Figure 9 and the derived from them upper workload curve γ u
v in Figure 10.

For the computations we used system parameters as specified in Table 1.
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Figure 9. Type rate curves of the MPEG-2 video stream.

Figure 10. The upper workload curves of the video encoding task. The workload curve obtained using type rate
curves is shown with the solid line.
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Table 1. System parameters.

Parameter Value

Audio stream
ra 44100/1152 fps
wceta 5 · 106 cycles

Video stream
rv 25 fps
wcetI 2·106 cycles
wcetP 8·106 cycles
wcetB 20·106 cycles

For comparison in Figure 10 we also plot γ u
v computed without using the type rate curves.

In this case, the upper workload curve of the encoding task is determined as

γ u
v (e) = e· max{wcetI , wcetP , wcetB}

where wcetI , wcetP and wcetB denote worst-case execution demands for I-, P- and B-frame
types, respectively.

To be able to compute the minimum clock rate, besides the upper workload curve of the
video encoding task γ u

v we also need to know the arrival curves of the video (ᾱv) and audio
(ᾱa) streams as well as the upper workload curve of the audio MP3 task γ u

a .
To obtain the upper workload curve of the MP3 task γ u

a , we assume that all audio frames
are of the same type and, therefore, in the worst case, require the same amount of cycles
wceta to be processed. Thus, we can put γ u

a (e) = ewceta .
According to our problem statement, the video and audio frames arrive with constant

rates into the input FIFO buffers. Let rv and ra denote the video and audio input frame rates,
correspondingly. Then, the respective arrival curves can be determined as ᾱv(�) = �rv��
and ᾱa(�) = �ra��. Note, that in general the shapes of the arrival curves may be more
complex.

Finally, using Eq. (14) we can compute the minimum clock rate of the media processor
that satisfies the given delay constraint D for the audio stream. Note, that in the theory it
is necessary to evaluate equation (14) up to e → ∞. This is to ensure that the value of the
clock rate is high enough to sustain the overall average load imposed by the streams on the
processor. However, computing up to e → ∞ is not possible in practice.

We can overcome this problem by trading off the accuracy of computation to the com-
putational time. We can evaluate (14) up to any given number of events emax, but we have
to put an additional constraint on the clock rate:

fmin ≥
(
γ u

v

(
ᾱv

(
ᾱ−1

a (emax)
)) + γ u

a (emax)
)

ᾱ−1
a (emax)

(15)
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With (15) we simply require that on some time interval of length ᾱ−1
a (emax) the processor

must provide the amount of service needed to fully process all video and audio frames that
may arrive within that interval. If emax is too small, then the constraint (15) may be very
pessimistic but the evaluation time of (14) can be short. If emax is large enough, then the
right-hand side of (15) approaches the average case from above but the evaluation time may
correspondingly increase.

4.5. Experimental Results

Using Eq. (14) in conjunction with the constraint (15) we computed the minimum clock
rate of the media processor for a range of values of the delay constraint D and for the
system parameters specified in Table 1. Figure 11 shows the results of these computations.
The solid line was computed using type rate curves, while the dashed line shows the results
obtained without type rate curves.

In Figure 12 we plot the gain resulted from the usage of the type rate curves. For different
values of D, the plot shows the percentage by which the minimum clock rate computed
using type rate curves is smaller than the minimum clock rate computed by the conven-
tional approach (i.e. under the assumption that all video frames have the same execution
requirement in the worst case). By inspecting the plot we can see that for large values of
the audio delay constraint we can gain up to 20% of savings in the clock rate by applying
the type rate curves for the analysis of the system.

Figure 11. The minimum clock rate computed with type rate curves (solid line) and without using them (dashed
line).
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Figure 12. The gain obtained from using type rate curves.

5. Conclusions

In this paper, we presented a new abstract stream model to characterize event streams that
are composed of a finite number of different event types. We further presented an analytic
method to obtain these abstract stream models from a stream specification as well as a
method to deduce an abstract workload characteristic that such a stream is imposing on a
processing unit. We have shown the applicability of the presented methods in context with
performance analysis of a multimedia application, where a considerable improvement of
the worst-case performance bounds was achieved compared to conventional methods.

Note

1. International Standard Organization. Information technology—Generic Coding of Moving Pictures and Asso-
ciated Audio Information—Part 2: Video, ISO/IEC 13818–2.
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