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Generalized Cross-Covariances and Their 
Estimation 1 

H. R. Kiinsch, 2 A. Papritz, 3 and F. Bassi 2 

Generalized cross-covariances describe the linear relationships between spatial variables observed 
at different locations. They are invariant under translation of  the locations for  any intrinsic pro- 
cesses, they determine the cokriging predictors without additional assumptions and they are unique 
up to linear functions. I f  the model is stationary, that is i f  the variograms are bounded, they 
correspond to the stationary cross-covariances. Under some symmetry condition they are equal to 
minus the usual cross-variogram. We present a method to estimate these generalized cross-covar- 
iances from data observed at arbitrary sampling locations. In particular we do not require that all 
variables are observed at the same points. For fitting a linear coregionalization model we combine 
this new method with a standard algorithm which ensures positive definite coregionalization ma- 
trices. We study the behavior o f  the method both by computing variances exactly and by simulating 
from various models. 

KEY WORDS: multivariate intrinsic processes, cokriging, cross-correlations, variance of incre- 
ments, undersampling, coregionalization. 

INTRODUCTION 

Cokriging is a powerful method which exploits linear relations between several 
spatial variables for predicting values at unsampled locations or block means. 
Wackernagel (1995) considers in detail its various theoretical and practical as- 
pects, but unlike univariate kriging there are unresolved issues in the procedure. 
One has to decide which function to use for expressing linear relations between 
variables: the cross-variogram, the pseudo cross-variogram (Myers, 1991), or 
the cross-covariances. Each option imposes certain restrictions on the models 
one can consider and on the sampling scheme. To estimate these functions from 
data we have to assume that they are invariant under translation, that is they 
depend only on the relative positions of any two locations. For any intrinsic 
model the cross-variogram has this property, but the cross-covariances are trans- 
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lation-invariant only if the processes are stationary. The pseudo cross-variograrn 
is intermediate: it is shifi-invariant for some nonstationary models, but not for 
general intrinsic processes (Papritz, Kiinsch, and Webster, 1993). However, the 
cross-variogram has other disadvantages: it cannot be estimated unless both 
variables are observed at many sampling locations, and it is sufficient for co- 
kriging only if an additional symmetry condition holds [Condition (iii) of Myers, 
1982], which is equivalent to the symmetry of the cross-covariances in the 
stationary situations. The pseudo cross-variogram or the cross-variances do not 
have either of these limitations. 

In this paper we investigate a different function for expressing linear rela- 
tions which is termed the generalized cross-covariance. It is free from any of 
the noted restrictions. It is shift-invariant for any intrinsic model, it can be 
estimated from arbitrary sampling schemes and it determines the cokriging pre- 
dictor without additional assumptions. First, we define the new function and 
discuss its properties, and then, we present a new estimation method for general 
sampling schemes. The first part is of more theoretical interest because the 
definition of the new function is not explicit except in symmetric situations 
where it is equal to minus the standard cross-variogram. Although in most soil 
science applications the symmetry assumption is plausible, checking it may be 
helpful. Our results make this possible without assuming stationarity. Moreover 
the new estimation method is of high practical importance because one variable 
may be undersampled in many applications. It is the same idea which was 
presented in Papritz, Kiinsch, and Webster (1993), namely least-squares fitting 
of the cloud of products of differences to estimate the expected value of these 
products. But here we show how one can obtain a computationally feasible 
solution to this minimization problem. The method can be applied to any par- 
ametric model for the generalized cross-covariance. In particular, by selecting 
a piecewise constant function, we obtain the experimental generalized cross- 
covariance. But this method does not necessarily give an estimate which is 
conditionally positive definite. In order to guarantee positive definiteness in the 
coregionalization model, we combine our estimation method with the algorithm 
of Goulard and Voltz (1992). When one variable is undersampled, the experi- 
mental auto- and cross-variograms are estimated for different lag distances, and 
thus this algorithm needs to be modified. 

One may argue how much one gains by working with intrinsic models 
instead of stationary ones, but there are many examples where the variograms 
seem to be unbounded over the region where observations are available. We 
think that in such situations one should not use a stationary model. In particular, 
estimation of both the cross-covariances and the pseudo cross-variogram requires 
the mean to be estimated first. This may lead to large biases when the variogran2, s 
are unbounded. One might further contest the need for modeling asymmetric 
cross-correlation patterns between variables observed in the two- or three-di- 
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mensional space because there is little evidence for this in the literature. But 
this lack is partly the result of the use of the cross-variogram for describing 
cross-correlation, and this function, being even, cannot describe asymmetries. 
For all these reasons, we believe that our method represents a significant ad- 
vantage. 

G E N E R A L I Z E D  CROSS-COVARIANCES 

We consider a bivariate random process Z(x) = (Zl(x), Z2(x))' indexed by 
points x ~ ~2. (, denotes the transpose). The situation of more than two variables 
is a straightforward generalization. A linear combination 

/11 /12 

will be termed an increment (of order zero) if 

nl /12 

~Xj= ~ u ~ = O  i= k=l 
Thus, increments are unchanged if we add arbitrary constants to each variable. 
Note that the usual unbiasedness conditions in cokriging imply that the errors 
of the ordinary cokriging system are increments. 

Definition (Z(x)) is intrinsic (of order zero) if 

(i) All increments have expectation zero. 

(ii) The variance of any increment does not change if we add an arbitrary 
displacement h ~ y~2 to all x~, i and X2,k. 

Because we consider here only increments and intrinsic models of order zero, 
we omit the order from our terminology. 

We turn now to the computation of the variance of increments. Clearly 

War [in__~l )kiZl(Xl,i) + k~=l P'kZ2(X2,k ) ]  

[ ~-~' ~iZl(Xl,i)l + Var [k~=l ltkZ2(X2,k) ] = Var l_ i= 1 

+ 2 Cov i )kiZl(Xl ' i ) '  k~l= (1) 

It is well known that 

V a r  XiZl (x ,  ~ = - E XiX/Yl l (x l , i  - x l j )  
i ' i = l j =  

(2) 
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and 

I ~ 1 n2 n2 
V a r  p, kZ2(X2,k)  -~ -- ~ ~ 12kl, gl'Y22(X2, k - -X2 , / )  ( 3 )  k l k = l  l=1  

where %~(h) denotes the semivariogram of (Z~(x)). Because -3 ,~ (h )  acts like 
the usual autocovariance in (2) and (3), it also is termed a generalized autoco- 
variance (see Matheron, 1973). Similarly a function p12(h) will be termed a 
generalized cross-covariance if 

C o y  )kiZl(Xl, i) ,  ]/,kZ2(X2,k) = ~ hiPkPl2(Xl, i -- X2,k) (4) i= k 1 i =  k = l  

holds provided ~ )k i : ~ /.t k = 0 (see Dowd, 1989 or Christakos, 1992, chapt. 
4.4). However, it is far from obvious whether such a generalized cross-covar- 
iance exists for arbitrary intrinsic processes, whether it is unique and how we 
can determine it if it exists. Some simplification occurs because for an arbitrary 
x ~  ~2 

nl n I 

)k iZ l (Xl  i) = =~1 )ki(Zl(Xl' i)  -- Z I ( X ) )  i=l  ' i= 

and 

Thus 

n2 //2 

N u,k~(x2,~,) = k~l ~k(~(X2,k) - ~ ( x ) )  
k=l 

C o y  )ki Z l  ( x  i, i) ,  ~k Z2 (x2, k) i=  k = l  
/11 n2 

= i~_l k~-_l ~'il-~kE[(Zl(Xl,i) - Zl (X) ) (Z2(X2 ,k )  - Z 2 ( x ) )  ] (5) 

From this it follows that we have to check (4) only for special increments: PI2 
is a generalized cross-covariance if 

E[(Zl(x + hi) - Zl(x))(Z2(x + hE) -- Z2(x))] 

= ~12(hl - h2) - r ' 1 2 ( h l )  - u12(-h2) + ~12(0) (6) 

Equation (4) follows easily from (6) and (5) by using r~ )k i = y~ JLtk = 0. It would 
be nice if we could simplify (6) further and replace it by something which 
involves only a single displacement, but this seems not possible. 
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We now discuss existence and uniqueness of generalized cross-covariances. 
First, note that if the process is stationary, then the usual cross-covariance is 
also a generalized cross-covariance. Next, for hi = h2 = h the left-hand side 
of (6) is twice the cross-variogram 712(h). Hence the generalized cross-covari- 
ance determines the cross-variogram 

V12(h) = v12(0) - �89 + v 1 2 ( - h ) )  (7) 

If the symmetry condition (iii) of Myers (1982) holds, then minus the cross- 
variogram is a generalized cross-covariance [see Myers, 1982, Eq. (16)]. To 
see the connection with Equation (7), note that the symmetry condition is equiv- 
alent to v12(h) = Vl2(-h) and constants do not matter for the generalized cross- 
covariance, as discussed after the main theorem. But if the symmetry condition 
does not hold, the cross-variogram does not determine the generalized cross- 
covariance. This is intuitively obvious from (7) and we will give such an ex- 
ample shortly. Next, assume that 

1 Var[Zl(x + h) - Z2(x) ] 

is independent of x for all h. Then, this expression is termed the pseudo cross- 
variogram "yq2(h) (Myers, 1991), and -TP2(h) is also a generalized cross-co- 
variance [see Eq. (5') of Myers, 1991 or Eq. (6) of Papritz, Kfinsch, and 
Webster, 1993]. As discussed in Papritz, Kfinsch, and Webster (1993), the 
pseudo cross-variogram is shift-invariant for some, but not for all intrinsic non- 
stationary processes. It is easy to give examples for which neither the cross- 
variogram nor the pseudo cross-variogram nor the cross-covariances is adequate. 
Let (Y(l)(x)) and (Y(2)(x)) be two independent univariate processes with linear 
semivariogram g(h) = ][h[[ and define 

ZI(X ) = allyr + a12yr 

Z2(x ) = aElY~ - -  U l )  -'F aE2y(2)(x - u2) 

Then, it is checked easily that 

Pl2(h) : --alla211[U 1 -]- h{} - a128221lu2 + h[[ 

Thus, v12 =/: 712- Also, Cov[Zl(x + h), Z2(x)] and Var[Zl(x + h) - 7-,2(x)] 
both depend on x. Moreover, it is true that Var[XlZl(X + h) - X2Z2(x)] depends 
on x for any )x I and X2, so scaling of the variables does not help. Hence, the 
following result is a genuine extension to all situations considered before. 

Theorem. If (Z(x)) is an intrinsic process with 711(h) and 722(h) both 
continuous at h = 0, then there exists a generalized cross-covariance v12. It is 
unique up to linear functions. 

Because the proof uses more advanced mathematical machinery, we put it 
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into the Appendix. It shows that a valid generalized cmss-covariance can be 
represented in the form (27) where C12 and QI2 are measures satisfying (24) 
and (25), Ci2  is even and QI2 is odd. The first integral is equal to the cross- 
variogram, and Q12 is zero if the symmetry condition (iii) of Myers (1982) 
holds. In the stationary situation C12 and Ql2 are finite measures and we can 
integrate each term on the right-hand side of (27) separately. Then, we obtain 
the usual cross-covariance plus a linear function. It is easy to see that when a 
linear function c o + Clhl + c2h 2 with arbitrary coefficients Co, cl, c2 is added 
to a generalized cross-covariance, the result is again a generalized cross-co- 
variance. This corresponds to the nonunJqueness of generalized covariances for 
univariate intrinsic processes of  higher order (cf. Matheron, 1973). 

By combining (1)-(3) and (4) we determine 

+ 1 
nl nl n2 tt2 

= - Z Z XA:rH(x,,, - x,,j) - Z /__E - 
i = l j = l  k = l  = 

nl n2 

+ 2 ~=1 Z )kiftkPl2(Xl, i -- X2,k) (8)  i= k=l 

This equation has two main uses. First, we can derive the equations for cokriging 
when 711, "Y22, and vl2 are given. This is well known, so we omit the details. 
Second, we can use it for estimating "/J2 as well as 711 and 722, although other 
methods are available for estimating the latter. This will be discussed in the 
next section. Thus, although the generalized cross-covariances are defined only 
through a rather abstract existence theorem, they can be estimated from data. 
So the concept also is useful for a practitioner. 

E S T I M A T I O N  OF G E N E R A L I Z E D  CROSS-COVARIANCES 

General  Fitting via Least Squares 

We assume that we have a parametric model vl2(h ) = Vl201; 0) and want 
to estimate the parameter 0 (which usually contains several components) from 
data (Zl(xl,i), i = 1 . . . .  n0  and (Z2(x2,i), i = 1 . . . .  hE). Define 

Pukl = (Z l (X l , i )  - -  Z l ( X l , p ) ( Z 2 ( X 2 , k )  - Z2(x2,1)) (9) 

and 

~ijkl(O) = PI2(XI,i  - -  X2,k; O) - -  PI2(XI, i  - -  X2,1; O) 

- - P I 2 ( X I , j  - -  X2,k; 0 )  "a t- Pl2(XI, j  - -  X2,/; 0 )  (10) 
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Then by Equation (4) 

E[Pijkt] = 7rijkt(0) (I 1) 

We now fit the Try/us to the cloud of the Pijk~s by least squares, that is we propose 
to estimate 0 by minimizing 

nl nl  n2 n2 

QI2(0) = ~ ~ ~ ~ (Pijkl- 71ijkl(O)) 2 (12) 
i = l  j = l  k = l  l = 1  

[cf. Eq. (24) in Papritz, Kiinsch, and Webster, 1993]. There we assumed the 
symmetry condition which implies that vl2(h) = -3q2(h), but this is not nec- 
essary. The drawback of (12) is that in this form we need approximately 
1 2 2 I 2 2 znl n2 multiplications and ~nl n2 additions to compute Q12(0) for one value of 0 
even if we ignore the operations needed to compute 7ri/k~(0 ). Except for n 1 and 
n 2 being small, this is not feasible. However by simple algebraic manipulations 
we can convert the expression defining QI2(0) into a form which needs far less 
operations to compute. For this we write 

so that 

Then because 

piA0) = vl2(xl.i - x2.~; 0) 

"lFijkl(O) -~- P i k ( O )  - -  D i l ( O )  - -  Djk (O)  q- P j l ( O )  

7Fijkl ( 0 )  "~- - -  71"ijlk ( 0 )  "~- - -  71"jikl ( 0 )  ~" 7Fjilk ( 0 )  

we obtain 

nl nl n2 n2 

i j k=l t=l 
nl nl  n2 n2 

= 4 ~=l ~1 ~ ~=l 7rijkl(O)Pik(O) 
i =  j =  k = l  1= 

tl l n2 n I n2 n2 

= 4nln2 i~1 ~=, Pik(0)2 -- 4nl i~t k~=, t~l Oik(O)Pil(O) 

nl nl n2 Ill tll n2 n2 

-4n2 ~=1 ~1 ~ Pik(O)Pjk(O) q- 4 ~=I ~J k~-Jl ~ Pik(O)Pjl(O) 
i =  j =  k = l  i j = l = 1  

2 o ) 
: 4n,n2 i~l k~=l P i k ( 0 ) 2  - -  4n, i~l \ k : l  P i k ( O )  

2 2 

( ~ _ _ ~ , )  4 (  ~' "2 ) \  Pi~ - -  4n 2 ~ P i k ( O )  if" = ( 0 )  
k = 1 i ~ i  = I k ~ l  
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Similarly, because 

we have 

P i j~ = - -  P i~tk = - - e j i k l  = P filk 

nl nl n2 n2 

~=1 X ~=1 PijklTrijkl(O) i = l j =  k = l  l=  
nl nl n2 /12 

= 4 ~ ~=l ~ ~t PijklPik(O) i = l j =  k=l l= 
Ill n2 

= 4nln2 i__~l k_~l Dik(O)(Zl(Xl,i) -- Zl)(Z2(X2,k)  - Z2) 

Taking these results together we see that 
nl nl 

�88 QI2(O) = / i - -~ l  j=~l ( Z l ( X l ' / )  - -  Z I ( X I ' j ) ) 2  

n2 n2 

�9 Z Z (Z~(x2,k) - Z2(x2.t)) ~ k=l I=I 
n l rt2 

- -  2 n l n  2 i ~ l  k=~l Pik(O)(Zl(Xl, i)  -- 21)  

nl r/2 

�9 - § n , n 2  ,x, 
2 2 

i=1 \ k = l  19ik(O) -- n2 k=l ~ i=l~ Pik(O) 
2 

+(i~=lk~=l#ik(O)) ( 1 3 )  

All sums on the fight now involve only two indices. This implies that the number 
of operations required to compute Q12(0) is only the square root of what we had 
before. So the computation is feasible for most datasets occurring in practice. 

The simplest situation occurs when v~2(h; 0) depends linearly on the pa- 
rameters, that is: 

P 

v1201; 0) = ~ 0rfr(h ) (14) 
r = l  

wherefl(h) . . . . .  fp(h) are given functions. Then Q12(0) is a quadratic function, 
and minimizing Ql2(0) is equivalent to solving a system of linear equations. 
The coefficients of this linear system can be deduced easily from (13). 
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Experimental Generalized Cross-Covariances 

In order to estimate generalized cross-covariances without imposing some 
particular structure, we use the model 

P 

~'12(h; 0) = ~ OrlArO! ) (15) 
r = ]  

where Al, A 2 . . . . .  A r are subsets of B E and la(h) is the indicator function of 
a set A (i.e., equal to one if h ~ A and equal to zero otherwise). In the isotropic 
instance the sets Ar will be concentric rings around zero. In the anisotropic 
situation each ring will be split for instance into eight sectors. 

We estimate the parameters 0r by the least-squares method described in the 
previous section. The normal equations are simple and involve only counting 
pairs of observation points satisfying certain conditions, but some thought is 
necessary for answering the question which parameters can be estimated. First, 
vl2 is determined only up to a linear function. So we can assume that Vie(0; 0) 
= 0, and VIE((1, 0)'; 0) = p12((0, 1)'; 0) = 0 in the anisotropic example. 
Second, some parameters cannot be estimated because of the geometry of the 
observation points: if xt, i - x2, k E A r for all pairs (i, k) or xl, i - x2, k ~ Ar for 
all pairs (i, k), then 0r cannot be estimated. In particular when two variables are 
never available at the same location, we cannot estimate a pure nugget com- 
ponent. 

We consider the estimated parameter O r a s  the experimental generalized 
cross-covariance for lag h equal to the average of pairwise differences x~, i - 
xz, k belonging to Ar. For a more sophisticated procedure which gives an exper- 
imental generalized cross-covariance for all lags, one could replace the indicator 
functions in (15) by the basis functions in the space of splines with suitably 
selected knots, but we do not pursue this here. 

Estimation in the Coregionalization Model 

In the linear coregionalization model (Joumel and Huijbregts, 1978; Wack- 
ernagel, 1988; Goulard and Voltz, 1992), the symmetry condition is satisfied 
and the variograms have the form 

S 

"yjk(h; O) = ~ b}kg$(h, s )  
s = l  

Here, each g~ is a semivariogram of an intrinsic univariate process. The unknown 
parameters 0 are on one hand the coregionalization matrices (b]k) which have to 
be positive definite for all s and the parameters ~7 s which fix typically the range 
and/or the shape of each g~. In principle, we could apply our general estimation 
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method directly, but the nonlinearity in ~1 might be delicate, and the estimated 
coregionalization matrices are not guaranteed to be positive definite. Therefore, 
we prefer to build a procedure based on existing algorithms which avoid these 
problems. We use our new method only to compute an experimental cross- 
variogram, then we estimate iteratively the parameters ~s with the coregionali- 
zation matrices kept fixed and vice versa. In the first step, we use nonlinear 
least squares for the difference between experimental and theoretical variograms. 
For this step there exists a large experience and it generally behaves well. In 
the second step, we use the algorithm of Goulard and Voltz (1992) which 
iteratively minimizes the criterion 

W S S  = ~ ,  w ( h r ) t r [ ( V ( r  (hr)  - l ' (hr ;  0))) 2] 
r 

under the side condition that all (b}k) must be positive semidefinite. Here ~ is 
the matrix of experimental variograms, w are some weight functions and V is a 
diagonal matrix of weights. Compared to its standard version there are two 
particular features which needed attention. First, as explained, if the sampling 
locations of the two variables are disjoint and gi corresponds to a nugget effect 
then the experimental cross-variogram is determined only up to the addition of 
const.gl(h) where const, is arbitrary. Thus, it is not possible to estimate blz. 
We tackle this problem as follows: At the beginning of the ith iteration step we 
replace '~i2 by ~12 - const.(~ I where 

= Z Wr [ 'Y l 2 (h r )  - -Yi2(hr; o'i-I ')]/Z W r const. (0 
r I r  

and 0 (;" 1) are the parameters estimated in the (i - 1)th step. During the ith 
iteration we then minimize WSS as usual with respect to bil, bl2, and bl2 subject 
to the condition that the first two coefficients should be nonnegative. The coef- 
ficient b12 tends to zero with proceeding iteration and therefore does not interfere 
in estimating bll and bl2. Second, in the undersampled situation, the experi- 
mental variograms "Y11, "YI2, and "~22 are all available at different lags. But for 
the criterion WSS, we need them for the same lags. We solve this by setting the 
missing values of the experimental auto- and cross-variograms equal to 71/(h; 
0 (i- ~)) at the begin of the ith iteration step. A FORTRAN program which puts 
all these steps together is also available upon request from the second author. 

NUMERICAL EXPERIMENTS 

The Experimental Cross-Variogram 

We consider here the situation where we have observed a bivariate Gaussian 
random process at coincident locations on the regular grid {1, 2 . . . . .  n} 2. In 
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this situation, three experimental cross-variograms are available: the standard 
one which averages the products 

(Zl (x i )  - Z l ( x j ) ) ( Z A x , )  - Z 2 ( x i ) ) / 2  

over pairs (xi, xj) in a given lag class, the new one introduced in this section 
and the one based on the empirical cross-covariances t~2(h), which we obtain 
by averaging 

(ZI(Xi) -- Z1)(Z2(xj)  - Zr2) 

over pairs (xi, xj) in a given lag class. Our aim is to compare these three 
estimators with respect to bias and standard deviation. They are all certain 
quadratic forms in the observations. We thus can compute their expectation and 
because of  the Gaussian distribution also their variance in closed form. We first 
look at the situation where all auto- and cross-variograms are linear: 

~f f (h )  = ~011hll 

We select fl~ = ~22 = 1 and/3~2 = 0.7 although this is not essential for our 
conclusions [note that the bias is proportional to fl~2 and the standard deviation 
is proportional to (/311fl22 + fl~2)~/2]. The results for n = 4, 8, 12, 16 and lag 
classes (i - 0.5, i + 0.5] are given in Tables 1-3. Clearly the estimator based 
on experimental cross-covariances is the worst both with respect to bias and 
random variability. Of  course this is not surprising because our model is not 
stationary. But it supports our claim that one should not rely on experimental 
cross-covariances when variograms are unbounded. A similar behavior is ex- 
pected also for the experimental pseudo cross-variogram. In contrast to this our 
new estimator has negligible bias and shows the same random variability as the 

lble 1. Standard Deviation for the Standard Experimental Cross-Variogram. This Estimator is Unbiased for 

All Lag Classes 

Lag class 

1 2 3 4 5 6 7 8 9 10 11 
= 4 0.43 1.12 1.95 2.81 . . . . . . .  

= 8 0.23 0.62 1.14 1.91 2.85 3.73 4.64 5.62 6.82 8.54 - -  
= 12 0.16 0.44 0.81 1.38 2.09 2.83 3.67 4.52 5.49 6.47 7.39 
= 16 0.13 0.34 0.64 1.09 1.65 2.25 2.94 3.68 4.56 5.50 6.38 

Lag class 

12 13 14 15 16 17 18 19 20 21 
= 12 8.40 9.61 10.85 12.27 13.43 . . . . .  

= 16 7.28 8.21 9.17 10.04 11.18 12.32 13.86 14.89 16.18 17.33 
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standard estimator except lor the lag classes which are small compared to the 
observation region. For these lags the standard estimator is considerably better. 
We explain this behavior as follows: our new estimator has to estimate the cross- 
variogram simultaneously for all lag classes, and the large variability for larger 
lags also affects the smaller lags. An improvement can be obtained from the 
following idea: instead of computing the estimator based on all observation 
locations, we can compute it for smaller, overlapping subsets and then average 
over all the results. By doing this we obtain estimates only for small lag classes, 
but it is for these that we want an improvement. We implemented this idea by 
selecting as the subsets all two by two squares of neighboring locations, then 
we have only one lag class, the first one. The standard deviation of the resulting 
estimator is 0.42 for n = 4, 0.22 for n = 8, 0.15 for n = 12, and 0.12 for n 
= 16, respectively. Comparison with Table 1 shows that this estimator is as 
good as the standard one. 

A further estimator is given by 

~12(h) = "~P2(O) - .~P2(h) 

where -~Px(h) denotes the experimental pseudo cross-variogram which is ob- 
tained by averaging 

(EI(Xi) - -  Z l  --  Z2(xj )  "q- Z2) 2/2 

over pairs (xi, xj) in the lag class corresponding to h. A comparison of this with 
the previous estimators is more difficult because the conclusions depend on the 
selection of ~ij. For instance the bias is not proportional to ~2,  but proportional 
to/311 + /~22 - 2/312 and thus is large if the two processes are independent or 
negatively dependent. In the special situation ~1 = ~ 2 2  = 1 and /312 = 0.7 
which is favorable for this estimator, the biases are approximately half as big 
as for the estimator based on empirical covariances and the standard deviations 
are similar to the ones for the standard experimental cross-variogram. 

We did the same calculations for exponential variograms 

7u(h) = /3ij(1 - exp(-l[hf]/2)) 

This model is stationary, and we thus expect that all three experimental cross- 
variograms are comparable. The results show that this is indeed the situation; 
both the biases and the standard deviations of all three estimators are close. We 
thus omit the corresponding tables. 

Simulation Results for Some Coregionalization Models 

We consider here all possible nine combinations of three models and three 
sampling configurations. In the first model 

3'ik(h) = /3jk(1 - exp(-Ilhll/~)) (16) 
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with 311 = 322 = 1,312 = 0.7, ~ = 2, in the second model 

']/jk(h) = ~)kX[[[hl] >0] 4- ~2k(1 -- exp(-Ilhl l /w)) (17) 

with 311, = 3~2 = 0.25, 3112 = 0.175, 3~, = /3222 = 0.75, /322 = 0.525, and r/ 
= 2. Finally, in the third model 

3`jkoa) = Ilhll" (18) 

with fill = fl2z = 1, fl~2 = 0.7, r/ = 1. The unknown parameters are all the 
fls and r/. 

In the first configuration we have n 1 = n2 = 256 with 

Xl, i = X2, i ~ {1, 2 . . . . .  16} 2 (19) 

in the second configuration again n~ = n2 = 256, but 

Xl,i e {1, 2 . . . . .  16} z, x2, i E {1 .001 ,  2 .001  . . . . .  16 .001}  2 (20) 

and in the third configuration n~ = 400, n 2 = 100 

X,,i ~ {1, 2 . . . . .  20} z, X2,i ~ {1, 3 . . . . .  19} 2 (21) 

These options cover a wide range of  different situations. 
For each model and configuration we generated 200 replicates of  (Zl(xl.i)) 

and (Z2(x2,i)). The standard estimator was used to compute all the experimental 
autovariograms, and it also provided estimates of  the experimental cross-var- 
iograms for configurations (19) and (21). For all configurations the experimental 
cross-variograms were computed by the new estimator using the procedure as 
outlined. We used the lag classes (0, 0.5], (0.5, 1.5] . . . .  for all variograms, 
then we fitted the linear model of  coregionalization to the experimental vario- 
grams applying Goulard and Voltz 's  algorithm with the extensions as described. 
Experimental semivariances for lag distances <_ 8 were used in fitting, and all 
the lag classes had equal weight. 

The biases and standard deviations of  the estimated parameters were com- 
puted from the 200 replicates. They are listed in Tables 4-6.  Two types of  
comparisons are of  interest here: comparing the two estimators for the same 
configurations and comparing the different configurations for the same esti- 
mators. For configuration (19) and models (16) and (17) the two estimators are 
practically the same. For configuration (21) and models (16) and (17) the new 
estimator is clearly better. This is true not only for the parameters of  ~21 but 
also for those of  3'22. 

Surprisingly, the new estimator of  the range r/is better only in model (16), 
but not in model (17). For (17) a smaller bias of  the new estimator ~ is com- 
pensated by a larger standard deviation. With the model (18) the standard es- 
timator is better for both configurations (19) and (21) as was expected. The 
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Tab le  4. Biases (Upper) and Standard Deviations (Lower) of the Parameters of  the Linear  

Coregional izat ion Model  Fitted to Experimental  Var iograms for Configuration (19) ~ 

Model  (16) Model  (17) Model  (18) 

OLD NEW OLD N E W  OLD N E W  

17 0.065 0.064 0.494 0.506 - 0 . 0 7 5  - 0 . 0 7 6  

0 .784 0.781 2.008 2.077 0.262 0.285 

131~ 0.034 0.033 - 0 . 0 1 3  - 0 . 0 1 2  0.086 0.095 

0.295 0.293 0.151 0.151 0.303 0.334 

/312 0.032 0.032 - 0 . 0 0 6  - 0 . 0 0 5  0.136 0.143 

0.283 0.286 0.145 0.143 0.315 0.342 

/~1t2 0.029 0.029 - 0 . 0 1 2  - 0 , 0 1 4  0.058 0.84 

0.237 0.218 0.111 0.114 0 .172 0.220 
B~I - -  - -  0,059 0,061 - -  - -  

- -  - -  0.319 0,333 - -  - -  

fl~2 - -  - -  0.058 0.059 - -  - -  

- -  - -  0.312 0.320 - -  - -  

/~22 - -  - -  0.057 0.062 - -  - -  

- -  - -  0.291 0.298 - -  - -  

~ experimental  cross-variograms were computed by the standard (OLD) and new (NEW) esti- 

mators. 

Tab le  5, Biases (Upper) and Standard Deviations (Lower) of  the Parameters of  the Linear  

Coregionalizat ion Mode] Fitted to Exper imental  Var iograms for Configuration (20) ~ 

Model  Model  Model  

(16) (17) (18) 

7/ 0.077 0.250 - 0 . 0 9 8  

0 .736 1-376 0.244 

B~ 0.024 - 0 . 0 1 2  0.080 

0.266 0-123 0.299 

/3212 0.002 - 0 _ 0 1 4  0.124 

0.248 0.121 0.333 

BI2 0.017 - -  0 .030 

0.216 - -  0 .220 
/~1 - -  0 .072 - -  

- -  0.303 - -  

t ~  - 0 . 0 5 8  - 

- -  0 _ 2 8 2  - -  

r  - 0 . 0 5 0  - 

- -  0.241 - -  

o For  this configuration the experimental  cross-var iogram can be computed only by the new estimator. 



G e n e r a l i z e d  C r o s s - C o v a r i a n c e s  7 9 5  

> 

e- 

-=  

o 

= 

o 

v 

0~ 

= 
o 

e~ 

A ~  

O c ' 4 0  ce~ ~ c~ O C'4 

I 
I I I 

U-- ~ ~ I ~  I ~ ~ ~ 
~ ~" ~ ~ ~ U "~ ~ W'~ 

I 
I I I 

O ~ O O O O O O O O O O O  O 
I 

O ~ O O O  O O ~ O O O O O O 
I 

O O O O O O O O 

O O O O O  O O O 

o 

z 

f~ 

e~ 

e~ 

E 
8 

O -=  

,> 

e~ 

- =  

2 



796 Kiinsch, Papritz, and Bassi 

larger standard deviation of the new estimator of  the experimental cross-vario- 
gram at small lags carries over to the estimator of the parameters. 

Comparing the different configurations, we see that (21) is the best for 
model (16). The only exception here is the bias of the estimated range. For 
model (17) configuration (19) is the worst, but the comparison between (20) 
and (21) is less clear. Using (20) we obtain a greater precision for the estimates 
of r/,/3212, and/322, but we cannot estimate ill2 at all and we loose some precision 
for/3~1. Finally for model (18), configuration (19) again is worst, whereas (20) 
and (21) are about the same. The precisions for ~ and fill are practically the 
same for both configurations, and (20) is better for/312, but worse for/322. As 
a conclusion, taking an equal number of observations for the two variables at 
coincident points seems to be a bad strategy. Surprisingly undersampling of one 
variable seems to allow reasonable estimates even for the autovariogram of the 
undersampled variable. Of course for selecting between different configurations, 
sampling costs also have to be taken into account. 

CONCLUSIONS 

The generalized cross-covariances solve some of the difficulties associated 
with cross-variograms, pseudo cross-variograms, and cross-covariances. The 
last two concepts restrict the class of models that we can consider. Our numerical 
experiments have clearly shown that experimental cross-covariances should be 
avoided when variograms are unbounded over the available lags. Unlike the 
cross-variogram the generalized cross-covariances can be used for modeling 
correlation between intrinsic random processes that depend on direction. The 
new method for estimating generalized cross-covariances allows us to check 
this, and it solves the problem of computing the experimental cross-variograms 
when some variables are undersampled with respect to others. 

We have implemented the new estimator, and for the linear model of  co- 
regionalization where the generalized cross-covariances are equal to minus the 
cross-variogram, we have combined it with the algorithm of Goulard and Voltz 
(1992) to ensure a valid model. Tests on simulated data showed that the new 
estimator of the cross-variogram generally behaves well. If, however, the var- 
iograms are unbounded then it is less efficient at short lags than the standard 
method. But the latter requires coincident locations, and we have indicated how 
the former can be improved in such a situation. 

In summary, we believe that our results solve some problems related so 
far with cokriging and enhance this powerful tool. 
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APPENDIX: THE EXISTENCE OF GENERALIZED CROSS- 
COVARIANCES 

We give two proofs. The first one is short, but relies on abstract analysis. 
According to Gelfand and Vilkenkin (1964, chapt. III 5.5), there exists a com- 
plex matrix valued measure (F0) 1 _< i,j ~ z on N2 with the properties 

(dF 0 (to)) is positive definite (22) 

dFo(-to ) = dF~(to) (23) 

I Iltoll2dFo(oJ) exists (24) 
0< lltd-< 1 

f dFij(to) exists (25) 
II~[I > 1 

f 
E = / X k exp ( x / - l t o  �9 x~) 

d tt~II > o k 

�9 ~,, X; exp (_~-Z-~to . x;)dFo(to) 
z (26) 

for any two increments Ek X~Zi(xk), Et X~ Zj(x;) where the dot denotes the inner 
product in ~ 2  
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Let us comment  briefly on the differences between this and the statements 
in Gelfand and Vilenkin (1964, chapt. III 5.5). Condition (25) is satisfied be- 
cause we consider only usual random fields (Z(x)) and not generalized fields 
(Z(~b)). The relation (23) holds because our random fields are real and not 
complex. Conditions (22) and (24) are the same as in Gelfand and Vilenkin 
(1964). Finally (26) is Equation (17) in Gelfand and Vilenkin (1964, p. 360) 
for ~b(x) = ~ kkS~(x) and ~b(x) = r. k[Sx~(x). The term E aijpqOtp-~q is missing 
in (26) because we assumed that all increments have expectation equal to zero. 

Using (26) it is not difficult to obtain an explicit expression for the 
generalized cross-covariance. Write dF12(to) = dC12(to) + xf-S-ldQ12(to) 
(decomposition into real and imaginary part). Then, by (23) dCl2 is even and 
dQ12 is odd. Thus 

= I ~ kkk[ cos (to �9 (xk - x~))dC12(to) 
d lkoll > o k,1 

-- t ~ Xkkl sin (to - (Xk -- x[))dQl2(to) 
0 Iloll > o k,t 

Note that both integrals exist because of  r~ k Xk = ~ l  )k[ : 0 and (24). But we 
cannot exchange directly the integral and the sum because the integrals would 
then no longer exist. However  

X k x ;  c o s ( t o  �9 (xk - x ; ) )  = E X k X ; [ c o s ( t o  �9 (x~ - x ; ) )  - 1] 
k,l k,I 

because r. Xk = r. hi = 0, and cos(to �9 h) - 1 is integrable by (24) and (25). 
Similarly 

Z kkk/sin(to " (Xk -- xD) 
k,l 

= ~ )~kk[ [sin(to �9 (Xk -- X/)) -- to " (Xk -- x/)l[Ikd_< Ill 
k,1 

and sin(to �9 h) - to �9 hltll,oll < 1] is integrable because it is bounded and behaves 
as - ( t o  �9 h)3/6 for Iltoll --} 0. Hence a generalized cross-covariance is given 
by 

vl2(h) = llltoll >o 

- I[koll > o 

I 

and the first proof  is completed. 

[cos(to �9 h) - 1]dC12(to) 

[sin(to �9 h) - to �9 hltllr q]dO12(to) (27) 
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The second proof  is by direct construction. However  checking the necessary 
details is long and delicate, so we only sketch the arguments. The idea is to use 
(6) for sufficiently many his and h2s in order to obtain v12. 

We first decompose v12 into an even and an odd part: 

v~-2(h) = (v12(h) + v l2( -h) ) /2  

v~2(h) = (vl2(h) - v l2( -h) ) /2  

so that v12(h) = v~(h) + v~(h).  Then using (6) for hi = h2 = h and putting 
v~2(0) = 0 without loss of  generality we determine 

v~-2(h) = �89 + h) - Zl(x))(Z2(x + h) - Z2(x))] 

So v~- 2 is simply the cross-variogram. Next selecting hi = h, h2 = h/2 in (6) 
we obtain 

' , , ~ (h )  v~(h/2) = � 8 9  + 

+ �89 + h) - Z~(x))(Z2(x + h/2) - Z2(x))l (28) 

Without loss of  generality we may take v{-2(e~) = v~-2(e2) = 0 where el = (1, 
0) and e2 = (0, 1) (v12 is determined only up to a linear function). So (28) gives 
v~-2(2-nei) for n = 1, 2 . . . . .  But by (6) we obtain v12(h I + h2) from Vl2(hl) 
and v12(-h2). So by repeated application of (6) we determine 
v12(k12 -n ' ,  k22-n2), that is we have constructed vl2 for all lags with dyadic 
coordinates. Note that we can arrive at the same lag (kl2 -n~, k22 -n2) by many 
different sequences of  intermediate steps. So for a rigorous proof  we would have 
to show that the result does not depend on this. Finally, in order to go from 
dyadic to general lags we have to show that v12 restricted to dyadic lags is 
continuous. Essentially this can be done by using Schwarz'  inequality and the 

continuity of  3'~ and 3'22 repeatedly. 


