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Microscopic Origin of Universality in Casimir Forces
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The microscopic mechanisms for universality of Casimir forces between mac-
roscopic conductors are displayed in a model of classical charged fluids. The
model consists of two slabs in empty space at distance d containing classical
charged particles in thermal equilibrium (plasma, electrolyte). A direct compu-
tation of the average force per unit surface yields, at large distance, the usual
form of the Casimir force in the classical limit (up to a factor 2 due to the
fact that the model does not incorporate the magnetic part of the force). Uni-
versality originates from perfect screening sum rules obeyed by the microscopic
charge correlations in conductors. If one of the slabs is replaced by a macro-
scopic dielectric medium, the result of Lifshitz theory for the force is retrieved.
The techniques used are Mayer expansions and integral equations for charged
fluids.

KEY WORDS: Casimir forces; classical charged fluid; universality; Mayer
expansion.

1. INTRODUCTION

It is well known that the fluctuation-induced forces between macroscopic
conductors have a universal character: they only depend on the shapes of
the bodies, but not on their material constitution. This observation origi-
nates from the celebrated paper of H. B. G. Casimir calculating the force
between two parallel metallic plates due to the fluctuations of the quan-
tum electromagnetic field in vacuum at zero temperature. The literature
produced since then is so vast that we will only quote in the sequel a num-
ber of papers relevant to our purpose. Many references can be found for
instances in the books and reviews.(1–4)
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Regarding the extension of Casimir’s result to non zero temperature
T , Balian and Duplantier provide the general form of the free energy in
presence of ideal conductors of arbitrary shapes.(5) The theory of Lifshitz
and coworkers generalizes the calculations to dielectric bodies character-
ized by their dielectric functions.(6,7) (see also Ref.(9)). The ideal conductor
situation can be recovered from the latter theory by letting the dielectric
constants tend to infinity. From these studies one can obtain the asymp-
totic behaviour of the attractive force between two planar conductors at
distance d at high temperature (or equivalently at large separation d)3

f ∼ kBT ζ(3)

4πd3
, d →∞ (1)

where ζ is the Riemann ζ -function. In this regime the force is exclusively
due to thermal fluctuations and the result may be called classical since
it does not depend on Planck’s constant. In the above mentioned the-
ories, the conductors are treated at the level of macroscopic physics. In
fact they are represented by surfaces, called ideal conductors, on which
the electromagnetic field has to satisfy the metallic boundary conditions.
The purpose of this work is to gain an understanding of the microscopic
mechanisms in the conductor that lead to the universality of the force (1).

To this end we analyse a simple model where the conductors are
described in fully microscopic terms. The conductors consist of two slabs
at distance d containing fluids of classical charges (e.g. classical electrolytes
or plasmas). The slabs are globally neutral but their material composition
(charges and masses of the particles) can be different. The space external
to the slabs is empty. The system of the two slabs, considered as a whole,
is at thermal equilibrium with a Gibbs weight that includes pairwise inter-
actions between all the particles, consisting of Coulomb potentials plus
short-range repulsions. In this setting we present an exact computation of
the asymptotic behaviour of the average force per unit surface between the
two (infinitely thick) slabs giving

〈f 〉∼ kBT ζ(3)

8πd3
, d →∞. (2)

It is also checked that (2) still holds for slabs of finite thickness (Appendix A).
One may notice that the usual approaches consider the fluctuat-

ing electromagnetic fields as primary objects. The thermal fluctuations of

3The relevant dimensionless parameter is d kBT /–hc, c is the speed of light, –h the Planck con-
stant, kB the Boltzmann constant.
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these fields originate from the fact that they are in equilibrium with the
matter constituting the conductors, but as a consequence of universality,
the microscopic degrees of freedom of the charges in the conductors do
not need to be explicitly incorporated in the description. Here we adopt
another point of view: we start from the thermal configurational fluctu-
ations of the charges to provide a direct calculation of the average force
without recourse to the field statistics. Then the origin of universality can
be traced back to the specific sum rules obeyed by the correlations of
Coulombic matter.(10)

Universal properties of a variety of classical models of conductor
have been studied in Refs. 11 and 12. In Ref. 11, the authors consider a
statistical mechanical system of charges confined to a plane at distance d

of another ideal planar conductor and establish the result (2). In Ref. 12,
they show that replacing the above ideal conductor by fluctuating charges
does not alter (2). A recent work(13) considers the situation where the
space between the two slabs is filled by a third Coulomb fluid, causing a
screening of the Casimir force.

The value (1) arising from the electromagnetic field fluctuations
calculations is twice larger than that obtained in the purely electrostatic
models considered here, as well as in Refs. 11–13. This point has been
the subject of several discussions in the literature, in particular in Refs.
8 and 9. In Ref. 8, Schwinger performs a calculation of the Casimir
force mediated by scalar photons (corresponding to the sole electric degree
of freedom of an electromagnetic wave) leading to the result (2). In
Ref. 9, the authors show that taking the magnetic degree of freedom of
the field property into account multiplies the expression (2) by 2. In its
very formulation our model does not include the magnetic part of the
Lorentz force induced by fluctuating currents in the conductors, whose
effect has the same magnitude as that of the Coulomb force. Although
such purely electrostatic models of conductors do not account for the
physically correct value of the force at large distance, they already nicely
reveal the microscopic mechanisms occurring in conductors that guarantee
its universality.

The calculation of the force requires the knowledge of the charge
correlation function across the two slabs separation, which is the main
object of our study. At large separation it remarkably factorizes into three
parts. There is a first factor independent of the slabs’ material constitu-
tion and two other factors, each solely associated to one of the conduc-
tors. More precisely, the latter factors involve the charge density of the
screening cloud induced by a charge located at the boundary of a single
conductor in empty space. Then the universality of the force results from
the perfect screening sum rule that holds in any conducting phase.
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In this work, we use the technique of Mayer expansion and integral
equations for charged fluids. In Section 2, we specify the system under
study and express the force by unit surface between two infinitely extended
slabs in terms of the microscopic charge correlation between them, taking
the existence of the thermodynamic limit for granted.

The general formalism used is recalled in Section 3: the charge cor-
relation function is written in terms of the Ursell function subjected to a
Mayer expansion. The prototype graphs entering in this expansion involve
screened Coulomb bonds resulting from chain summations (Debye–Hüc-
kel mean-field potential) and density weights at vertices(14,15). The weights
are the exact inhomogeneous densities that have to be self-consistently
determined from the first BGY equation. We do not treat here the full
self-consistent problem because it turns out that the detailed structure of
density profiles is not needed (see Refs. 16 and 17 for a thorough study
of density profiles near boundaries). We only have to introduce weak and
plausible assumptions on the convergence of the profiles to their bulk
value.

It is shown in Section 4 that the asymptotic value (2) of the force is
already obtained at the level of the Debye–Hückel theory. The main tool is
the explicit form of the mean-field potential for piecewise-flat density pro-
files, related to the potential for structured profiles by an integral equation.
The latter equation is shown to have a convergent perturbative solution
in the weak-coupling regime. At large slab separation, the Debye–Hückel
potential factorizes into potentials pertaining to individual plasmas obey-
ing electroneutrality sum rules.

We establish in Section 5 that the theory beyond mean-field does
not provide any additional contribution to the asymptotics (2). This is
first done non-perturbatively with the help of integral equations corre-
sponding to an appropriate dressing transformation of the Ursell func-
tion and under the mild assumption of integrable clustering. Finally the
result is recovered once again by selecting and resumming the contribution
of dominant Mayer graphs to the full charge correlation at large separa-
tion.

We also treat in Section 6 a variant situation where one of the slabs is
replaced by an ideal macroscopic dielectric medium at distance d (namely
generating images of the plasma’s fluctuating charges). Using the Green
function of the Poisson equation with appropriate dielectric boundary con-
ditions, the Lifshitz result for the mean force is retrieved and reduces to
(2) as the dielectric constant tends to infinity. It is interesting to observe
that it is sufficient for the fluctuations to occur only in one of the bodies
to generate the same asymptotic behaviour.
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We will come back to the inclusion of magnetic forces and to quan-
tum models in future works.

2. DESCRIPTION OF THE MODEL

We consider two plasmas A and B of classical point charges confined
to two planar slabs �A(L,a) and �B(L,b) in three-dimensional space.
The slabs have thickness a and b, surface L2, and are separated by a dis-
tance d:

�A(L,a) :={r = (x,y) | x ∈ [−a,0], y ∈ [−L
2 , L

2 ]2}
�B(L,b) :={r = (x,y) | x ∈ [d, d +b], y ∈ [−L

2 , L
2 ]2}. (3)

The plasma A (B) is made of charges eα (eβ ) of species α∈SA (β ∈SB )
where SA and SB are index sets for the species in �A(L,a) and �B(L,b)

respectively. We assume both plasmas to be globally neutral, i.e. carrying
no net charge,

∑

a

eαa =
∑

b

eβb
=0 (4)

where
∑

a (
∑

b) extends on all particles in �A(L,a) (�B(L,b)). For a par-
ticle located at r we will use the generic notation (γ r) where γ ∈SA if r∈
�A(L,a) and γ ∈SB if r∈�B(L,b). The space external to the slabs is sup-
posed to have no electrical properties, its dielectric constant being taken
equal to that of vacuum. The charges are confined in the slabs by hard
walls that merely limit the available configuration space to the regions (3).

All particles interact via the two-body potential

V (γ, γ ′, |r − r′|)= eγ eγ ′v(r − r′)+vSR(γ, γ ′, |r − r′|), (5)

where v(r−r′)=1/|r−r′| is the Coulomb potential (in Gaussian units) and
vSR(γ, γ ′, r− r′) is a short-range repulsive potential to prevent the collapse
of opposite charges and guarantee the thermodynamic stability of the sys-
tem.

The total potential energy U consists in the sum of all pairwise inter-
actions, separated into three contributions according to whether they take
place between two particles of A, of B, or between a particle of A and a
particle of B:

U =UA +UB +UAB. (6)
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On the microscopic level, the force between configurations of charges
in the two plasmas is the sum of all pairwise forces exerted by the parti-
cles of B on the particles of A:

F�B→�A
: =

∑

a

∑

b

[
eαa eβb

ra − rb

|ra − rb|3
+FSR(αa, βb, ra − rb)

]

ra ∈�A(L,a), rb ∈�B(L,b) (7)

and FSR is the force associated to the short-range potential vSR. For sim-
plicity we assume that the range of vSR is finite so that FSR(αa, βb, ra − rb)

vanishes as soon as d is large enough, and we will omit it in the following.
Both plasmas are supposed to be in thermal equilibrium at the same

temperature T . The statistical average 〈· · · 〉L is defined in terms of the
Gibbs weight exp(−βU), β = (kBT )−1, associated with the total energy (6).
There is no need to explicitly specify the ensemble used here (canonical or
grand canonical) provided that the global neutrality constraint (4) is taken
into account. The average particle densities ρL(γ r) are expressed as aver-
ages of the microscopic particle densities ρ̂(γ r) =∑

i δγ γi
δ(r − ri ) where

the sum runs over all particles

ρL(γ r)=〈ρ̂(γ r)〉L. (8)

We keep the index L to remember that averages are taken for the
finite-volume slabs (3). Hence expressing the sums in (7) as integrals on
particle densities ρ̂(γ r), the average force reads

〈F〉L =
∫

�A(L)

dr
∫

�B(L)

dr′ r − r′

|r − r′|3 cL(r, r′) (9)

where cL(r, r′) is the two-point charge correlation function

cL(r, r′)=〈ĉ(r)ĉ(r′)〉L, ĉ(r)=∑
γ

eγ ρ̂(γ r). (10)

We now consider the average force by unit surface between two infi-
nitely extended slabs at distance d by letting their transverse dimension
L tend to infinity. We assume that the plasma phases are in fluid states
homogeneous and isotropic in the y directions, namely the charge correla-
tion has an infinite-volume limit of the form

lim
L→∞

cL(r, r′)=〈ĉ(r)ĉ(r′)〉= c(x, x′, |y −y′|). (11)
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For symmetry reasons, 〈F〉L has no transverse component and is directed
along the x axis perpendicular to the plates. We therefore consider the
x-component of the force per unit surface

〈f 〉 := lim
L→∞

〈Fx〉L
L2

= lim
L→∞

1
L2

∫

L2
dy

(∫ 0

−a

dx

∫ d+b

d

dx′
∫

L2
dy′ x −x′

|r − r′|3 cL(x,y, x′,y′)

)

=
∫ 0

−a

dx

∫ d+b

d

dx′
∫

dy
x −x′

[
(x −x′)2 +|y|2]3/2

c(x, x′, |y|). (12)

The last line results from the y translational invariance of the integrand in
the limit L→∞. We do not justify the existence of the limit here (which
depends on a uniform control of cL(x,y, x′,y′) as |y−y′|→∞), but it will
be clear from the subsequent calculations that (12) is a well defined quan-
tity, at least in the weak-coupling regime.

Formula (12) remains valid if one replaces c(x, x′, |y|) by the trun-
cated charge–charge correlation function

S(x, x′,y)= 〈ĉ(r)ĉ(r′)
〉− 〈ĉ(r)〉 〈ĉ(r′)

〉
, r = (x,y), r′ = (x′,0) (13)

with ĉ(r) the microscopic charge density as in (10). Indeed, the y-Fourier
transform of the Coulomb force reads

∫
dye−ik·y x −x′

[(x −x′)2 +|y|2]3/2
=2π sign(x −x′)e−k|x−x′| (14)

and reduces to −2π when k = 0 and x < x′. This implies that the charge
density profile

〈
ĉ(r)

〉=c(x) does not contribute to the force because of the
global neutrality of both plasmas

∫ 0

−a

dx c(x)=
∫ d+b

d

dx c(x)=0. (15)

To take full advantage of the translational invariance in the y direc-
tion we represent the y-integral in (12) in Fourier space:

〈f 〉=− 1
2π

∫ 0

−a

dx

∫ d+b

d

dx′
∫

dk e−k|x−x′|S(x, x′,k), (16)
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where k = |k| and S(x, x′,k) = ∫
dy e−ik·yS(x, x′,y). The dependence of

〈f 〉 = 〈f 〉 (d) on the separation d between the two slabs occurs in the
integration limits in (16) as well as in the charge correlation function
S(x, x′,k). The d dependence of the correlations between the two slabs A

and B originates itself from the Coulomb interaction term UAB occurring
in the total Gibbs thermal weight. The object of the next sections is to
determine the asymptotic behaviour of 〈f 〉 (d) as d →∞.

3. MAYER SERIES FOR INHOMOGENEOUS CHARGED FLUIDS

We briefly summarise the methods that we use to calculate the
charge–charge correlation function of our system. Let us consider a gen-
eral charged fluid in presence of spatial inhomogeneities caused by an
external potential 	ext(γ r), e.g. wall potentials confining the system in
some region of space. Hard walls without electrical properties (infinite
potentials) can be implemented by simply declaring that the density van-
ishes in the forbidden regions.

It is well-known (e.g. Ref. 18) that the two-point Ursell function,
related to the densities ρ(i), ρ(j) and the two-particle density ρ(i, j)

h(i, j) := ρ(i, j)

ρ(i)ρ(j)
−1, (17)

can be expanded in a formal power series of the densities by means of
Mayer graphs. The basic Mayer bonds are

f (i, j)= e−βV (i,j) −1 (18)

where V (i, j) is the potential (5) and the weights at vertices are the
densities ρ(i). Here i is a shorthand notation for the point (γi ri ) in con-
figuration space, and integration on configurations

∑
γi

∫
dri includes the

summation on particle species. Diagrams have two root points i and j and
m internal points which have to be integrated over. Each pair of points
is linked by at most one f -bond and there are no articulation points.4

Because of the long-range of Coulomb interaction, the integrals occur-
ring in every diagram diverge in the thermodynamic limit. It is therefore
necessary to introduce the screened mean-field potential 
(ri , rj ) as usual
by resumming the chains built with pure Coulombic interaction bonds

4An articulation point, when removed, splits the diagram into two pieces, at least one of
which is disconnected from the root points.
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−βeγi
eγj

v(ri − rj ). Then replacing the bare Coulomb potential by the
screened potential leads to a reorganisation of the diagrammatic expansion
of the Ursell function resulting in the formula(15)

h(γ r, γ ′ r′)=
∑

�

1
S�

∑

γ1,...,γm

∫
dr1 · · ·drmρ(γ1 r1) · · ·ρ(γm rm)

∏

{i,j}∈�

F(i, j)

(19)

The first sum runs over all unlabelled topologically different connected
diagrams � (called prototype graphs) with two root points (γ r) and (γ ′ r′)
and m integrated internal points with density weights (m ranges from 0
to ∞); S� denotes the symmetry number of a diagram �. Each pair of
points is linked by at most one bond F ∈{F,F R} and there are no artic-
ulation points. Moreover, convolutions of F bonds are forbidden to avoid
multiple counting of original Mayer graphs. The two possible bonds read

F(i, j) = −βeγi
eγj


(ri , rj ) (20)

F R(i, j) = exp[−βeγi
eγj


(ri , rj )−βvSR(γi, γj , |ri − rj |)]
−1+βeγi

eγj

(ri , rj ). (21)

These bonds are obtained in terms of the Debye-Hückel screened potential

, which is symmetric and defined as the solution of the integral equation


(r, r′)=v(r − r′)− 1
4π

∫
dr1κ

2(r1) v(r − r1) 
(r1, r′)=
(r′, r) (22)

or equivalently of the differential equation


(r, r′)−κ2(r)
(r, r′)=−4πδ(r − r′) (23)

supplemented by suitable boundary conditions. In (22) and (23)

κ(r) :=


4πβ
∑

γ

e2
γ ρ(γ r)




1/2

(24)

can be interpreted as the local inverse Debye screening length in the inho-
mogeneous system. The bond F R(i, j) includes the short-range contribu-
tion and the nonlinear Coulombic part of the original Mayer bond.

The densities ρ(γ r) entering in (19) and (24) have to be determined
self-consistently from the first equation of the Born–Green–Yvon hierarchy
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which links the one-point and the two-point functions. For charged sys-
tems, it takes the form(10)

∇ρ(γ r) = −βeγ ρ(γ r)
[
∇	(γ r)+

∫
dr′
(∑

γ ′
eγ ′ρ(γ ′ r′)h(γ r, γ ′ r′)

)
∇v(r − r′)

]

−β
∑

γ ′

∫
dr′ρ(γ r, γ ′ r′)∇vSR(γ, γ ′, |r − r′|) (25)

where

	(γ r)=	ext(γ r)+
∫

dr′c(r′)v(r − r′) (26)

is the sum of the external potential and the electrostatic potential caused
by the inhomogeneous mean charge density c(r′) in the system. Hence
the Ursell function (considered as a functional of the densities through its
Mayer expansion (19)) together with (25) form a closed set of equations
whose solution determines in principle the exact densities and two-particle
correlations. The differential equation (25) has still to be supplemented
with appropriate boundary conditions. For instance if the system is
asymptotically uniform in some directions, one can fix the corresponding
asymptotic bulk densities.

Finally, the charge–charge correlation function (13) is related to the
Ursell function by

S(r, r′)=
∑

γ,γ ′
eγ eγ ′ρ(γ r)ρ(γ ′ r′)h(γ r, γ ′ r′)+ δ(r − r′)

∑

γ

e2
γ ρ(γ r) (27)

The second term in the r.h.s. of (27) is the contribution of coincident
points.

We shall use the above formalism to calculate (27) as a function of
the distance d for two infinitely thick plasmas (i.e., a → ∞ and b → ∞
in (16)) and with hard walls at x = 0 and x =d. In this situation we take
	ext(γ r)=0 for x <0 and x >d, and impose

ρ(γ x) = 0, 0�x �d,

lim
x→−∞ρ(γ x) = ρAγ , lim

x→∞ρ(γ x)=ρB γ (28)

where ρAγ and ρB γ are the bulk particle densities of plasmas A and B.
The contribution of coincident points does not enter into the force (16)
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since r and r′ are always at least separated by the distance d. Therefore,
(16) reads

〈f 〉=−
∫ 0

−∞
dx

∫ ∞

d

dx′
∫ ∞

0
dk ke−k|x−x′|∑

γ,γ ′
eγ eγ ′ρ(γ x)ρ(γ ′ x′)h(γ x, γ ′ x′,k)

(29)

with h(γ x, γ ′ x′,k) the y-Fourier transform of the Ursell function.

4. DEBYE–HÜCKEL THEORY

In this section, we show that the simplest contribution to h(γ r, γ ′ r′)
given by the sole bond F , namely,

hDH(γ r, γ ′ r′)=−βeγ eγ ′
(r, r′) (30)

already leads to the asymptotic value (2) of the force. For this we have to
find the screened potential by solving (23) (written in Fourier form) with
the boundary conditions imposed by the slab geometries

[
∂2

∂x2
−k2 −κ2(x)

]

(x, x′,k)=−4πδ(x −x′), κ(x)=0, 0<x <d,

(31)

with 
(x, x′,k) = ∫
dy e−ik·y
(x, x′,y). The boundary conditions are


(x, x′,k) and ∂
(x, x′,k)/∂x continuous at x = 0 and x = d, and
limx→±∞ 
(x, x′,k)=0. The density profiles entering in κ2(x) by (24) are
not known (since they have to be determined by self-consistency from
(25)), but we will not need their explicit form in the sequel.5 We only need
to assume that their difference to bulk value is integrable:

ρ(γ x)−ρAγ =O
(

1
|x|1+ε

)
, x →−∞,

ρ(γ x)−ρB γ =O
(

1
|x|1+ε

)
, x →∞, ε >0. (32)

5A mean-field approximation to the densities could be obtained by replacing h in (25) by
hDH. We are not doing so here but deal throughout with the exact densities.
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Integrating (31) on x leads to

∫ ∞

−∞
dx

κ2(x)

4π

(x, x′,k)=1− k2

4π

∫
dx
(x, x′,k). (33)

In particular, for k =0

∫ ∞

−∞
dx

κ2(x)

4π

(x, x′,k =0)=1 (34)

which is nothing else than the electroneutrality sum rule for the charge-
charge correlation (13), (27) within the Debye regime (30)(10):

∫ ∞

−∞
dx

∫
dySDH (x, x′,y)=0 (35)

To solve (31) we first consider the simpler problem with piecewise-flat
densities ρAγ and ρB γ in each plasma

[
∂2

∂x2
−k2 − κ̄2(x)

]
ϕ(x, x′,k)=−4πδ(x −x′)

κ̄(x)=κA, x <0, κ̄(x)=0, 0<x <d, κ̄(x)=κB, x >d (36)

where

κA =


4πβ
∑

α∈SA

e2
α ρAα




1/2

, κB =


4πβ
∑

β∈SB

e2
β ρB β




1/2

(37)

are the bulk inverse screening lengths. The boundary conditions are the
same as for (31). Denoting by L the linear operator acting on 
 on the
l.h.s. of (31) and by L̄ the one acting similarly on ϕ, one has L
(x) −
L̄ϕ(x) = L̄(
 − ϕ)(x) − u(x)
(x) = 0, where u(x) = κ2(x) − κ̄2(x) repre-
sents the deviation of the density profiles to their bulk limiting values.
Since −ϕ/4π is the Green function of L̄, it follows that 
(x, x′,k) and
ϕ(x, x′,k) are related by the integral equation


(x, x′,k)=ϕ(x, x′,k)− 1
4π

∫
dsu(s) ϕ(x, s,k) 
(s, x′,k) (38)



Microscopic Origin of Universality in Casimir Forces 285

which expresses 
(x, x′,k) as a perturbation of ϕ(x, x′,k) by the inhomo-
geneity u(x) of the plasmas’ density profiles.

Solving (36) piecewise and connecting the solutions together yields6

ϕ(x, x′,k)=






ϕAA(x, x′,k), x, x′ <0,

ϕAB(x, x′ −d,k), x <0<d <x′,
ϕBB(x −d, x′ −d,k), d <x, x′,

(39)

with

ϕAA(x, x′,k) = 2π
e−kA|x−x′ |

kA

+2π
e−kA|x+x′ |

kA

(kA −k)(kB +k)ekd − (kA +k)(kB −k)e−kd

(kA +k)(kB +k)ekd − (kA −k)(kB −k)e−kd
,

(40)

ϕAB(x, x′,k) = 8πke−kA|x|e−kB |x′ |

(kA +k)(kB +k)ekd − (kA −k)(kB −k)e−kd
, (41)

kA =
√

k2 +κ2
A, kB =

√
k2 +κ2

B. (42)

The function ϕBB(x, x′,k) is obtained by interchanging the indices A and
B in (40). Notice that ϕ(x, x′,k) = ϕ(x′, x,k) and is invariant under the
symmetry x ↔d −x, x′ ↔d −x′,A↔B.

We discuss a few properties of this solution. The first term in the r.h.s
of (40) corresponds to the bulk Debye–Hückel potential whereas the sec-
ond term is the modification due to the finite boundaries of both plas-
mas A and B. As d →∞, ϕAA(x, x′,k) reduces to the well-known Debye–
Hückel potential ϕ0

A(x, x′,k) of a single semi-infinite plasma in the region
x <0 (see formula (24) in Ref. 19 and Ref. 20)

lim
d→∞

ϕAA(x, x′,k)=2π
e−kA|x−x′|

kA

+2π
kA −k

kA +k

e−kA|x+x′|

kA

=ϕ0
A(x, x′,k)

(43)

uniformly with respect to k. One observes that ϕ(x, x′,k) is an even, infi-
nitely differentiable function of |k|, implying that ϕ(x, x′,y) decays along
walls directions faster than any inverse power of y. This is to be con-
trasted with the small k behaviour of the function (43) which has a non
analytic |k| term leading to the algebraic decay y−3 along the wall,(20); see
also Ref. 10, Section III.C.2).

6The functions ϕAB, ϕBB (depending on d) refer to the system of the two plasmas under
mutual influence with the x-location of particles in plasma B measured by their distance
from the boundary at d (i.e. from 0 to +∞). In the sequel, the quantities ϕ0

A, ϕ0
B (indepen-

dent of d) refer similarly to the single semi-infinite plasma A and B.



286 Buenzli and Martin

The function ϕAB(x, x′,k) (41) describes the correlation between the
two plasmas. In terms of the scaled dimensionless variable q = k d, it has
the simple factorized asymptotic behaviour

ϕAB(x, x′, q
d
) ∼ 1

d

4πq

κAκB sinh q
e−κA|x| e−κB |x′|

= 1
d

q

4π sinh q
ϕ0

A(x,0,0) ϕ0
B(0, x′,0), d →∞ (44)

Finally ϕ(x, x′,k) obeys the following bound uniformly with respect
to k and d (Appendix B)

0�ϕ(x, x′,k)�ϕ>(x, x′)� 4π
κ

, κd �1 (45)

The function ϕ>(x, x′) is defined as in (39) with ϕAA, ϕAB and ϕBB

replaced by

ϕ>
AA(x, x′)�ϕ>

BB(x, x′)� 2π
κ

(
e−κ|x−x′| + e−κ|x+x′|

)
(46)

ϕ>
AB(x, x′)�ϕ>

BA(x, x′)� 4π

κ2d
e−κ|x|e−κ|x′|, κ :=min{κA, κB} (47)

The Debye–Hückel potential 
(x, x′,k) can be obtained by iterating
the integral equation (38). Convergence can be established in the weak-
coupling regime:

Lemma (see proof in Appendix B).
Let

r := 1
κ

∫ ∞

−∞
dx|u(x)| = 1

κ

∫ ∞

−∞
dx|κ2(x)− κ̄2(x)| (48)

Then for r <1 (38) has a solution with the bound

∣∣
(x, x′,k)
∣∣� 1

1− r
ϕ>(x, x′). (49)

As in (39) we distinguish various contributions according to the loca-
tion of the arguments x, x′ of 
(x, x′,k) by setting (see footnote 6)


(x, x′,k)=







AA(x, x′,k), x, x′ <0,


AB(x, x′ −d,k), x <0<d <x′,

BB(x −d, x′ −d,k), d <x, x′,

(50)
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ρ(γ x)=
{

ρA(γ x), x <0,

ρB(γ, x −d), x >d.
(51)

The quantities κA,B(x), uA,B(x) are defined in the same way. Then, the
integral equation (38) splits into


AA(x, x′,k) = ϕAA(x, x′,k)− 1
4π

∫ 0

−∞
dsuA(s)ϕAA(x, s,k)
AA(s, x′,k)

− 1
4π

∫ ∞

0
dsuB(s)ϕAB(x, s,k)
BA(s, x′,k). (52)


AB(x, x′,k) = ϕAB(x, x′,k)− 1
4π

∫ 0

−∞
dsuA(s)ϕAA(x, s,k)
AB(s, x′,k)

− 1
4π

∫ ∞

0
dsuB(s)ϕAB(x, s,k)
BB(s, x′,k). (53)

The density profiles depend on d because of the mutual Coulomb
interactions between the two plasmas. We shall examine the asymptotic
behaviour of 
(x, x′,k) as d → ∞ under the assumption that these den-
sity profiles are uniformly bounded with respect to d and tend to those of
single semi-infinite plasmas i.e.

lim
d→∞

ρA(γ x)=ρ0
A(γ x), x <0, lim

d→∞
ρB(γ x)=ρ0

B(γ x), x >0 (54)

We denote by κ0
A,B(x), u0

A,B(x) the analogous quantities for the single
semi-infinite plasmas. Then one concludes from (52) that uniformly in k

lim
d→∞


AA(x, x′,k)=
0
A(x, x′,k), x, x′ <0 (55)

where 
0
A(x, x′,k) is the Debye–Hückel potential of a semi-infinite plasma

in the region x < 0 determined in terms of the corresponding flat profile
potential ϕ0

A(x, x′,k) (43) by


0
A(x, x′,k) = ϕ0

A(x, x′,k)

− 1
4π

∫ 0

−∞
ds u0

A(s)ϕ0
A(x, s,k)
0

A(s, x′,k), x, x′ <0 (56)

Indeed, in view of the limits (43), (54) and using dominated convergence
with the bounds (45), (49) the integral equation (52) reduces to (56) in the
limit d →∞. One has likewise
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lim
d→∞


BB(x, x′,k)=
0
B(x, x′,k), x, x′ >0 (57)

where 
0
B(x, x′,k) is the Debye–Hückel potential of a semi-infinite plasma

in the region x >0.
We come now to the correlation 
AB(x, x′, q

d
) which is expected to

decay as d−1 at large separation of the two plasmas. To see this it is use-
ful to write (53) in an alternative form such that ϕAB appears explicitly in
each term of the equation:


AB(x, x′,k) = ϕAB(x, x′,k)− 1
4π

∫ 0

−∞
ds uA(s)
̃AA(x, s,k)ϕAB(s, x′,k)

− 1
4π

∫ ∞

0
ds uB(s) ϕAB(x, s,k)
BB(s, x′,k)

+
(

1
4π

)2
∫ 0

−∞
ds1

∫ ∞

0
ds2 uA(s1)uB(s2) 
̃AA(x, s1,k)

×ϕAB(s1, s2,k)
BB(s2, x
′,k). (58)

Here 
̃AA(x, x′,k) verifies the equation


̃AA(x, x′,k)=ϕAA(x, x′,k)− 1
4π

∫ 0

−∞
ds uA(s)ϕAA(x, s,k) 
̃AA(s, x′,k),

(59)

which is the equation (52) with the last term omitted. Equation (58) is
obtained by iterating (53) and resumming the ϕAA chains to 
̃AA, or by
verifying that it satisfies the basic differential equation (31). By the same
arguments that led to (55), it is clear that 
̃AA also tends to the potential

0

A of the semi-infinite plasma.
Introducing the limits (44), (54), (55), (57) in (58) and using again dom-

inated convergence provided by the bounds (47), (46), (49) we find that

lim
d →∞

d 
AB(x, x ′, q
d
) = q

4π sinh q

×
[
ϕ0

A(x,0,0)− 1
4π

∫ 0

−∞
ds u0

A(s)
0
A(x, s,0)ϕ0

A(s,0,0)

]

×
[
ϕ0

B(0, x ′,0)− 1
4π

∫ ∞

0
ds u0

B(s)ϕ0
B(0, s,0)
0

B(s, x ′,0)

]

= q

4π sinh q

0

A(x,0,0)
0
B(0, x ′,0) (60)
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As in (44), the limit factorizes into the product of Debye–Hückel poten-
tials for single semi-infinite plasmas evaluated with one point on the
boundary. The last line of (60) follows from (56), the corresponding equa-
tion for 
0

B(x, x′,0), and the fact that these functions are symmetric in
x, x′.

With this result we can determine the leading term in the asymptotic
behaviour of the force (16) in the Debye–Hückel regime. From (29) and
(30), one has

〈f 〉DH (d) = 1
β

∫ 0

−∞
dx

∫ ∞

d

dx ′
∫ ∞

0
dk k e−k|x−x ′ | κ2(x)

4π

κ2(x ′)
4π


(x, x ′,k)

= 1
βd2

∫ 0

−∞
dx

∫ ∞

0
dx ′

∫ ∞

0
dq q e− q

d
|x−x ′+d| κ

2
A(x)

4π

κ2
B(x ′)
4π


AB(x, x ′, q
d
)

(61)

To obtain the second line we have set k d =q, shifted the x′-integration by
−d, and introduced the notation (50), (51). As d →∞, one can use (60)
and the bounds (46), (49) to conclude again by dominated convergence
that

lim
d→∞

d3 〈f 〉DH (d) = 1
8πβ

∫ ∞

0
dq

4q2e−q

eq − e−q

(∫ 0

−∞
dx

(κ0
A)2(x)

4π

0

A(x,0,0)

)

×
(∫ ∞

0
dx′ (κ0

B)2(x′)
4π


0
B(0, x′,0)

)
= ζ(3)

8πβ
(62)

Indeed, because of the charge sum rules (34) for the semi-infinite plasmas,
both parentheses are equal to 1, whereas the q integral yields the value
ζ(3) where ζ is the Riemann ζ -function.

5. CONTRIBUTIONS OF THE OTHER GRAPHS

In this section we show that the single Debye–Hückel bond F sat-
urates the asymptotic behaviour of the force i.e. taking into account the
full set of other diagrams does not modify the result (62). For this we
use the method of “dressing of the root points” that has been introduced
in Ref. 21 to analyse the decay of the quantum truncated charge correla-
tion function. Having singled out the contribution of the single resummed
bond F , all remaining diagrams constituting h(γ r, γ ′ r′) can be classified
into four types, depending on whether their root points are linked to the
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rest of the diagram by a single bond F or not.7 We thus write their sum
in the form

hR :=h−F =hcc +hcn +hnc +hnn, (63)

where hcc stands for the contribution of all graphs that do begin and do
end with an F bond (with anything in between), hcn for the contribution
of those that do begin but do not end with an F link, and so on. The lat-
ter quantities are obviously related to hnn by the following integral equa-
tions (notations are as in Section 3)

hcn(a, b) :=
∫

d1F(a,1)ρ(1)hnn(1, b)

hcc(a, b) :=
∫

d1
∫

d2F(a,1)ρ(1)hnn(1,2)ρ(2)F (2, b) (64)

and analogously for hnc. Using these representations in (63) together
with (20) and building the charge–charge correlation corresponding to hR

according to (27) yields

SR(x, x′,k) =
∑

γ1

∫
dx1

∑

γ2

∫
dx2

(
δ(x −x1)− κ2(x)

4π

(x, x1,k)

)

×eγ1ρ(γ1 x1) hnn(γ1 x1, γ2 x2,k) eγ2ρ(γ2 x2)

×
(

δ(x2 −x′)− κ2(x′)
4π


(x2, x
′,k)

)
. (65)

The function hnn(γ1 x1, γ2 x2,k) embodies a resummed contribution, not
explicitly known at this point, of higher-order graphs. The only assump-
tion needed on this function in the sequel is integrable clustering uni-
formly with respect to d

∫ ∞

−∞
dx1 |hnn(γ1 x1, γ2 x2,

q
d
)| < ∞ (66)

∫ 0

−∞
dx1

∫ ∞

d

dx2 |hnn(γ1 x1, γ2 x2,
q
d
)| < ∞ (67)

7A point in a prototype diagram which is linked to the rest of the diagram by exactly one F

bond is called a Coulomb point in Ref. 21.
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As a consequence of the bounds (45), (49) the condition (67) obviously
holds for the Debye potential 
, and it is expected to hold for the Ur-
sell function on the ground that as x1 →−∞ (x2 →∞) hnn(γ1 x1, γ2 x2,k)

has a fast decay in the bulk part of plasma A (plasma B). Note that inte-
grating (65) on x (or x′) at k=0 proves the validity of the charge sum rule
for the exact charge-correlation function (see (35))

∫ ∞

−∞
dx

∫
dyS(x, x′,y)=0, S(x, x′,y)=SDH (x, x′,y)+SR(x, x′,y) (68)

Proceeding as in (61) the contribution of SR(x, x′,y) to the average
force can be written in the form (permuting the x, x′ and x1, x2 integrals)

〈f 〉R (d) = − 1
d2

∫ ∞

0
dq q

∫
dx1

∫
dx2H1(x1,

q
d
)

×
∑

γ1,γ2

eγ1eγ2ρ(γ1 x1)ρ(γ2 x2)h
nn(γ1 x1, γ2 x2,

q
d
, d)H2(x2,

q
d
)

(69)

where

H1(x1,
q
d
) =

∫ 0

−∞
dx

(
δ(x −x1)− κ2(x)

4π

(x, x1,

q
d
)

)
e

q
d
x

H2(x2,
q
d
) =

∫ ∞

d

dx′
(

δ(x2 −x′)− κ2(x′)
4π


(x2, x
′, q

d
)

)
e− q

d
x′

(70)

The behaviour of 〈f 〉R (d) as d → ∞ is determined by that of the func-
tions H1 and H2, because hnn(γ1 x1, γ2 x2,

q
d
, d) does not vanish in the limit

when the variables x1 and x2 are both located in the same plasma, but
tends to the corresponding functions associated with a single semi-infinite
plasma. Both H1 and H2 are O(1/d) so that 〈f 〉R (d)=O(1/d4) does not
contribute to the asymptotic behaviour of the force. More precisely, inte-
grating (31) on x gives for x1 <0

∫ 0

−∞
dx

(
δ(x −x1)− κ2(x)

4π

(x, x1,k)

)

=
∫ ∞

d

dx
κ2(x)

4π

(x, x1,k)+ k2

4π

∫
dx
(x, x1,k)

=
∫ ∞

0
dx

κ2
B(x)

4π

BA(x, x1,k)+ k2

4π

∫
dx
(x, x1,k) (71)
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implying with (46), (49)

H1(x1,
q
d
)=O

(
1
d

)
+O

(
q2

d2

)
, x1 <0 (72)

For x1 >d one has

H1(x1,
q
d
)=−

∫ 0

−∞
dx eqx/d κ2(x)

4π

(x, x1,

q
d
)=O

(
1
d

)
e−κB(x1−d) (73)

In the same way

H2(x2,
q
d
) = O

(
e−q

d

)
e−κA|x2|, x2 <0,

H2(x2,
q
d
) = O

(
e−q

d

)
+O

(
q2e−q

d2

)
, x2 >d (74)

(the factor e−q comes from e−qx/d � e−q for x �d in (70)). Inserting these
estimates in the four integration domains determined in (69) by x1, x2 <

0, x1, x2 >d together with the integrability assumptions (66), (67) on hnn

leads to the result

lim
d→∞

d3 〈f 〉 (d)= lim
d→∞

d3 〈f 〉DH (d)+ lim
d→∞

d3 〈f 〉R (d)= ζ(3)

8πβ
(75)

To conclude this section we present an alternative derivation of the
result (75) by selecting the class of diagrams that give the dominant con-
tribution to the Ursell function as d → ∞. For this we decompose the
bond F(γ x, γ ′ x′,k) (in Fourier representation) into the sum of four terms
according to the location of the arguments x, x′

F = FAA +FAB +FBA +FBB

FAA(γ x, γ ′ x′,k) =
{

F(γ x, γ ′ x′,k) , x, x′ <0
0 , otherwise

FAB(γ x, γ ′ x′,k) =
{

F(γ x, γ ′, x′ +d,k) , x <0, x′ >0
0 , otherwise

(76)

with FBA and FBB defined likewise and the similar decomposition for FR

(x-integrals in plasma B from now on run in the interval [0,∞), see foot-
note 6). The set of prototype graphs is then expanded in a larger set of
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graphs defined in terms of these bonds. It follows from (55) that FAA and
FR

AA bonds have limits F 0
A and F 0R

A as d →∞ where F 0
A and F 0R

A are the
bonds corresponding to the semi-infinite plasma A alone and likewise for
BB bonds.

It is shown in Appendix C that the dominant part of the Ursell func-
tion hAB(γa ra, γb rb) as d → ∞ is constituted by the set of graphs that
have exactly one FAB bond. This class is obtained by linking the extrem-
ity γ1 r1 of FAB(γ1 r1, γ2 r2) to the root point γa ra of hAB(γa ra, γb rb) in
plasma �A by all possible subgraphs comprising only AA bonds (oth-
erwise one would introduce additional AB bonds), taking into account
the excluded convolution rule for F bonds. In the same way the other
extremity γ2 r2 of FAB(γ1 r1, γ2 r2) is linked to the root point γb rb in
plasma �B by all possible subgraphs made of BB bonds. One finds in this
way

hAB(a, b,k) ∼
∫

d1
∫

d2
[
δ(a,1)+ (hnn

AA(a,1,k)+hcn
AA(a,1,k)

)
ρA(1)

]

×FAB(1,2,k)
[
δ(2, b)+ (hnn

BB(2, b,k)+hcn
BB(2, b,k)

)
ρB(2)

]

(77)

Here a = (γa xa), 1 = (α1 x1), 2 = (β2 x2), b = (γb, xb), and the integration∫
d1 =∑α1

∫ 0
−∞ dx1 runs on plasma A and

∫
d2 =∑β2

∫∞
0 dx2 on plasma

B. We have also used that the convolution of translation invariant func-
tions in the y-direction is the product of their Fourier transforms. The
functions hcn

AA and hnn
AA are defined as in (63) in terms of AA bonds (sim-

ilarly for hcn
BB and hnn

BB in terms of BB bonds). One can write (60) in the
form

FAB(1,2,
q
d
)∼− q

4πβd sinh q

F 0
A(1, a0,0)

eα0

F 0
B(b0,2,0)

eβ0

, d →∞ (78)

where a0 = (α0 0) indexes a charge eα0 located at the boundary xa0 =
0 of �A and b0 indexes a charge eβ0 at the boundary of �B . Taking
also into account that the functions hcn

AA and hnn
AA approach the cor-

responding values (h0
A)cn and (h0

A)nn of a single semi-infinite plasma,
one finds that the leading term ∼ 1/d of hAB(γ x, γ ′ x′, q

d
) factorizes

as

hAB(a, b,
q
d
)∼− q

4πβd sinh q

G0
A(a, a0)

eα0

G0
B(b0, b)

eβ0

, d →∞ (79)
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with

G0
A(a, a0) = F 0

A(a, a0)+
∫

d1
[
(h0

A)nn(a,1)+ (h0
A)cn(a,1)

]
ρ0

A(1)F 0
A(1, a0)

=
(
F 0

A + (h0
A)nc + (h0

A)cc
)

(a, a0) (80)

In G0
A all functions are evaluated for the single semi-infinite plasma A at

k=0 and k has been omitted from the notation. The expression for G0
B is

built in the same way. By the same calculation that led to (62) one finds
now from (29) that

lim
d→∞

d3 〈f 〉 (d) = ζ(3)

8πβ

(∫
daeαa ρ0

A(a)G0
A(a, a0)

eα0

)

×
(∫

dbeβb
ρ0

B(b)G0
B(b0, b)

eβ0

)
(81)

It remains to see that both parentheses are equal to −1 because of the
electroneutrality sum rule in semi-infinite plasmas. Indeed, using (63) and
(64), one recognizes from (80) that

G0
A(a, a0)=h0

A(a, a0)−
∫

d1
[
F 0

A(a,1)ρ0
A(1)+ δ(a,1)

]
(h0

A)nn(1, a0).

(82)

The contribution to the force of the second term of (82) involves

∫
daeαa ρ0

a(a)
[
F 0

A(a,1)ρ0
A(1)+ δ(a,1)

]

= eα1ρ(α1 x1)



1− 1
4π

0∫

−∞
dxa(κ

0
A)2(xa)


0
A(xa, x1,k =0)



=0 (83)

which vanishes because of the sum rule (34) in the case of a semi-infinite
plasma. The contribution of the first term of (82) is
∫

daeαa ρ0
A(a)h0

A(a, a0)=
∑

αa

∫ 0

−∞
dxa eαa ρ0

A(γa xa)h
0
A(αa xa, α0 0,k =0)=−eα0

(84)
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The left-hand side is the total charge of the screening cloud induced
in the semi-infinite plasma �A by the boundary charge eα0 , which
equals −eα0 because of perfect screening.(10) By the same considerations
the second parenthesis in (81) also equals −1, hence the final result
(75).

6. PLASMA IN FRONT OF A MACROSCOPIC DIELECTRIC MEDIUM

In this section we investigate the situation where plasma B is replaced
by a semi-infinite macroscopic medium of homogeneous dielectric constant
ε. The electrostatic potential V (r, r′) at r created by a unit charge at r′ ∈
�A is the Green function of the Poisson equation with the conditions that
the normal component of D(x)=ε(x)E(x), (ε(x)=ε, x �d, ε(x)=1, x <d)

and the longitudinal component of E(x) are continuous at the interface(22)

V (r, r′)=
{

1/|r − r′|+/|r − r′∗|, x <d, = (1− ε)/(1+ ε)

̃/|r − r′|, x >d, ̃=2/(1+ ε)
(85)

where r∗ = (2d −x,y) is the point symmetric to r with respect to the dielec-
tric surface. The case of an ideal grounded conducting plate (ε = ∞) is
formally recovered when  = −1, ̃ = 0. In linear electrostatics, the total
energy associated to a distribution of charges ĉ(r) external to the dielec-
tric is

1
8π

∫
drE(r) ·D(r)= 1

2

∫
dr
∫

dr′ĉ(r)V (r, r′)ĉ(r′). (86)

For a configuration of charges {eαi
, ri} in �A, ĉ(r) =∑

i eαi
δ(r − ri ), one

finds with (85) that the total energy can be written as

U = UA +UAB,

UA = ∑
{i,j}

eαi
eαj

|ri−rj | +vSR(αi, αj , |ri − rj |),

UAB = 
2

N∑
i=1

N∑
j=1

eαi
eαj

|ri−r∗
j | .

(87)

where we have omitted the (infinite) self-energies of the particles and
added a short-range repulsive potential for thermodynamic stability. As in
(6), UAB refers to the additional energy due to the presence of the dielec-
tric at distance d. The total force exerted by the dielectric on the particles
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of A is obtained by differentiating U with respect to d

FB→�A
= ∂

∂d
UAB =

N∑

i=1

N∑

j=1

eαi
eαj

xi −x∗
j

|ri − r∗
j |3/2

. (88)

It corresponds to the sum of all pairwise forces between charges in the
plasma A and their image-charges eαj

. Proceeding as in the derivation
leading from (7) to (16), the average force along the x direction per unit
surface is given by

〈f 〉 = lim
L→∞

〈
FB→�A

〉
L

L2
=

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫
dy

x −x′∗

|r − r′∗|3/2
S(x, x′,y)

= −

d2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫
dq

(2π)2
2πe− q

d
|x+x′|e−2qS(x, x′,

q
d

). (89)

To obtain the second line we have introduced the Fourier transform (14),
used x′∗ =2d −x′, and set k=q/d. S(x, x′,y) is the truncated charge–charge
correlation function of the plasma A defined in terms of the statistical
weight exp(−βU) associated to the energy (87). The asymptotic analysis
of (89) differs from that of the previous section on two points: here the
function S provides a contribution from coincident points to the integrals
and we expect S(x, x′, q

d
, d) to tend towards a non-zero limit when d →∞,

namely

lim
d→∞

S(x, x′, q
d
)=S0(x, x′,0) (90)

with S0(x, x′,0) the charge correlation of the semi-infinite plasma in absence
of the dielectric. Hence, the leading behaviour of the force as d →∞

〈f 〉∼〈f 〉mon. +〈f 〉dip. (91)

comes from the first two terms resulting from the expansion of exp{−q|x +
x′|/d}∼1−q|x +x′|/d in (89). At leading order in 〈f 〉dip. one can replace
S(x, x′, q

d
) by S0(x, x′,0) so that

lim
d→∞

d3 〈f 〉dip.=−

∫ ∞

0
dq q2e−2q

∫ 0

−∞
dx

∫ 0

−∞
dx′ (x +x′)S0(x, x′,0)= −

16πβ
.

(92)
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The first term of the x, x′ integrals vanishes because of perfect screen-
ing whereas the second one equals 1/(4πβ) as a consequence of the
dipole sum rule in a semi-infinite plasma (Ref. 10, formula (3.9), Section
C).8 Since limd→∞ d2 〈f 〉mon. = 0 because of perfect screening, one can
replace S(x, x′, q

d
) by S(x, x′, q

d
)−S0(x, x′,0) in the monopole contribution

〈f 〉mon.. It is convenient to further add and subtract S0(x, x′, q
d
) and to

note that:

lim
d→∞

d3

{
−

d2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dq qe−2q

[
S0(x, x′, q

d
)−S0(x, x′,0)

]}
(93)

=−

∫ ∞

0
dq q2e−2q d

dk

∣∣∣
k=0

(∫ 0

−∞
dx

∫ 0

−∞
dx′ S0(x, x′, k)

)
= −

16πβ
. (94)

This follows from the small k =|k| expansion of the x, x′ integral that has
a linear term k

4πβ
(Ref. 10, formula (3.24), Section C). Collecting (92) and

(94) in (91) we see that the large-d behaviour of 〈f 〉 is determined by

〈f 〉= −

8πβd3
− 

d2

∫ 0

−∞
dx

∫ 0

−∞
dx ′

∫ ∞

0
dq qe−2q

[
S(x, x ′, q

d
)−S0(x, x ′, q

d
)
]
+o(d−3).

(95)

One can now proceed as in Section 3 with Mayer bonds defined
in terms of the Green function (85). The Debye–Hückel equation (31)
is supplemented with the boundary condition limx→d− ∂
(x, x′,k)/∂x =
ε limx→d+ ∂
(x, x′,k)/∂x, and κ(x) is as before for x �0 but κ(x)=0 for
x > 0. The solution for piecewise-flat densities is (Ref. 16, formulae (3.2)–
(3.5))9

ϕ(x, x′,k)=2π
e−kA|x−x′|

kA

+2π
e−kA|x+x′|

kA

(kA −k)ekd +(kA +k)e−kd

(kA +k)ekd +(kA −k)e−kd
.

(96)

It is convenient to single out the potential ϕ0(x, x′,k) (43) for the semi-
infinite plasma in the absence of the dielectric and to split

ϕ(x, x′,k)=ϕ0(x, x′,k)+ϕAB(x, x′,k), (97)

8Here the sign is opposite to that in Ref. 10 because the plasma is located in the x < 0 half
space.

9Here the minimal distance d between a charge and the dielectric wall plays the role of the
hard-core diameter in Ref. 16. Notice that we defined  with the opposite sign and that our
plasma fills the region x <0.
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where, from (43) and (96),

ϕAB(x, x′,k)= 8πke−kA|x|e−kA|x′|e−kd

(kA +k)
[
(kA +k)ekd + (kA −k)e−kd

] (98)

One observes that ϕAB(x, x′,k) has the factorization property analogous
to (44)

lim
d→∞

dϕAB(x, x′, q
d
) = z(q)ϕ0(x,0,0)ϕ0(0, x′,0), (99)

z(q) = q

2π

e−2q

1+e−2q
. (100)

The potential 
 corresponding to the exact non-uniform profile is related
to ϕ by the integral equation (38). With a reasoning similar to that leading
to (58) and (59), it can also be split in two parts


(x, x′,k)≡ 
̃(x, x′,k)+
AB(x, x′,k) (101)

Here 
̃ verifies equation (59) with ϕ0 in place of ϕAA and tends to the
potential 
0 of the semi-infinite plasma in vacuum. 
AB solves equation
(58) with u in place of uA and uB , 
̃ in place of 
̃AA, and 
 in place of

BB . Then using (99) and the fact that both 
 and 
̃ tend to 
0 leads
to the asymptotic factorisation of 
AB

lim
d→∞

d
AB(x, x′, q
d
)= z(q)
0(x,0,0)
0(0, x′,0). (102)

We are now ready to evaluate the force (95) as d → ∞ in the Debye–
Hückel approximation. From (27), (24) and (30) one has

SDH(x, x′, q
d
)=− 1

β

κ2(x)

4π

κ2(x′)
4π


(x, x′, q
d
)+ δ(x −x′)

κ2(x)

4πβ
(103)

and the analogous relation for S0 DH(x, x′, q
d
); some care has to be exer-

cised here since coincident points do contribute when both x, x′ are in the
same integration range. We subtract and add 
̃(x, x′, q

d
) to 
(x, x′, q

d
) in

(103). This gives two contributions to the force (95). The first one is

−

8πβd3
+ 

βd2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dqqe−2q κ2(x)

4π

κ2(x′)
4π

[

(x,x′, q

d
)−
̃(x,x′, q

d
)
]

= −

8πβd3
+ 

βd2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dqqe−2q κ2(x)

4π

κ2(x′)
4π


AB(x,x′, q
d
). (104)
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The second one involves the quantity

1
4πβ

[
κ2(x)− (κ0)2(x)

]

+−1
β

∫ 0

−∞
dx′

[
κ2(x)

4π

κ2(x′)
4π


̃(x, x′, q
d
)− (κ0)2(x)

4π

(κ0)2(x′)
4π


0(x, x′, q
d
)

]

= q2

4πβd2

∫
dx′

[

̃(x, x′, q

d
)−
0(x, x′, q

d
)
]
=O

(
1
d2

)
. (105)

This equality follows from the relation (33) for 
̃ (relative to κ) and for

0 (relative to κ0) since both potentials satisfy the basic differential equa-
tion (31). Thus the contribution of (105) to the force is O

(
1
d4

)
. With the

factorisation (102) and using the sum rule (34) for 
0, one finds from
(104) and (100) the final result

lim
d→∞

d3 〈f 〉= −

8πβ
+ 

β

∫ ∞

0
dq q e−2q z(q)= 1

8πβ

∞∑

n=1

(−)n

n3
. (106)

It can be shown along the lines presented in Section 5 that the non mean-
field part of the charge correlation function does not contribute to this
asymptotic result. According to (101) one splits the bonds F = F̃ +FAB and
FR = F̃ R +FR

AB with FR
AB ≡ exp(FAB −βvSR)− 1 −FAB . The bonds F̃ and

F̃ R tend to the bonds F 0 and F 0R pertaining to the semi-infinite plasma
without dielectric, whereas FAB vanishes in the limit. At large separation,
FR

AB ∼ (FAB)2 vanishes more rapidly than FAB (see appendix A). As in the
analysis leading to (79), the leading behaviour of the Ursell function comes
from graphs having bonds F̃ , F̃ R, a single FAB one, and it takes the fac-
torized form (79). The only difference is that both functions G0 refer to the
same plasma A. Then one establishes the validity of (106) as in (81)–(84).

This result coincides with that of Lifshitz. Indeed, a straightforward
generalisation of its asymptotic force as d

β–hc
�1 (formula (5.5) in Ref. 6) to

the case of two different homogeneous dielectric media of constants ε1, ε2
yields10

f ∼ 1
8πβd3

∞∑

n=1

(12)
n

n3
, i = 1− εi

1+ εi

, i =1,2. (107)

10One generalises formulae (5.2), (5.3) and finally (5.5) of Ref. 6 starting from (2.4) by keep-
ing ε1 and ε2 different.
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This reduces to (106) once one of the slabs is a conductor, i.e 1 =−1. We
have therefore provided a derivation of this formula when the conductor is
described as a statistical system of fluctuating charges in thermal equilib-
rium. It is interesting to note that thermal fluctuations in one of the slabs
suffice to generate the correct asymptotic value of the force.

APPENDIX A: SLAB OF FINITE THICKNESS

The analysis of Sections 2–5 applies to infinitely thick slabs. It is
interesting to check that the asymptotic behaviour of the force does not
depend on the slab thickness. We consider now that the slab �A has finite
thickness a <∞, while, for simplicity, we keep the slab �B infinitely thick.
The setting of Sections 2 and 3 remains the same with the x-integration
on �A limited to the interval −a � x � 0. We then follow the same route
as in Sections 4 and 5 by first considering the equation (36) for the piece-
wise-flat profile

κ̄(x) = 0, x <−a, κ̄(x)= 1
a

∫ 0

−a

dx κ(x)≡κA, −a <x <0

κ̄(x) = 0, 0<x <d, κ̄(x)=κB, x >d (A.1)

It is convenient to choose κ̄(x) equal to the average of κ(x) in �A, since
we expect the latter to be close to its mean value at weak-coupling.

Solving equation (36) with x′ fixed, continuity conditions of x →
ϕ(x, x′,k) and of x → ∂xϕ(x, x′,k) at x = −a, x = 0, x = d as well with
limx→±∞ ϕ(x, x′,k)=0 yields

ϕ(x, x′,k)=






ϕAA(x, x′,k), −a <x, x′ <0
ϕAB(x, x′ −d,k), −a <x <0<d <x′

ϕBB(x −d, x′ −d,k), d <x, x′
(A.2)

where

ϕAA(x,x′,k) = 2π
kA

(kA+k)ekAa
(

e−kA|x′−x|σ1+e−kA|x′+x|σ2

)
+(kA−k)e−kAa

(
ekA|x′−x|σ2+ekA|x′+x|σ1

)

(kA+k)ekAaσ1−(kA−k)e−kAaσ2

(A.3)

ϕAB(x,x′,k) = 8πk
[
(kA+k)ekAaekAx+(kA−k)e−kAae−kAx

]
e−kBx′

(kA+k)ekAaσ1−(kA−k)e−kAaσ2
(A.4)

ϕBB(x,x′,k) = 2π
kB

(
e−kB |x′−x|+e−kB |x′+x| (kA+k)ekAaσ3−(kA−k)e−kAaσ4

(kA+k)ekAaσ1−(kA−k)e−kAaσ2

)
(A.5)
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and

σ1 = (kA+k)(kB+k)ekd−(kA−k)(kB−k)e−kd σ2 = (kA−k)(kB+k)ekd−(kA+k)(kB−k)e−kd

(A.6)

σ3 = (kA+k)(kB−k)ekd−(kA−k)(kB+k)e−kd σ4 = (kA−k)(kB−k)ekd−(kA+k)(kB+k)e−kd

kA =
√

k2 +κA
2 kB =

√
k2 +κB

2.

One deduces also from the differential equations that for any a > 0 both
ϕ and 
 verify the charge sum rule (34). As a →∞, formulae reduce to
those obtained in Section 4 for two semi-infinite plasmas.

The main observation to be made on this explicit result is that it
obeys exactly the same factorisation property in terms of the scaled vari-
able q=kd as (44) with the the same factors (here ϕ0

A(x,0,0) corresponds
to the single plasma A with finite thickness). The rest of the analysis is
the same as in Section 4, with the difference that the above solution veri-
fies a-dependent bounds in place of (45)–(47), namely (Appendix B)

∣∣ϕ(x, x′,k)
∣∣�ϕ>(x, x′)� 4π

κ
coth κa, κd �1, (A.7)

where ϕ>(x, x′) is defined piecewise from ϕ>
AA, ϕ>

AB , etc. as in (A.2) with

ϕ>
AA(x, x′) = 2π

κ

cosh κ(a −|x′ −x|)+ cosh κ(a −|x′ +x|)
sinh κa

(A.8)

ϕ>
AB(x, x′) = 4π

κ2d

cosh κ(a −|x|)
sinh κa

e−κx′
(A.9)

ϕ>
BB(x, x′) = 2π

κ

(
e−κ|x′−x| + e−κ|x′+ x|

)
, κ :=min{κA, κB} (A.10)

The potential 
 with structured profiles is related to ϕ by the integral
equation (38) and the estimate (49) of the lemma becomes

∣∣
(x, x′,k)
∣∣� 1

1− r(a)
ϕ>(x, x′), r(a) := r coth κa (A.11)

where r is defined by (48). To have r(a)<1 one needs r sufficiently small
(weak-coupling, see Appendix B) and κa not too small, i.e. the slab width
is larger than the typical screening length in the plasma.11 Then the steps

11Notice that the above bounds cannot be uniform in a: ϕ0
A(x, x′,0) diverges as a→0 so that

its integral over [−a,0] leads to the constant value 4π
κA

requested by the charge sum rule.
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leading to (62) are the same as in Section 4 and the considerations of
Section 5 apply as well. The reason for the asymptotic force being inde-
pendent of the slab thickness is clearly displayed in expressions (62) and
(81): it only depends on the screening cloud associated to charges located
at the inner boundaries of the slabs, and thus is insensitive to charge fluc-
tuations elsewhere in the slabs.

APPENDIX B: BOUNDS FOR THE DEBYE–HÜCKEL POTENTIAL

In this appendix, we present some details of the calculations leading to
bounds used throughout the paper for the Debye–Hückel potentials ϕ and

 and discuss the validity of (49) in the weak-coupling regime.

At first, we show the bound (A.7), which is a generalisation of (45) to
the case where plasma A is of finite thickness a. Result (45) is recovered
by taking a →∞. From (A.6), one has σ1 �σ2; σ1 �κAκB(ekd −e−kd), and
σ2 +σ4 �σ1 +σ3; σ3 −σ1 �σ4 −σ2 <0. This implies

−1� (kA +k)ekAaσ3 − (kA −k)e−kAaσ4

(kA +k)ekAaσ1 − (kA −k)e−kAaσ2
�1,

which yields the bound (A.10) for ϕBB :

|ϕBB |� 2π
kB

(
e−kB |x′−x| + e−kB |x′+x|

)
�ϕ>

BB(x, x′).

To obtain the bound (A.9) for ϕAB , we then note that

σ1 − kA−k
kA+k

e−2kAaσ2 �
(
1− e−2kAa

)
σ1. (B.1)

Thus, k

σ1− kA− k

kA+ k
e−2kAaσ2

� 1
1−e−2kAa

1
κAκBd

kd
ekd−e−kd � 1

1−e−2kAa
1

κ2d
1
2 , so that

0�ϕAB(x, x′,k)� 4π

κ2d

ekA(a−|x|) + e−kA(a−|x|)

ekAa − e−kAa
e−kBx′ �ϕ>

AB(x, x′).

Last inequality uses

ekx + e−kx

ekX − e−kX
� eκx + e−κx

eκX − e−κX
, 0<x �X, k �κ >0. (B.2)
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Finally, (B.1), the fact that |σ2/σ1|�1 and (B.2) show the bound (A.8)

∣∣ϕAA(x, x ′,k)
∣∣ � 2π

κA

σ1e−kA|x′−x|+|σ2|e−kA|x′+x|+e−2kAa
(
|σ2|ekA|x′−x| +σ1ekA|x′+x|

)

(
1− e−2kAa

)
σ1

� ϕ>
AA(x, x ′).

B.1. Proof of the Lemma

To proof the bound (49) of 
(x, x′,k), we proceed as follows. By (38) we
can develop 
(x, x′,k) as a perturbation series w.r.t. ϕ(x, x′,k), whose nth

term reads

(−1
4π

)n∫
ds1 · · ·dsnu(s1) · · ·u(sn)ϕ(x, s1,k)ϕ(s1, s2,k) · · ·ϕ(sn, x

′,k).

(B.3)

This term is bounded by rnϕ>(x, x′), where r is given by (48). Indeed,
according to (45), ϕ(x, x′,k) is bounded by ϕ>(x, x′), which itself satisfies

ϕ>(x, s)ϕ>(s, x′)� 4π

κ
ϕ>(x, x′), ∀s, x, x′. (B.4)

Consequently, if r < 1, the series is absolutely convergent and the
lemma holds. Inequality (B.4) is proven using (46), (47) and verifying it for
each case. As an example,

ϕ>
AA(x, s)ϕ>

AB(s, x′) = 2π

κ

4π

κ2d
e−κ|x′|

(
e−κ(|x−s|+|s|) + e−κ(|x+s|+|s|)

)

(B.5)

� 4π

κ
ϕ>

AB(x, x′), (B.6)

because |x ± s|+ |s|� |x|. Some of the majorations leading to (B.4) assume
κd �1.

If plasma A is finitely thick, (B.4) generalizes to

ϕ>(x, s)ϕ>(s, x′)� 4π

κ
coth(κa) ϕ>(x, x′), ∀x, x′, s (B.7)

and we obtain the bound (A.11) for 
.
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B.2. Profiles in Weakly Coupled Plasmas

The parameter r occurring in the bound (49) can be chosen small enough
in the weak-coupling regime, defined by � = 1

2βe2κ �1 (e is a typical charge of
the system). Indeed, to estimate r, the deviations of the density profiles to their
bulk values need to be known. In the simplest case of a semi-infinite charge-
symmetric plasma12 in the weak-coupling regime, Jancovici(20) finds

ρA(γ x)−ρAγ

ρAγ

� βe2
γ

2
κAχ(κAx), � �1,

where χ is integrable. Integrating over x < 0 and forming r according to
(48) shows that r is proportional to �. This also holds if the semi-infinite
plasma is not charge-symmetric (see Ref. 16, section 5). For our two-plasmas
system, r will be less than 1 provided � is small and d is large.

APPENDIX C: DECAY OF MAYER GRAPHS AT LARGE SLAB

SEPARATION

We consider prototype graphs constituted of bonds (76) labelled by the
indices AA,AB,BA,BB according to the respective location of the vari-
ables x, x′ in slab A or in slab B. In view of (29) and after the changes
kd =q, x′ →x′ −d, the contribution to the force of a graph �AB with first
root point in �A and second root point in �B is

〈f 〉�AB = − 1
d2

∫ 0

−∞
dx

∫ ∞

0
dx′

∫ ∞

0
dq qe− q

d
|x−x′|e−q

×
∑

γ,γ ′
eγ eγ ′ρA(γ x)ρB(γ ′ x′)πAB(γ x, γ ′ x′, q

d
). (C.1)

A graph �AB having L bonds of FAB or FBA type, written in Fourier
space with respect to the y-variables, is of the general form

�AB(γ x, γ ′ x′,k) = 1
SπAB

∫
d1ρ(1) · · ·

∫
dmρ(m)

∫ L∏

j=1

d���j

(2π)2
F[AB](���j )

×
∫ ∏

a

dka

(2π)2
FAA(ka)

∫ ∏

b

dkb

(2π)2
FBB(kb)

×
m∏

n=0

(2π)2δ[k, {���j }n, {ka}n, {kb}n]. (C.2)

12A charge-symmetric plasma has two species with opposite charges and same bulk densities.
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Here m is the number of internal points, i = (γi, xi) and
∫

d i stands
for summation over particle species and integration over xi . F(k) stands
either for F(k) or F R(k) and we have omitted the species and x, x′ depen-
dencies from the notation.13 The product of m + 1 δ-functions expresses
the conservation of wave numbers at the m internal points plus a rela-
tion that fixes the sum of ingoing (or outgoing) wave numbers to k, as a
result of y-translation invariance. These constitute m + 1 linear equations
between wave numbers from the sets {���j }, {ka}, {kb}, which imply C inde-
pendent relations involving only ��� variables. Depending on the topology
of the graph, 1 � C � L. Consider, e.g., the graph constituted by a single
chain of bonds FAB(���1)F

R
BB(kb)FBA(���2)F

R
AA(ka)FBA(���3) with L=3.14 The

conservation laws k=���1 =ka =���2 =kb =���3 imply the independent relations
k =���1, ���1 =���2, ���2 =���3 between the ��� variables, thus C = 3. Consider now
the graph constituted of two parallel chains FR

AA(ka1)FAB(���1)F
R
BB(kb1) and

FR
AA(ka2)FAB(���2)F

R
BB(kb2) with L=2. The conservation laws are k=ka1 +

ka2, ka1 =���1 = kb1, ka2 =���2 = kb2 implying the single relation k =���1 +���2,
thus C =1.

Then we perform the integrations in (C.2) in the following order. We
first carry C integrals on the δ functions corresponding to the above rela-
tions between ��� variables: this expresses the ���j variables j = 1, . . . ,L in
the integrand as linear combinations of the remaining L − C ones, say
���C+1, . . . ,���L. We evaluate now �AB at k = q/d and change the variables
���j = qj /d, j = C + 1, . . . ,L: the Jacobian provides a factor d−2(L−C). As
d →∞ the ka, kb and q integrals factorize. Indeed in FAA or FBB bonds
the q dependences occur in the form q/d →0, d →∞ whereas for FAB or
FBA bonds we use the asymptotic form (60). This yields a factor d−n[AB] if
the number of F[AB] bonds is n[AB] and d−4nR[AB] if the number of F R

[AB]
bonds is nR[AB] (for the latter, see at the end of this appendix). Then the
ka and kb integrals refer to products of FAA and FBB as in single semi-
infinite plasmas and the q integrals are carried on product of functions
q/ sinh q. For the above examples the q integrals are

∫
dq(q/ sinh q)3 and∫

dq1
∫

dq2(q1/ sinh q1)(|q1 − q2|/ sinh |q1 − q2|). As a final result a graph
decays as

d−2(L−C)d−n[AB]d−4nR[AB], d →∞ (C.3)

times a factor of order one resulting of the above integrals. It is clear that
the minimal decay d−1 is obtained when there is only one FAB bond.

13In (C.2), F[AB] designates either a FAB or a FBA bond. Notice that FBA(i, j,k) =
FAB(j, i,k).

14The FR bonds are needed because of the excluded convolution rule between F bonds.
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It remains to examine the decay of a F R
[AB] bond, which reads in

Fourier form, according to (21)

F R
AB(k)=

∫
dye−ik·y [exp(−βe1e2
AB(y))−1+βe1e2
AB(y)] . (C.4)

The x variables are omitted and |x1 −x2| is large enough so that the short
range part of the potential does not contribute. In view of (60), 
AB(y)

has the asymptotic form


AB(y) = 1
d2

∫
dq

(2π)2
exp

(
i

q
d

·y
)

AB

( q
d

)

∼ 1
d3

f
( y

d

)
with f (y)=
0

A
0
B

∫
dq

(2π)2
eiq·y q

4π sinh q
.

(C.5)

Hence substituting (C.5) in (C.4) and expanding for large d after the
change of variable u =y/d gives

F R
AB

( q
d

)
∼ d2

∫
du e−iq·u

[
exp

(
− β

d3
f (u)

)
−1+ β

d3
f (u)

]

∼ 1
d4

∫
du e−iq·u(f (u))2 =O

(
1
d4

)
. (C.6)
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