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Abstract A simplified climate model is presented which
includes a fully 3-D, frictional geostrophic (FG) ocean
component but retains an integration efficiency consid-
erably greater than extant climate models with 3-D,
primitive-equation ocean representations (20 kyears of
integration can be completed in about a day on a PC).
The model also includes an Energy and Moisture Bal-
ance atmosphere and a dynamic and thermodynamic
sea-ice model. Using a semi-random ensemble of 1,000
simulations, we address both the inverse problem of
parameter estimation, and the direct problem of quan-
tifying the uncertainty due to mixing and transport
parameters. Our results represent a first attempt at
tuning a 3-D climate model by a strictly defined proce-
dure, which nevertheless considers the whole of the
appropriate parameter space. Model estimates of
meridional overturning and Atlantic heat transport are
well reproduced, while errors are reduced only moder-
ately by a doubling of resolution. Model parameters are
only weakly constrained by data, while strong correla-
tions between mean error and parameter values are
mostly found to be an artefact of single-parameter
studies, not indicative of global model behaviour. Sin-
gle-parameter sensitivity studies can therefore be mis-
leading. Given a single, illustrative scenario of CO,
increase and fixing the polynomial coefficients governing
the extremely simple radiation parameterisation, the
spread of model predictions for global mean warming
due solely to the transport parameters is around one
degree after 100 years forcing, although in a typical
4,000-year ensemble-member simulation, the peak rate
of warming in the deep Pacific occurs 400 years after the
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onset of the forcing. The corresponding uncertainty in
Atlantic overturning after 100 years is around 5 Sv, with
a small, but non-negligible, probability of a collapse in
the long term.

1 Introduction

Climate models incorporate a number of adjustable
parameters whose values are not always well constrained
by theoretical or observational studies of the relevant
processes. Even the nature of the processes may be un-
clear and dependent upon resolution, as sub-grid scale
mixing parameterizations, particularly for coarse reso-
lution models, may represent a wide variety of different
physical processes (eddies and unresolved motions,
double-diffusive interleaving, inertia-gravity waves,
tides, etc.). In such cases parameter values would ideally
be chosen by optimising the fit of model predictions to
observational data. This would naturally entail search-
ing for optimal, quasi-steady solutions in the multi-
dimensional space of all the model parameters. Using
basic Monte-Carlo random walk techniques, tens or
hundreds of thousands of quasi-steady integrations
would be required. For the intensively studied models of
high or moderate resolution, such as HadCM3 (Gordon
et al. 2000) and CCSM (Boville and Gent 1998), the
computational demands of even a single such integration
can be prohibitive. Instead, large models are usually
tuned by a sequence of studies looking in detail at single
parameterzations. The interdependence of parameters
will almost certainly mean that even the order in which
such studies are conducted will affect the final result,
and hence the model predictions. Efficient models have
the potential to perform large numbers of integrations
and hence explore larger regions of their parameter
space. Where the parameters have clear physical
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interpretations or close equivalents in higher resolution
models, the results may be of more general relevance.
Efficient models are also essential for the understanding
of very long-term natural climate variability, in which
case the optimal inter-component balance of model
complexity may depend on the timescale range of
interest.

In a recent paper Knutti et al. (2002) derive probabi-
listic constraints on future climate change using ensem-
bles of order 10* runs of 3,000 years using the Bern 2.5-D
model. This model is based on 2-D representations of the
flow in each of the major ocean basins following Wright
and Stocker (1991), as in the Potsdam-based model
“CLIMBER” (Petoukhov et al. 2000). Models with fully
3-D representations of the world ocean, on the other
hand, can much more readily be compared with higher-
resolution models and with data. Furthermore, 3-D
ocean models benefit from the ability to represent di-
rectly the fundamental geostrophic momentum balance;
the ability to represent horizontal gyre circulations and
the ability to represent topographic and geometrical ef-
fects, such as changes in the location of deep sinking and
ice formation. In 2-D models all these important effects
can only be parameterised. Interactions with other
components of the climate system are much more readily
represented as a result of the 2-D ocean surface and in
addition, errors due to low resolution are much more
easily quantifiable in 3-D models than corresponding
errors due to reduced dimensionality.

Efficient models with 3-D ocean components include
the model of Weaver et al. (2001), FORTE (Sinha and
Smith 2002) and ECBILT-CLIO (Goosse et al. 2001),
which use low-resolution versions of primitive-equation
Bryan-Cox type ocean models. These models are con-
siderably less efficient than the Bern 2.5-D model and
are not yet capable of performing ensembles of runs
representing hundreds of thousands of years of total
integration. Coupled models using quasi-geostrophic
(QG) ocean dynamics exist (Hogg et al. 2003) but have
so far been focused on high-resolution integrations.
More general than QG dynamics, and thus applicable
with arbitrary bottom topography in a global setting,
but significantly simpler than the primitive equation
dynamics, are frictional geostrophic (FG) ocean models
such as that described by Edwards and Shepherd
(2002). In this paper we describe the extension of the
latter model by the addition of an energy and moisture
balance (EMBM) atmosphere and a zero-thickness
dynamic and thermodynamic sea-ice model. At a very
low resolution of 36x36 cells in the horizontal, and
given the extremely simple representation of the
atmosphere, the resulting coupled model is highly effi-
cient.

After a brief description of the model physics, we
perform an initial investigation of the space generated by
the simultaneous variation of model parameters by
analysing a set of 1,000 model runs. We do not attempt
to produce well-converged statistical analyses, rather we
aim to bridge the gap between the large ensembles of
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runs which are possible with dimensionally reduced
models and the very limited numbers of runs available
from high-resolution 3-D models. Our aim is to inves-
tigate the extent to which both model parameters and
model predictions of global change are constrained by
quantitative comparison with data. Thus we commence
our analysis in Sects. 3 and 4 by defining and applying
an objective measure of model error. Next, in Sect. 5, we
discuss the modelled climate in the low-error runs. Then,
in Sect. 6, we consider the model behaviour in a global
warming scenario, weighting our solutions according to
the mean error measure to define appropriate proba-
bility distributions. We conclude with a discussion in
Sect. 7.

2 Model description
2.1 Ocean

The frictional geostrophic ocean model is based on that
used by Edwards and Shepherd (2002) (henceforth re-
ferred to as ES) for which the principal governing
equations are given by Edwards et al. (1998). Dynami-
cally, the ocean is therefore similar to classical GCM’s,
with the neglect of momentum advection and accelera-
tion. The present version, however, differs significantly
from that of ES in that the horizontal and vertical dif-
fusion of ocean tracers is replaced by an isopycnal dif-
fusion and eddy-induced advection parameterisation in
which a considerable simplification is obtained by set-
ting the isoneutral diffusivity equal to the skew diffu-
sivity representing eddy-induced advection, as suggested
by Griffies (1998).

In FG dynamics, barotropic flow around islands, and
hence through straits, can be calculated from the solu-
tion of a set of linear constraints arising from the inte-
gration of the depth-averaged momentum equations
around each island. A form of the constraint for one
island is given by ES for the special case where topo-
graphic variation around the island vanishes. Here we
use the general form for the ACC but neglect barotropic
flow through the other straits unless otherwise stated. A
further modification to the ocean model of ES is the
inclusion of a variable upstream weighting for advec-
tion.

The velocity under-relaxation parameter of Edwards
and Shepherd (2001) is set to 0.9. Note that velocity
relaxation alters the dynamics of an equatorial pseudo-
Kelvin wave which is already present in the FG system
(contrary to the comment by Edwards and Shepherd
2001) see Killworth (2003) for details.

In the vertical there are normally eight depth levels on
a uniformly logarithmically stretched grid with vertical
spacing increasing with depth from 175 m to 1,420 m.
The maximum depth is set to 5 km. The horizontal grid
is uniform in the (¢, s), longitude sin(latitude) coordi-
nates giving boxes of equal area in physical space. The
horizontal resolution is normally 36x36 cells.
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2.2 Atmosphere and land surface

We use an Energy and Moisture Balance Model
(EMBM) of the atmosphere, similar to that described in
Weaver et al. (2001). The prognostic variables are sur-
face air temperature 7, and surface specific humidity ¢
for which the governing equations can be written as

oT,
PahiCpa (E + V.(fruTy) — V.(KTVTa))

=0OswCys + OLw — OpLw + Osu + Ovn, (1)

0
pahq (éj +V.(Bquq) — V-(KqVq)) =po(E—=P), (2
where A, and hq are the atmospheric boundary layer
depths for heat and moisture, respectively, k1 and kg are
the eddy diffusivities for heat and moisture respectively,
E is the evaporation or sublimation rate, P is the pre-
cipitation rate, p, is air density, and p, is the density of
water. Cp, is the specific heat of air at constant pressure.
The parameters fir, fq allow for a linear scaling of the
advective transport term. This may be necessary as a
result of the overly simplistic, one-layer representation
of the atmosphere, particularly if surface velocity data
are used in place of vertically averaged data, as in our
standard runs. Weaver et al. (2001) use the values +=0,
Bq=0.4 or 0. We allow Br# 0 but only for zonal
advection, while 8 takes the same value for zonal and
meridional advection. In view of the convergence of the
grid, winds in the two gridpoints nearest each pole are
averaged zonally to give smoother results in these re-
gions.

In contrast to Weaver et al. (2001) the short-wave
solar radiative forcing is temporally constant, repre-
senting annually averaged conditions. In a further
departure from that model, the relevant planetary al-
bedo is given by a simple cosine function of latitude.
Over sea ice the albedo is temperature dependent (see
below). The constant C 4 parameterizes heat absorption
by water vapour, dust, ozone, clouds, etc.

The diffusivity 1, in our case, is given by a simple
exponential function with specified magnitude, slope
and width,

exp(—(0/1)°) ~ ¢

l1—-c

20+mn

+ (1 —84)

Kkt = k1| Sa )

(3)

where 0 is the latitude (in radians) and the constant ¢ is
given by

2
—exp| - (=
¢ TP .
For width parameter /3 =1 and slope parameter sq4=0.1,

this function is close to that used by Weaver et al. (2001)
when Sy # 0. In our model, x is always constant.

(4)
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The remaining heat sources and sinks are as given by
Weaver et al. (2001): O w is the long-wave imbalance at
the surface; Oprw, the planetary long-wave radiation to
space, is given by the polynomial function derived from
observations by Thompson and Warren (1982), cubic
in temperature 7, and quadratic in relative humidity
r=gq/qs, where ¢y is the saturation-specific humidity,
exponential in the surface temperature. For anthropo-
genically forced experiments, a greenhouse warming term
is added which is proportional to the log of the relative
increase in carbon dioxide (CO,) concentration Cas
compared to an arbitrary reference value C.

The sensible heat flux Qs depends on the air-surface
temperature difference and the surface wind speed (de-
rived from the ocean wind-stress data), and the latent
heat release Qi is proportional to the precipitation rate
P, as in Weaver et al. (2001). In a departure from that
model, however, precipitated moisture is removed
instantaneously, as in standard oceanic convection
routines, so that the relative humidity » never exceeds its
threshold value rpax.

This has significant implications as it means that the
relative humidity is always equal to ry,x wherever pre-
cipitation is non-zero, effectively giving ¢ the character
of a diagnostic parameter. Here, since the model is used
to represent very long-term average states, regions of
zero precipitation only exist as a result of oversimplified
representation of surface processes on large landmasses.

To improve the efficiency, we use an implicit scheme
to integrate the atmospheric dynamical Eqgs. 1 and 2.
The scheme comprises an iterative, semi-implicit pre-
dictor step (Shepherd, submitted) followed by a correc-
tor step which renders the scheme exactly conservative.
Changes per timestep are typically small, thus a small
number of iterations of the predictor provides adequate
convergence.

The model has no dynamical land-surface scheme.
The land-surface temperature is assumed to equal the
atmospheric temperature 7,, and evaporation is set to
zero, thus the atmospheric heat source is simplified over
land as the terms Qpw=Q0suy=Qru=0. Precipitation
over land is added to appropriate coastal ocean gridcells
according to a prescribed runoff map.

2.3 Sea ice and the coupling of model components

The fraction of the ocean surface covered by sea ice in
any given region is denoted by 4. Dynamical equations
are solved for A4 and for the average height H of sea ice.
In addition a diagnostic equation is solved for the sur-
face temperature T; of the ice. Following Semtner (1976)
and Hibler (1979), thermodynamic growth or decay of
sea ice in the model depends on the net heat flux into the
ice from the ocean and atmosphere. Sea-ice dynamics
simply consist of advection by surface currents and
Laplacian diffusion with constant coefficient ;.

The sea-ice module acts as a coupling module be-
tween ocean and atmosphere and great care is taken to
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ensure an exact conservation of heat and fresh water
between the three components. The resulting scheme
differs from the more complicated scheme of Weaver
et al. (2001) and is described fully in the Appendix.
Coupling is asynchronous in that the single timestep
used for the ocean, sea-ice and surface flux calculation
can be an integer multiple of the atmospheric timestep.
Typically, we use an atmospheric timestep of around a
day and an ocean/sea-ice timestep of a few days. The
fluxes between components are all calculated at the same
notional instant to guarantee conservation, but are for-
mulated in terms of values at the previous timestep, thus
avoiding the complications of implicit coupling. All
components share the same finite-difference grid.

2.4 Topography and runoff catchment areas

The topography is based on a Fourier-filtered interpo-
lation of ETOPOS5 observationally derived data. A
consequence of the rigid-lid ocean formulation is that
there is no mechanism for equilibriation of salinity in
enclosed seas which must therefore be ignored or con-
nected to the ocean. In our basic topography the depth
of the Bering Strait is a single level (175 m), thus it is
open only to barotropic flow, which we usually ignore,
and diffusive transport, while the Gibralter Strait is two
cells deep and thus permits baroclinic exchange flow.
Realistic barotropic flow through Bering would require
local modification of the drag to compensate for the
unrealistic width of the channel. In a single experiment
with default drag parameters and barotropic through-
flow enabled, the model calculated a transport of 4.5 Sv
out of the Pacific at steady state.

Equivalently filtered data over land were used—along
with depictions of major drainage basins in Weaver et al.
(2001) and the Atlantic/Indo-Pacific runoff catchment
divide of Zaucker and Broecker (1992)—to guide the
subjective construction of a simple runoff mask. At
higher resolution, it becomes a practical necessity to
automate the intial stages of this procedure. Thus the
runoff mask for the 72x72 grid is constructed by
applying a simple, steepest-descent algorithm to the fil-
tered topographic data, followed by a minimum of
modifications to ensure that all runoff reaches the ocean.

2.5 Default parameters and forcing fields

In principle, values used for oceanic isopycnal and dia-
pycnal diffusivities, x, and x, and possibly momentum
drag (Rayleigh friction) coefficient 4 may need to be
larger at low than at high resolution to represent a range
of unresolved transport processes. In FG dynamics, the
wind-driven component of the ciculation tends to be
unrealistically weak for moderate or large values of the
frictional drag parameter A, for reasons discussed by
Killworth (2003), while for low drag unrealistically
strong flows appear close to the equator and topo-
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graphic features. This problem is alleviated by allowing
the drag 4 to be variable in space. By default, drag in-
creases by a factor of three at each of the two gridpoints
nearest the equator or to an upper-level topographic
feature. In addition, we introduce a constant scaling
factor W which multiplies the observed wind stresses in
order to obtain stronger and more realistic wind-driven
gyres. For 1<W<3, it is possible to obtain a wind-
driven circulation with a reasonable pattern and ampli-
tude. Annual mean wind-stress data for ocean forcing
come from the the SOC climatology (Josey et al. 1998).
Wind fields used for atmospheric advection are long-
term (1948-2002) annually averaged 10 m wind data
derived from NCEP/NCAR reanalysis. Using upper-le-
vel winds was not found to improve model simulations.
Parameters and ranges, where appropriate, are given in
Tables 1 and 2.

2.6 Freshwater flux redistribution

The single-layer atmosphere described above generates
only around 0.03 Sv moisture transfer from the Atlantic
to the Pacific, whereas Oort (1983) estimated a value of
0.32 Sv from observations. This typically leads to very
weak deep sinking in the north Atlantic in the model
unless the moisture flux from the Atlantic to the Pacific
is artificially boosted by a constant additional redistri-
bution of surface freshwater flux. Oort’s estimated
transfer flux was subdivided into three latitudinal bands:
—0.03 Sv south of 20°S (to the Atlantic/Southern Ocean
boundary); 0.17 Sv in the tropical zone 20°S to 24°N,
and 0.18 Sv north of 24°N. Following Oort, we transfer
fresh water at a net rate F,, subdivided into these lati-
tude bands in these proportions. Note that although this
adjustment, and the wind scaling described above, are
forms of flux correction, they serve to adjust steady-state
behaviour rather than prevent climate drift. Climate
drift in higher-resolution models typically arises because
the models are too costly to integrate to equilibrium.

3 A semi-random set of runs

Fixing the distribution of drag, we have a set of 10
model parameters related to mixing and transport, xy,
Ky, 4, W, Kni, Fy, kT, Kq, B1, Bq, augmented to 12 if we
allow for variation of the width and slope /; and s4 of the
atmospheric diffusivity. If we vary these parameters
individually, as in conventional, single parameter stud-
ies, we visit only a very restricted region of parameter
space. We therefore allow all 12 parameters to vary at
once within specified ranges, which are given in Table 1.
We also consider the single parameter approach for
comparison. Extreme values are chosen to cover, or
exceed, a range of reasonable choices of appropriate
values for such a model. We consider the effect of
restricting these ranges in Sect. 7. In the case of drag 4,
physically reasonable solutions are obtained only within
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Table 1 Ranges of model - . - -
parameter values for the initial Parameter Notation Minimum Maximum Subset range Units
ensemble together with the
ranges obtained in the subset of ~Ocean
low-error simulations described  Isopyc. diff. Kh 300 10,000 (610, 8200) m>s”
in the text. The value given for ~ Diapyc. diff. Ky 2%x107° 2x10~* (2.6x107°,1.9x107% m?s!
drag, Z, is the minimum value in ~ Friction A 1/5 2 0.22, 1.2) days™'
the ocean interior Wind-scale w 1 3 (1.2,2.9) -
Atmosphere
Tdiff. amp. kr 106 107 (2.1x10°, 8.8x10°) m?s!
Tdiff. width Iy 0.5 2 (0.54, 1.8) Radians
Tdiff. slope Sd 0 0.25 (0.0025, 0.25) -
qdiff. Kq 5%10* 5x10° (9.0x10%, 3.7x10°%) m?s™!
T adv. coeff. Pr 0 1 (0.005, 0.54) -
q adv. coeff. By 0 1 (0.005, 0.68) -
FWF adjust. F, 0 0.64 (0.077, 0.63) Sv
Sea ice
Sea-ice diff. Kni 300 10,000 (310, 9900) m> s~

Table 2 Further default parameter values. The full specification of
variable drag, ocean density, isoneutral and eddy-induced mixing,
surface fluxes, outgoing longwave radiation, specific humidity and
freezing temperature involves about another 50 parameters, values
for which are given or referred to in the text. AF,=4/In 2

Parameter Value

Atmosphere

hy 8,400 m

hq 1,800 m

Pa 125 kgm™

Cpa 1,004 T kg ' Kt
Y 2.50x10° J kg™!

AF, 577 W m™>

I'max 0.85

Sea ice

H, 0.0l m

v; 2.166 Wm™! K~!

T; 17.5 days

Py 1,000 kg m >

Cy; 4,044 J kg™ K™

Le 3.34x10° J kg™ !

a fairly narrow range. The wind scaling factor, suggested
qualitatively by the analysis of Killworth (2003), is al-
lowed to vary from 1 (no scaling) to 3, while the fresh-
water adjustment factor is varied between 0 and twice
the observation estimate of 0.32 Sv. Note that it may be
appropriate to use larger values of frictional and diffu-
sive parameters than in higher-resolution models.

In our semi-random approach, we generate an
ensemble by uniformly spanning the range of each
individual parameter, but choose combinations of
parameters at random. This is equivalent to an equal
subdivision of probability space (as in Latin Hypercube
sampling) if the probability distributions for the
parameters are uniform. Thus with M runs and N
parameters, each parameter takes M, uniformly (or
logarithmically) spaced values between its two extrema,
but the order in which these values are taken is defined
by a random permutation. Where the minimum value is
zero, the values chosen are uniformly spaced between
the extrema, otherwise they are uniformly logarithmi-
cally spaced. Each run is a separate, 2,000-year inte-

gration from a uniform state of rest under constant
forcing. For the purposes of this paper, we collate the
results of three such sets, one with M =200 and two with
M =400, making 1,000 runs in total (recall that N=12).
Within each set every run is necessarily unique. Between
the sets a given run could be repeated, but the proba-
bility of this happening is vanishingly small.

As discussed by ES, the final quasi-steady state may
not be unique for a given set of parameters. Other quasi-
steady states may be obtained using different initial
conditions, in particular different initial ocean temper-
atures. However, in the present paper, we are primarily
concerned with the effects of variations of model
parameters, thus we fix the initial ocean temperature at
20°C unless otherwise stated. This results in a rapid,
convectively driven start to the oceanic adjustment
process.

To process the results of such a large number of runs,
we have to define an objective measure of model error.
To do so we use a weighted root mean square error over
the set of all dynamical variables in the ocean and
atmosphere, as compared to interpolated observational
datasets, namely NCEP surface (1,000 mb) atmospheric
temperature and specific humidity, averaged over the
period 1948-2002, and Levitus et al. (1998) temperature
and salinity. Quantitative comparison of the sea-ice
variables with data would be over-ambitious at this
resolution. Thus the error £ is defined by

£ =3 wiki - D)y )

where the vectors X; and D; represent the model and data
variables, respectively, indexed by the subscript i, and
the values w; are weights which depend on the quantity
(atmospheric or oceanic temperature, humidity or
salinity) but not the position. For each of the four
quantities the weight w,:(nafl)_l, where n is the total
number of variables and aczl is the variance of the relevant
observationally derived quantity in the model coordi-
nates. The values of ¢ are 41.5C2 for ocean temperature,
162 C? for atmospheric temperature, 0.282 psu? for
salinity and 2.94x107° for relative humidity, respec-
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tively, n=15,012. Since the weight depends explicitly
only on the data variance, the contributions of ocean
and atmosphere errors are effectively weighted by the
density of gridpoints in each submodel. This weighting
gives a useful test of model performance which is
potentially sensitive to subtle changes in ocean dynamics
as well as changes in the very basic representation of the
atmosphere. A value of unity for £ would be given by
globally uniform model fields with the exact value of the
mean of the data. Although the mean may not be
accurately predicted, this should be offset by some skill
in predicting spatial variation, and values for £ some-
what less than one are obtained for reasonable simula-
tions. At this stage, we can assume that model errors are
likely to dominate observed long-term trends in the
observational data. We also make use of an alternative
error function £4 in which the sum in Eq. 5 is taken
exclusively over points in the atmosphere (considering
only ocean points provides little additional information).
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The range of £ over the complete set of 1,000 runs (of
which 785 successfully reached completion) is from 0.61
to 2.8. Figures 1 and 2 show the error at the end of each
run as a function of each of the parameters in turn for all
the runs with mean error less than 1. There is very little
correlation between any of the parameters and the mean
error. The atmospheric moisture and heat diffusivity
amplitudes have correlation coefficients, across the
whole range, of 0.39 and —0.32 with the mean error but
no other parameters have correlation coefficients larger
than 0.3 in magnitude.

Also shown in Figs. land 2 are the results of se-
quences of runs in which we vary a single (control)
parameter at once, changing its value in small incre-
ments between runs and initialising each run with the
final state of the previous run. We start each sequence
with a run of 4,000 years at the minimum value of the
control parameter. Subsequent runs, first increasing to a
maximum and then decreasing the control parameter,

Fig. 1 Mean model error £
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Fig. 2 As previous figure for

the remaining parameters; k.,
Kq, la (diffwid), s4 (difflin), fr,

1

0.9
q
g S 08
[} )
€ € 0.7
0.6
0.5 0.5
10° 10’ 10° 10°
T diff amp. (m?s™") moist. diff amp. (m?s~")
1 s x—% 1k
ok WE Ay o PR 5&%
X 3 X )S?XXXXX X xix §§>f< % )3( X% X
0.9 »%S( x ¢ Kk x Badt et é)&): 0.9 )"‘( ;X %XXX % x&&x)%xx
b 9 X xX X x X ¥ X x% x
S %3 ?g(( &‘XXXI »Z;ﬁ; ;; X5 X &&x xxﬁngx;g ’{?} 5 &%
£ 0.8 [ X g% goxx XX x £ 08K % 3?‘;?( x><>< 63
© X Xx X 3§>;<>§< X XXX o x X % >§$< X
% % 9 x X g ,Zﬁxxf ><®)2< X @
€ E.0.7Z®;g®()5<><®®®%x%®x ®
o = T X ®
® x X
0.6 w
0.5 0.5
0.5 1 1.5 2 0 0.05 0.1 015 0.2
diffwid difflin

r.m.s. error
X
%

X

X

X

X
r.m.s. error

are terminated after 1,000 years. Since the variations in
parameters between runs are small, the model climate
remains close to equilibrium throughout the procedure
unless the ocean circulation undergoes a major struc-
tural bifurcation. The mean error at the end of each
individual run is plotted as a function of the control
parameter in Figs. 1 and 2 (continuous lines). The two
curves corresponding to the increasing and decreasing
branches should pass very close to the minimum error
value for the random ensemble, since the parameters of
this run were used as pivotal values for the single-
parameter sequences. Small differences in error between
random ensemble results and outward and return
branches of the single-parameter sequences are the result
of residual unsteadiness in ocean temperatures and
salinities. Large differences between branches (hystere-
sis), in the case of moisture diffusivity xq and moisture
flux F,, indicate the existence of multiple stable steady
states. In the cases of freshwater flux adjustment and
moisture diffusivity, the circulation undergoes a bifur-

temp. adv. m0|st adv.

cation in which the Atlantic overturning collapses. In
simplified geometries such a change often indicates a
switch between dominantly single and double-cell over-
turning structures, as in ES, but in this case the deep
sinking in the north Atlantic is completely absent in the
collapsed state.

Variations of mean error found in these single-
parameter experiments can generally be understood in
terms of fundamantal ocean thermohaline circulation
behaviour (Edwards et al. 1998) and the atmospheric
transport of heat and moisture. For the principal ocean
diffusivities, for example, the mean error is closely re-
lated to the mean ocean temperature. However, we do
not discuss these single-parameter experiments in detail
here. They are included essentially to demonstrate that
although variations of single parameters can show very
clear correlations between mean error and parameter
values, it can be a serious mistake to assume that these
correlations apply in general, ie. when other parameters
are not held fixed. For almost all parameters, runs from
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the random ensemble with both low and high error oc-
cur almost across the entire range of the parameter, as a
result of different combinations of the other parameters.
Clearly the mean error provides only a weak constraint
on the possible values of model parameters.

One result of the single-parameter studies, which is
worthy of note, is the asymptotic behaviour of mean
error with diapycnal mixing coefficient x,. Below a value
of around 5x107> m? s~!, changes in mean error are
insignificant. Atlantic overturning asymptotes to a
minimum of 16.5 Sv, without radical changes in circu-
lation structure, indicating that numerical leakage re-
places explicit diapycnal mixing below this value. The
fact that this asymptotic state is only obtained for
Ky <5x107° m? s~ ! is an important, if circumstantial,
indicator that spurious diapycnal leakage is genuinely
low, despite the very coarse resolution.

4 A subset of acceptable runs

The question now arises of which simulations should be
deemed acceptable? If we base our decision on &, we
need to define an acceptable range AE of error £. There
are at least three reasons for allowing AE > 0, first there
may be uncertainty in the observational data we are
attempting to fit, second there may be variability in the
model, and third there are processes omitted from the
model which lead to inevitable errors. Since the data are
based on multi-decadal averages, and the statistics are
globally averaged, the component of variability due to
short-term fluctuations in the data should be small,
however, there has been significant global warming
during the period of the data observations, which is
likely to be at least comparable to expected natural
variability over these timescales. Neglecting the contri-
butions of the other fields, a uniform atmospheric
warming of 1 degree would give a change in £ of order
1/, where 6> =161C? is the variance of the atmospheric
temperature data set, giving a contribution to the error
range AE of order 0.1. A proven source of model vari-
ability is the existence of multiple steady states for given
parameters. From Figs. 1 and 2, this can result in a
contribution to the error range A€ of up to around 0.1 in
regions of hysteresis. No other form of internal vari-
ability in the model has appeared in the present series of
experiments, although ocean-only versions often pro-
duce variability in certain regimes (Edwards et al. 1998).
For deliberately simple models such as ours, the domi-
nant source of model error is likely to be the oversim-
plified representation, or in many cases complete neglect,
of a large range of physical processes. We term these
errors representation errors. Examples include the lack
of boundary current separation and poor atmospheric
temperatures and humidities over land. Neglected pro-
cesses should lead to systematic errors. Within the range
of these errors, improved mean fit to data may not
necessarily imply better model predictions. For instance,
if we were to obtain the correct global average temper-
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ature while neglecting a certain positive temperature
feedback effect, this would imply too great a sensitivity
to those processes which are actually modelled. Repre-
sentation errors are particularly difficult to estimate,
although we must infer that they account for most of &.

In summary it seems reasonable to accept simulations
within an error range A€ of order 0.1 of our lowest-error
simulations, thus allowing for an unavoidable minimum
error plus a range of additional error stemming from
some combination (not strictly additive) of the three
models and physical error sources discussed above.
Inevitably, this selection relies heavily on our choice of
error weighting. The atmospheric error function &p
would lead to a different selection of “acceptable” sim-
ulations. In fact £ and £ have an overall correlation of
only 0.47. A low mean error £ places only a relatively
weak constraint on the atmospheric error. Amongst the
simulations with £<0.75, for example, are seven simu-
lations with £4 > 0.7 rather more than the minimum
value of £4 = 0.36.A low atmospheric error provides
even less constraint on the mean error £. To generate a
subset of acceptable simulations, we therefore combine
both of these measures and start by rejecting all simu-
lations with high values of either. Allowing a fairly
generous limit of A€ in each case we initially accept only
simulations with £<0.75 and £4 <0.5. Constraining both
mean (ocean-dominated) and atmospheric errors in this
way results in a subset of 22 runs. One of these is highly
unsteady at 2,000 years, with the Atlantic circulation
starting to collapse, thus we rule out this unstable sim-
ulation and restrict attention to the resulting set S of 21
runs, all of which remain stable for at least a further
2,000 years. The range of parameter values amongst the
subset S remains almost as large as the range across the
initial ensemble, further confirmation that parameter
values are only weakly constrained by mean error, even
amongst the most realistic simulations. Both ranges are
indicated in Table 1.

5 The modelled climate
5.1 Ocean

We now consider in a little more detail the extent to
which our automatic critera have been successful in
generating a set of reasonable climate simulations. The
barotropic streamfunction at 2,000 years, averaged
across the set S, is shown in Fig. 3. For these simula-
tions, barotropic flow through the Bering Strait is ne-
glected. With the observationally derived wind stresses
scaled up, as described above, by an average factor of
2.1 the subtropical gyres in the North Pacific and North
Atlantic achieve maxima of 32 and 19 Sv, respectively,
while the Antarctic circumpolar current (ACC) has a
barotropic transport of 28 Sv. The wind-driven flow
therefore remains weak even with this scaling. With our
low resolution and reduced ocean dynamics, the north
Pacific and north Atlantic boundary currents fail to
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Fig. 3 Model barotropic streamfunction in Sv after 2,000 years in
model grid coordinates averaged over the set S of low-error
simulations. The contour interval is 10 Sv, continents are shaded

separate from the coasts, leading to errors in sea-surface
temperature (SST) of up to 10°C or 15°C in these re-
gions. Modelled SST is also too high in eastern bound-
ary upwelling regions and in the southern ocean. Model
SST averaged over the set S is shown in Fig. 4 and the
SST error compared to Levitus et al. (1998) annually
averaged observational data is plotted in Fig. 5. Surface
values here are taken to be those in the uppermost grid
cell. The data are always interpolated to the corre-
sponding vertical model level.

The variance of SST across S is shown in Fig. 6. The
largest values occur in the tropical Atlantic and Pacific
and south of Greenland, all regions of large error
averaged across the set. Elsewhere the variance of SST
across the set is relatively small. The magnitude and
general pattern of errors is relatively consistent across
the set.
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Fig. 4 SST in degree centigrade averaged over the set S of low-
error simulations. Continents are shaded
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Fig. 5 Errors in averaged SST compared to observed long-term
annual mean SST field in degree centigrade from Levitus et al.
(1998)

A significant contribution to the error comes from the
deep ocean temperature, which is generally around 2°C
too high (but see below) while at mid-depth the Indian
and parts of the North Atlantic are too cold. The upper
ocean is too warm in the Gulf Stream and Kuroshio
separation regions, as noted earlier, and too warm in the
Eastern tropical Atlantic and Pacific, although Atlantic
SST is mostly too low. Surface salinity is typically too
low at low and mid-latitudes and too high at high lati-
tudes. At mid-depth parts of the north Indian and
western North Atlantic are too fresh, while deep salini-
ties are everywhere too high, especially in the North
Atlantic, where the error is up to 0.5 psu.

The meridional overturning streamfunctions for the
model Atlantic and for the global domain, averaged over
the set S, are shown in Fig. 7. The average Atlantic
overturning has a maximum of 19.4 Sv. The maximum
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Fig. 6 Variance of SST in C> across the set S of low-error
simulations. Continents are shaded
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overturning values in the Atlantic range from 11 Sv to
32 Sv with two values below 16 Sv and three above
25 Sv. At 25°N, there is just under 19 Sv of overturning,
cf. Hall and Bryden’s 1982 estimate of 19.3 Sv (Jia 2003
quotes a range of observational estimates from 16 Sv to
19 Sv at this latitude). Although our extremes values are
well outside the range of observations, the range is not
dissimilar to that found in the Coupled Model Inter-
comparison Project (CMIP) by Jia (2003).

Figures 8 and 9 show the temperature and salinity,
respectively, in a north—south, vertical section through
the model Atlantic at 25°W averaged over the set S,
along with Levitus et al. (1998) data for the same sec-
tion. The deep water is around 2°C too warm, while the
surface and vertical salinity gradients are too weak
(absolute salinity values include an arbitrary scaling
factor) this is related to weak forcing as will be seen
below. On the other hand the tongue of intermediate
water extending northwards from the South Atlantic is a
persistent feature of the model simulations which is
present in the data.

Deep temperature errors are a ubiquitous problem in
climate models, as shown by Fig. 10 reproduced from
Jia (2003), which shows the temperatures in the upper
and lower branches of the overturning cell near 25°N for
the models participating in CMIP, along with estimates
from data. Temperatures are calculated as heat trans-
port divided by volume transport. For set S, we obtain
upper and lower temperatures of 16°C and 5.4°C, rela-
tively close to the observational estimates in Fig. 10,
although the mean ocean temperature in our interpo-
lated observational dataset, at 3.9°C, is 1.8°C lower than
the average value of 5.7°C across the set S. Average
ocean temperatures range from 2.3°C to 7.6°C at
2,000 years across the set S, by comparison deep
Atlantic temperatures in the CMIP models range from
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Fig. 7 Model meridional overturning streamfunctions for the globe
(upper panel) and the Atlantic (lower panel) in Sv averaged over the
set S of low-error simulations
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Fig. 8 Model temperature in degree centigrade in a north—south,
vertical section through the Atlantic at 25°W averaged over the set
S of low-error simulations, upper panel; and Levitus data for the
same section, lower panel

3.4°C to 11.6°C, with estimates from data being around
3.0°C. It is relevant to note that high resolution models
are often initialised with observational values and then
integrated for 1,000 years or less, thus the equilibrium
deep temperatures for some of these models may be even
higher. In our simulations the deep water is hot in the
initial condition and still cooling significantly in most
cases, at least in the Pacific, at 2,000 years. If we con-
tinue the simulations in set S for a further 2,000 years
the average ocean temperature drops to 5.2°C, although
the mean errors are only very slightly lower. In our
lowest-error run the mean temperature is 4.3°C at

4,000 years, 0.4°C above the observational value.
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Fig. 9 Model salinity in psu in a north-south, vertical section
through the Atlantic at 25°W averaged over the set S of low-error
simulations, upper panel; and Levitus data for the same section,
lower panel. The contour interval is 0.2 psu
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Fig. 10 Average temperatures of the upper and lower branches of
the overturning near 25°N in the Atlantic in the CMIP climate
models (circles) and DYNAMO ocean models (crosses) with
observational estimates from Hall and Bryden (1982) and Roem-
mich and Wunsch (1985). The lines indicate fixed temperature
differences of 10°C and 15°C between the upper and lower
branches. Figure reproduced from Jia (2003). By comparison,
average upper and lower temperatures in the 21 “best” simulations
of our set S are 16°C and 5.4°C

Changes in deep temperatures after 2,000 years are
greatest in the Pacific.

Upper ocean errors, in particular, may stem from
poor atmospheric forcing as well as simplified ocean
dynamics. Errors in deep-ocean values are likely to be
related to errors in the ocean forcing at high latitudes by
exchanges with the atmosphere and sea ice. The fact that
this problem afflicts many of the CMIP models suggests
that deficiencies in the atmosphere are not the only
cause. Another likely cause is that convection and slope
flow are poorly represented in our ocean model, in
common with all widely used climate models at present.

5.2 Atmosphere and sea ice

Atmospheric temperature errors are largest in polar
regions, where they take both signs, and over Eurasia,
where model temperatures are around 10°C too low.
The model atmosphere is generally too wet over south
America and too dry over north Africa and Australia.
The zonal averages of atmospheric temperature and
humidity, 7, and ¢, for the ensemble average of S are
shown in Fig. 11 along with the equivalent averages for
the NCEP data. Also indicated are the maximum and
minimum values of the zonal averages across the
ensemble. Averaged values stay relatively close to ob-
served distributions, although the model results are
persistently too cool and dry in the tropics. Tropical
wetness is reproduced over the ocean but not over land,
where precipitation is absent in some regions, although
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Fig. 11 Zonally averaged atmospheric temperature, upper panel,
and specific humidity, lower panel, averaged over the set S of low-
error simulations, thin line, along with data from NCEP, thick line.
The maximum and minimum zonally averaged values within the set
S are indicated by dashed lines

the model correctly predicts enhanced precipitation over
the Gulf Stream and Kuroshio regions.

Sea ice in these simulations is almost ubiquitous in the
northernmost grid row, which represents the model Arctic
ocean. In around half of the simulations in set Sthe sea ice
extends to the second most northerly grid cell and in
around a quarter there is sea ice in the southern hemi-
sphere. On average the sea ice reaches a maximum height
of 18 m and a minimum temperature of —16°C. The areal
fraction is usually almost exactly 0 or 1, thus the sophis-
tication of the fractional area representation has limited
effect on the steady state at this resolution. In simulations
with time-varying forcing (not discussed here) sea-ice
dynamics play a more significant role.

5.3 Heat and freshwater fluxes

Zonally integrated northward heat transports for the
ensemble average of S are shown for the Atlantic ocean
and for the global atmosphere in Fig. 12 along with the
maximum and minimum values of the zonal averages
across the ensemble. Northward transport of heat in the
Atlantic peaks at 0.9 PW, whereas Hall and Bryden
(1982) estimated a value of 1.2 PW from hydrographic
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Fig. 12 Northward heat transports in PW averaged over the set S
of low-error simulations, thin line. The maximum and minimum
zonally averaged values within the set S are indicated by dashed
lines. Upper panel; oceanic heat transport in the Atlantic, Lower
panel, global atmospheric transport. Atlantic values are defined
only in the enclosed part of the basin

data. By comparison, northward heat transport in the
Atlantic at this latitude in the CMIP models was found by
Jia (2003) to vary between 0.38 PW and 1.3 PW, with only
three models reaching a smooth transport exceeding
1 PW. Atmospheric heat transport, averaged across the
set S, reaches 5.3 PW at northern subtropical latitudes.
By comparison, Trenberth and Caron (2001) quote
maximum values around 5 PW from ECMWF and
NCEP reanalysis, with seasonal variation of the northern
hemisphere maximum between 2 PW and 8§ PW.

Zonally averaged oceanic precipitation, P, evapora-
tion, E, and their difference, P—E, for the ensemble
average of S are shown in Fig. 13 along with observa-
tionally derived estimates from the SOC climatology.
The equatorial peak of precipitation is not captured by
the model, while tropical evaporation is underestimated,
leading to somewhat weak latitudinal variations in
zonally averaged ocean-atmosphere freshwater exchange
E—P in many of the simulations. This is a likely cause of
the weak oceanic salinity gradients.

In summary, although the set S was defined by
applying simple criteria to a randomly generated set, we
have found a range of simulations of modern climate
which appears reasonable in comparison with the range
of CMIP model results found by Jia (2003). In the next
section we consider the range of predictions of climate
change generated by this subset of simulations, and by
the original ensemble.

6 A global warming experiment

We now investigate the behaviour of the model in a
global warming scenario. To this end we generate an
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Fig. 13 Zonally averaged oceanic freshwater fluxes averaged over
the set S of low-error simulations, thin line, along with observa-
tional estimates from the SOC climatology, thick line. The
maximum and minimum zonally averaged values within the set S
are indicated by dashed lines. Upper panel; precipitation P, central
panel; evaporation E; lower panel, P—E

ensemble of simulations corresponding to the continu-
ation of our initial ensemble. During an initial, forced
warming phase the CO, concentration is made to in-
crease exponentially at a fixed rate of about 1% per year.
In our simple radiation parameterisation, the resulting
change in outgoing longwave radiation is —AF, In
(C/Cy), where C/Cy is the relative change in CO, con-
centration. Thus we are imposing a constant rate of
decrease of outgoing planetary longwave radiation. Over
the 100-year forcing period the CO, concentration rises
by a factor of 2.7 from its initial value. In all cases we
keep the value of AF, fixed at 4/In 2 corresponding to a
direct CO, forcing of 4 W m ™2 per doubling of CO,. We
are interested in the extent to which resulting changes in
the model climate vary across the ensemble purely as a
result of the variation of the model’s mixing and trans-
port parameters. In a further set of runs, we consider the
long-term response of the model climate by continuing
the ensemble integration for a further period of
2,000 years with the COjconcentration remaining
fixed throughout. This abrupt stabilisation scenario
may be unrealistic, but is appropriate to investigate the
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long-term, qualitative behaviour of the system. For the
purposes of this latter experiment, it is sufficient to
consider only the lower-error simulations, thus we con-
tinue only the 200 or so runs with £<0.9.

The ranges of variation of various predicted diag-
nostic quantities are given in Table 3. The values in the
table correspond to the changes over the 100-year forced
warming period and to changes across the whole 2,100-
year period including the 2,000-year equilibriation per-
iod. For the purposes of Table 3, we consider only the
runs corresponding to the continuation of the low-error
runs in the set S. The quantities referred to in the table
are the mean surface-air temperature (SAT) the average
equator-to-pole air temperature difference in the north-
ern and southern hemispheres, ATy and ATs, respec-
tively, the maximum height of sea ice, Ay, and the
minimum (i.e. maximum negative) and maximum of the
meridional overturning streamfunctions in the Pacific
and Atlantic, Wp and W4. These are all quantites which
are controlled or heavily influenced by the large-scale
behaviour of the global ocean circulation in the model,
thus they are quantities which it seems reasonable to use
the model to predict. It must be emphasised, however,
that we have not considered the uncertainty in the
parameter AF,, corresponding to the climate sensitivity
of the atmosphere, and that the atmospheric response
contributing, in particular, to the prediction of the
equator-to-pole temperature differences is very crude
compared to atmospheric GCMs. These temperature
differences are principally of interest because they may
affect the average winds, but we do not attempt to
parameterise any feedback on the wind field in our
model.

A significant part of the warming, and of all the
associated changes documented in the table, occurs after
the initial, forced period, although most of this change
occurs in the following 100 years (see Fig. 14). Since we
have ignored variations in atmospheric climate sensi-
tivity, and the uncertainty regarding future greenhouse
gas concentrations (which in our parameterisation is an
equivalent uncertainty) the actual value of the change in
SAT can only be considered to be the response to par-
ticular, chosen values for these variables. It is thus the
range of predictions that is of most interest. The same
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Fig. 14 Average temperatures during spin-up, forced warming and
equilibriation periods for set S of low-error simulations, upper
panel; atmosphere, lower panel; deep Pacific

comment must also apply to the other quantities in the
table; the mean of the predicted change is the response
to a particular warming scenario. It is of interest, how-
ever, that the model ensemble predicts a drop of 4.4 Sv
in the maximum Atlantic overturning over 100 years,
followed by a substantial recovery in the following
2,000 years. The range of the response is from —2.3 Sv
to —7.3 Sv over the first 100 years, but drastically more
uncertain in the long term as the overturning in some
simulations collapse.

Changes in the atmosphere are substantial in the
100 years following the forced warming period but rel-
atively small thereafter. This is not the case in the ocean,
as can be seen from Fig. 14, which shows average tem-
peratures during the entire forced warming plus equili-
briation period for every member of the set S. In
addition to the SAT we plot the temperature in the deep
Pacific, where deep refers to the lower half of the com-
putational domain, below about 1,000 m. Upper-ocean
temperatures (not shown) converge slightly more slowly
than air temperature in these runs, but deep ocean values
take very much longer to converge. Averaged across the

Table 3 Ranges of changes in various predicted quantities during 100 years of forced warming and during the complete 2,100-year period
including a further 2,000-year equilibriation period. All values are derived from the 21 lowest-error simulations of a 1,000-run random set

After 100 years

After 2,100 years

Quantity Minimum Maximum Average Range Minimum Maximum Average Range Units
SAT 2.2 2.9 2.5 0.7 3.8 4.2 4.0 0.40 C
ATy -1.3 —0.046 —0.47 1.3 -1.8 0.47 —0.53 2.3 C
ATs —0.84 0.82 0.33 1.7 -29 1.0 —0.41 3.9 C
Nimax —4.4 2.1 -1.3 6.5 —24 3.7 -7.0 28 m
Yp(min) 0.56 3.4 1.7 2.8 —0.48 3.8 0.99 4.3 Sv
Wp(max) -2.0 —0.52 -1.2 1.5 -2.0 1.48 —0.74 3.5 Sv
W (min) -2.7 23 —0.40 5.1 —4.0 0.40 —0.71 4.4 Sv
WA (max) -73 -23 —44 5.0 —14 3.5 -2.2 18 Sv
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set the peak rate of warming in the deep Pacific occurs
400 years after the onset of the forcing and the rate of
warming remains significant after 2,000 years. Many of
the simulations respond much more slowly than this, for
example in the lowest-error solution warming peaks
750 years after the onset of forcing. These long response
times are related to low diapycnal diffusivities. For a
diffusivity of 107> m?s 'and a depth of 5km the
timescale D?/x, for diffusion to the ocean floor is around
80,000 years. Although circulation may accelerate
communication, the diffusive timescale is likely to be
significant for equilibriation. Indeed these long equili-
briation times mean that many of the simulations are
still cooling at the start of the forced warming period in
reponse to the initial condition at =0. While this initial
unsteadiness will delay the onset of warming in the deep,
it should have only a small effect on the time at which
warming is most rapid.

6.1 Probabilistic interpretation

In principle, it should be possible to derive more statis-
tical information on the distribution of predicted
quantities from our results, given the size of our initial
ensemble, although strictly speaking if we use a discrete
cutoff value &, as in the selection of the set S, accepting,
with equal probability, all results with &£. any resulting
pdfs which we generate will be biased. A more statisti-
cally sound procedure is to weight all our results
according to the likelihood of the data given the model,
which we can reasonably assume to be Gaussian. Using
a Gaussian function centred close to our minimum er-
ror, with a decay scale equal to our assumed scale AE for
acceptable variation of error, can be broadly justified in
terms of the theory of representation error (J.D. Annan,
pers. comm.). We can apply this weighting to derive
estimates of probability density functions for the quan-
tities considered in Table 3. Thus we assign to each run a
probability P = exp [—(5 - 50)2/(2A52)} and sum the
total probability in equal bins between the extreme
parameter values. The results (normalised) shown in
Fig. 15 were derived using the scale value A = 0.1and
the offset £y = 0.6 but the forms of the distributions are
essentially unchanged across a range of reasonable val-
ues for AE. Similarly, results are robust to changes in &
as long as A€ is adjusted simultaneously so that a rea-
sonable number of simulations have non-negligible
weight in the sum. Larger values of A€ lead to smoother
distribution functions and smaller values give more
spiky distributions but there is no major change in form.
This suggests that the very lowest-error solutions do not
have a grossly different behaviour in respect of these
measures than solutions with mean error £ up to 1.0 or
more. Unfortunately we cannot derive meaningful dis-
tributions in the same way from the set S, because it has
too few members. In Fig. 15 we are effectively including,
with varying weight, simulations which failed our
selection criteria on the basis of atmospheric error or
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mean error. However, the forms of the distributions are
broadly consistent with the very rough view of the range
of predictions seen in Table 3 for the 21 “best” simu-
lations. Figure 15 also shows the corresponding graphs
for the changes over the whole period. We infer from
these distributions that an uncertainty in model predic-
tions of global warming of around 1° due purely to
uncertain model transport and mixing parameters is a
fairly robust result, which is not greatly influenced by
careful elimination of unreasonable simulations beyond
our basic, automatic sorting of simulations on the basis
of mean error. A similar uncertainty is predicted for the
equator-to-pole temperature differences. For the Atlan-
tic overturning, again the pdfs in Fig. 15 are consistent
with the results in Table 3; a decrease of a few Sv after
100 years, with an uncertainty of around 5 Sv, and the
bulk of the probability at 2,100 years indicating a partial
recovery, with a small, secondary maximum at around
—15 Sv showing a low, but non-negligible, probability of
a collapse of the overturning in the north Atlantic. A
decrease is predicted in the northern-sinking overturning
cell in the Pacific, and a decrease in maximum sea-ice
height.

Given the bimodel distribution for Atlantic over-
turning, we can proceed to calculate the resulting
atmospheric temperature changes over a 4x5 grid-cell
area roughly representing Europe. The resulting distri-
butions are similar to those for global SAT change, with
the addition of a tail containing a few percent of the
total probability in the long-term distribution, where the
warming is between 0° and 3°. This result should be
treated with caution, however, bearing in mind the low
resolution and reduced dynamics of our atmosphere and
land surface.

Similar distributions are found using the atmospheric
error £4 in place of &, although with somewhat greater
spread for the oceanic quantities, which are only indi-
rectly controlled by £a. The bimodal distribution of
change in Atlantic overturning is still visible, thus the
possibility of collapse remains when we bias our pre-
dictions strongly toward the best atmospheric simula-
tions.

It is straightforward to test the effect of the prior
ranges of parameters on the forms of the pdfs in Fig. 15
by restricting the range of simulations considered.
Unfortunately restricting several parameters at once in
this way would drastically reduce the number of available
runs and prevent us from deriving smooth results but it is
possible to restrict parameters one or two at once. As an
example we have repeated the 100-year predictions using
only approximately the middle third of the (logarithmic)
range of the atmospheric heat flux amplitude,
2x10° < k< 5x10° m? s~!, hence around one-third of
the simulations. Differences in the forms of the pdfs (not
shown) are very slight, suggesting that the results are not
heavily dependent on the initial ranges of parameters. A
similar experiment restricting both of the principal
atmospheric freshwater flux parameters simultaneously,
2x10° < Kq < 10°m?s™!, 021<F,< 0428y, gave
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more noisy, but otherwise similar distributions to those
seen above.

7 Discussion and conclusions

Our principal aim has been to present and investigate a
new efficient climate model. The model features a fully 3-
D ocean but retains an integration efficiency consider-
ably greater than extant climate models with 3-D,
primitive-equation ocean representations (20 kyears of
integration can be completed in about a day on a PC).
Inevitably, this efficiency is attained at a cost: the model
atmosphere has no vertical structure and is extremely
basic compared to standard GCMs. Dynamical atmo-
spheric feedbacks are poorly represented and atmo-
spheric temperature errors are large over continents and
polar regions. An additional, fixed atmospheric moisture
transport is included to compensate for the weakness of

¥ max Atl. (Sv) max ice height (m)

the resolved transport. Winds are fixed, and observed
wind stresses are artificially enhanced to compensate for
strong momentum damping in the physically simplified
ocean. The model is hence best suited to computation-
ally demanding problems of climate change in which the
large-scale ocean circulation plays a major role, in par-
ticular large ensemble studies and long-timescale vari-
ability. Work is in progress to develop a complete Earth
system model based on the model described here.

By analysing a randomly generated set of 1,000 runs,
each 2,000 years in length, we have considered the
uncertainty in 12 mixing and transport parameters.
Constructing a quantitative measure for the model error
allowed us to address both the inverse problem of esti-
mation of model parameters, and the direct problem of
model predictions. Our results represent a first attempt
at tuning a 3-D climate model by a strictly defined
procedure which nevertheless considers the whole of the
appropriate parameter space.
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Our modelling philosophy is thus to match model
outputs to observations while model inputs (parameters)
areinitially only weakly constrained. Weaknesses in large-
scale transports have been addressed by including the two
explicit adjustment parameters mentioned above, inter-
basin freshwater transfer and wind scaling, so that their
effects can easily be assessed and their values adjusted
where necessary in altered climate states. Our approach
differs from that used in GCM development where the
tuning process usually involves a more detailed, but nec-
essarily more restricted view of the model parameter
space. It is common practice, for example, to alter the
geometry of (unresolvable) ocean sills to improve the
representation of the circulation. Any attempt to tune a
model towards observations may be introducing a subtle
bias towards climatic states which happen to have been
observed. Further, any tuning towards observations is
liable to lead to a systematic misrepresentation of in-
cluded processes to compensate for the effects of missing
processes. Whether such tuning is beneficial may therefore
depend on the relative importance of model state quan-
tities, such as deep-water temperature, compared to pro-
cess strengths, such as atmospheric diffusivity. Our
approach may therefore not suit all applications, but the
important and novel feature of it is that the whole tuning
process is easily definable and therefore open to analysis.

We addressed the uncertainty in model predictions in
two separate ways, firstly by considering the spread of
predictions across a subset Sof roughly equally believable
models and secondly by the more statistically sound
procedure of weighting all the simulations according to
mean error £. Lower £ “probably” implies better simu-
lations and therefore, if model dynamics are reliable,
better predictions, within an uncertainty of order AE. The
definition of £ is clearly an important part of this process.
More sophisticated definitions than ours, using pattern-
recognising algorithms or deliberately focusing on known
systematic errors, may be more appropriate for more
sophisticated or highly developed models. Our choice of
an acceptable range of £ was essentially heuristic, but the
derivation of approximate probability density functions
(pdfs) was not found to be sensitive to this choice. We also
tested the effect of adding a term to our error function
proportional to the departure of the maximum atmo-
spheric heat flux from the observational estimate of 5 PW.
This results in a different top set of runs with a narrower
spread of maximum atmospheric heat flux values but the
pdfs for greenhouse warming-induced changes were
essentially unchanged. There remains the problem that we
have effectively applied a sharp cutoff to the prior distri-
bution of parameter values used to generate the ensemble.
This has an indirect effect on the resulting pdfs which is
difficult to account for in complete generality, but appears
from our sensitivity tests to be small.

Model parameters were found to be only very weakly
constrained by mean model error. For almost all
parameters, runs with both low and high error occurred
across almost the entire range of the parameter, as a
result of different combinations of the other parameters.
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Although the range of parameter values across the
subset S is slightly smaller than the initial range for the
whole ensemble (see Table 1), the scatter of values made
it impossible to derive pdfs for the parameter values.
However, the results of Hargreaves et al. (2005) suggest
that parameters can be estimated an order of magnitude
more efficiently in our model using the ensemble Kalman
filter technique of Annan et al. (2005). Where there are
sufficient data, parameters can also be constrained. Our
weak constraint of parameters therefore appears to be
partly due to the limited size of our ensemble.

Generally, the fit of the best simulations to data can
be expected to degrade with decreasing ensemble size,
while random variation will become more pronounced.
To quantify this effect properly would require the con-
struction of the complete pdf of model behaviour as a
function of the assumed pdfs of parameters. However,
the fact that the pdfs derived in the previous section were
relatively insensitive to reducing the parameter ranges
(giving a reduced ensemble size) and to changes in the
error scale AE suggests that smaller ensembles may give
useful results, but may simply indicate that the low mean
error solutions behave in a physically similar way to the
majority of the other solutions.

Given the efficiency and simplicity of the model, its
simulation of modern climate is reasonable. In particu-
lar, zonally averaged properties and fluxes are relatively
well reproduced, including meridional overturning and
Atlantic heat transport, which reproduce observed val-
ues as closely as the majority of the more complex CMIP
models. An intrinsic problem with FG dynamics is that
the wind-driven circulation tends to be weak. The fact
that wind-scaling values between 1.2 and 2.9 were found
for the lowest-error simulations partially vindicates our
approach to this problem, scaling up the wind forcing
and using variable drag, at least within the modelling
philosophy outlined above. The deep ocean in most of
our best simulations is one or two degrees too warm.
This is a persistent problem for all the CMIP models,
caused partly by the difficulty of parameterising con-
vection and slope flow. More sophisticated tuning,
however, can eliminate this problem (Hargreaves et al.
2005). The values found here are within the range found
in CMIP. Errors in atmospheric temperature are largest
in polar regions, where they take both signs, and over
continents, where model temperatures are several de-
grees too low. The model atmosphere is generally too
dry over continents. Given 1,000 model runs and 12
degrees of freedom it is, perhaps, not surprising that a
small set of runs can be found that fit a limited set of
observations as well as a sample of GCMs. Naturally the
data we chose for the tuning procedure was limited to
quantities that the model can predict. Because of the
very limited representation of polar oceans, for instance,
we did not attempt to fit sea-ice data.

Experiments with varying diapycnal diffusivity ten-
tatively suggest that the level of spurious diffusivity is
around 5x 107> m? s~ 'at most, although more detailed
investigation is required to verify this. Single-parameter
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sensitivity studies revealed regions of hysteresis under
variation of atmospheric freshwater flux parameters.
This effect is studied more intensively in our model by
Marsh et al. (2005) but, in general, we find that that the
strong correlations between mean error and parameter
values found in single-parameter sensitivity studies can
be highly misleading as an overall predictor of model
behaviour across the whole of parameter space.

Itis of some interest to ask how model errors depend on
spatial resolution. The question is complicated by the fact
that the optimal choices of parameter values will change
with resolution. However, mean errors in suitably paired,
2,000-year simulations were found to decrease by 0.06 and
0.11 on doubling vertical or horizontal resolution,
respectively, indicating that resolution in itself is not a
dominant source of error (recall that our lowest-error
simulation had £ = 0.61.A similar experiment gave a
comparable value, 0.06, for the reduction in mean error
already achieved by incorporating isopycnal and eddy-
induced mixing. These results suggest that further
dynamical improvements may be worthwhile. A variety of
such measures are currently planned or already com-
pleted, including upper and lower ocean boundary layers,
seasonality of radiative forcing and incorporation of
dynamical land-surface processes.

Our measured spread of climatic responses to
100 years’ global warming (for surface-air temperature a
spread of around one degree) is substantial given that it
represents the range of predictions arising purely from
variation of mixing and transport parameters in the
model. All atmospheric radiative properties were kept
constant, and a large number of feedbacks ignored,
including atmospheric dynamical and carbon cycle feed-
backs, as well as the large uncertainties in anthropogenic
emissions themselves. The results of Fig. 15 and Table 3
must be interpreted as the response to a particular sce-
nario of greenhouse gas concentration and a particular
value of the direct radiative forcing parameter AF,. With
our single-layer atmosphere this is not an appropriate
model to study the uncertainty connected with atmo-
spheric dynamics and radiative parameters. On the other
hand, the model is a particularly useful tool for studying
the thermohaline circulation (THC). The THC is intrin-
sically three dimensional, but with existing 3-D models it
is difficult to adequately investigate parameter space.
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8 Appendix, the sea-ice model

Ocean surface fluxes are everywhere partitioned between
ocean- and ice-covered fractions, the total heat flux Q
into the ocean or ice surface being
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Or= (1 =Cy)Osw — OLw — Osu — poLE, (6)

where E is the rate of evaporation or sublimation, cal-
culated as in Weaver et al. (2001), L is the latent heat of
evaporation L,, or sublimation L, over ocean or ice
respectively and the planetary albedo over sea ice is as-
sumed to decrease linearly with air temperature within a
given range following Holland et al. (1993):

o = max(0.20, min(0.7,0.40 — 0.047,)). (7)

The sea ice has no heat capacity, thus the heat flux Q,
from the atmosphere is assumed to be equal to the
vertical heat flux through the ice given by

U

0 =4 (®

where v; is the vertical conductivity of heat within the sea
ice and T% is the local salinity-dependent freezing tem-
perature of sea water, assumed to be the temperature at
the base of the sea ice, given by

(Tf - Tl)7

Tf:~,,v1S+yzS3/2+y352, 9)

where the values for the constants y;, i=1,2,3, are as
given by Millero (1978). From Eqgs. 6 and 8 we obtain a
single equation, ®(7;)=0, say, for the ice-surface tem-
perature 7; which is solved by the Newton—Raphson
iteration.

Having obtained the ice-surface temperature, and
hence the heat flux from atmosphere to sea ice, we cal-
culate the heat flux from the sea ice into the ocean
(normally negative) as

_ piCpilAz

T

Op (Tt - To,), (10)
where T, is the temperature at the ocean surface; in the
model T, is the temperature of the uppermost (mixed)
layer, Az is the thickness of this layer, C,; is the specific
heat of sea ice at constant pressure, p; its density and 7; is
a timescale for the relaxation of the ocean surface tem-
perature to the freezing temperature. McPhee (1992)
suggests a physical value for the ratio Qy/(T— T,) al-
though the most appropriate value is liable to depend on
model temporal and spatial resolution. However, we
retain the value of 17.5 days for 7; implied by McPhee’s
parameterisation with the present value of Az.

We are now in a position to calculate the growth rate
G; of sea-ice height in the ice-covered ocean fraction,
which is given by the deficit of heat fluxes into and out of
the sea ice, minus the latent heat loss of sublimation.
Snow is not considered in the model, and all the pre-
cipitation over the ocean or sea ice is added directly to
the ocean surface layer. Thus
G; = Q-0 E&, (11)

piLs Pi

where L, is the latent heat of fusion of ice. In the open-
ocean fraction we take —Q,, from Eq. 7, to be the
largest possible heat flux out of the ocean. Thus if the
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ocean-to-atmosphere heat flux is greater than this, the
deficit leads to ice growth in the open water fraction. In
general the growth rate of sea ice in the open-ocean
fraction is

O — Qt). (12)

G, = max (0,4
piLs

r

We can thus calculate the net growth rate G and the rate
of change of the average sea-ice height H, which is also
subject to advection by the surface ocean velocity and a
diffusive term, which takes the place of a detailed rep-
resentation of unresolved sea-ice advection and rheo-
logical processes. Note that Hrepresents the height of
sea ice averaged over both open ocean and ice-covered
fractions.

DA

—— — ki ViH = AG; + (1 — 4)G, = G,

D (13)

where xy; 1s a horizontal diffusivity.
The rate of change of sea-ice area A is given by

DA G,
E - Khiv}ZIA = max (0, (1 — A)FO>
A
i AGi—|. 14
+m1n<0, G 2H> (14)

The first term on the right-hand side parameterizes the
possible growth of ice over open water. The effect of this
term is that, if G, is positive, the open water fraction de-
cays exponentially at the rate G,/H,, where H, is a mini-
mum resolved sea-ice height. The second term
parameterizes the possible melting of sea ice and corre-
sponds (by simple geometry) to the rate at which 4 would
decrease if all the sea ice were uniformly distributed in
height between 0 and 2H/A4 over the sea-ice fraction A.
Note that this represents a small modification to the ori-
ginal sea ice-area equation proposed by Hibler (1979) in
that the decay term is proportional to the (negative)
growth rate AG; over the sea-ice fraction as opposed to the
total (negative) growth rate G. The two formulations
differ only if sea ice is forming in the open water fraction
and simultaneously melting in the ice-covered fraction, in
which case using the total growth rate means that melting
affects both terms; a form of “double counting”. This is
not as unlikely as it sounds since the ice fraction is nor-
mally much colder than the water fraction, thus the heat
flux deficit causing sea-ice growth in the model is normally
smaller over sea ice and can easily be of opposite sign to
the deficit over open water.

We can now define the flux of heat into the ocean as

0Oy = (1 — A) max(Qy, Q) + AQy. (15)
The flux of fresh water into the ocean is given by
Fy=P+R—(1—A)E. — G2 — 4E,. (16)

Po

The first two terms represent precipitation and runoff,
the third term evaporation, E., over open water and the
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last two ice melting and freezing. The net fresh water
source due to melting being proportional to the sink of
average sea-ice height minus the net rate of sublimation,
denoted E here for clarity. The flux of salinity into the
ocean is simply taken to be Fg=—SoFy, where S; is a
constant reference salinity (using the local salinity would
complicate the calculation of the global freshwater
budget).

Finally, we have to ensure, at each timestep, that the
calculated sea-ice height H is positive. In practice we ig-
nore the presence of thin ice and set H=0 whenever the
calculated value of H is less than H,. This means that the
heat and freshwater fluxes must be modified accordingly
for consistency. For positive or negative H, if H is set to
zero, the corresponding amount of heat to be added to the
ocean is — Hp;Ly, while the corresponding amount of fresh
water to be added is Hp,/p,. In addition, we have to ensure
that numerical truncation error does not result in
unphysical values of 4, 4 <0 or 4> 1, but these latter
adjustments carry no further implications for the con-
servation of heat and fresh water.
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