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Abstract For simulations of large spiking neuron networks,
an accurate, simple and versatile single-neuron modeling fra-
mework is required. Here we explore the versatility of a
simple two-equation model: the adaptive exponential
integrate-and-fire neuron. We show that this model generates
multiple firing patterns depending on the choice of parameter
values, and present a phase diagram describing the transition
from one firing type to another. We give an analytical crite-
rion to distinguish between continuous adaption, initial burs-
ting, regular bursting and two types of tonic spiking. Also,
we report that the deterministic model is capable of produ-
cing irregular spiking when stimulated with constant current,
indicating low-dimensional chaos. Lastly, the simple model
is fitted to real experiments of cortical neurons under step
current stimulation. The results provide support for the sui-
tability of simple models such as the adaptive exponential
integrate-and-fire neuron for large network simulations.

Keywords Simplified single-neuron models · Firing
patterns · Chaos · Electrophysiological taxonomy

1 Introduction

Large-scale simulations of cortical activity and theoretical
investigations of neuronal dynamics require neuron models
that are mathematically tractable, biologically relevant and
computationally fast. Moreover, a modeling framework
should be sufficiently versatile to span the whole diversity
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of neuron types by tuning a restricted number of parame-
ters, avoiding the need of a new model for each class of
neuron. Modeling the complete gating dynamics of ion
channel densities in neuronal membranes satisfies only two of
these five requirements: biological relevance and versatility.
On the other hand, modeling a neuron either as a coincidence
detector, as a resettable integrator or as a stochastic point
process may fail to catch important aspects of single-neuron
behavior. Small modifications to these simple models can
bring them closer to reality. Lately multiple advances were
made in that direction.

In the presence of high synaptic bombardment, mode-
ling accurately the spike initiation is crucial and the Leaky
Integrate-and-Fire (LIF) must be augmented by an exponen-
tial term to faithfully process fast inputs signals (Fourcaud-
Trocme et al. 2003). An additional recovery variable is
important to capture adaptation and resonance properties
(Richardson et al. 2003; Izhikevich 2003). A simple qua-
dratic model of spike initiation with a linearly dependent
recovery variable and a reset in the state variables is suffi-
cient to account for most types of firing patterns observed
in the central nervous system (Izhikevich 2007), but spike
firing in that model occurs with an unrealistic delay. Unlike
a quadratic dependence on voltage (Latham et al. 2000),
an exponential nonlinearity (Fourcaud-Trocme et al. 2003)
keeps the subthreshold dynamics linear and matches direct
measurements in cortical neurons (Badel et al. 2007). The
exponential model combined with an adaptation variable,
called the adaptive exponential integrate-and-fire (AdEx),1

is simple because it is described by only two equations and
a reset condition. It is by construction more realistic than
the LIF, and it was shown to predict with high accuracy the
spike timing of a conductance-based Hodgkin and Huxley

1 Also referred to as aEIF.
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model (Brette and Gerstner 2005) and the spike timing of real
pyramidal neurons under noisy current injection (Clopath
et al. 2007; Jolivet et al. 2007).

In this paper, we explore the versatility and the biological
relevance of the AdEx model. We show that the AdEx repro-
duces multiple firing patterns and study the correspondence
between the parameters and the firing types. Finally, we fit
the model to experimental traces and obtain sets of parame-
ters describing cortical fast spiking interneurons and regular
spiking pyramidal neurons.

2 Adaptive exponential integrate-and-fire

The adaptive Exponential Integrate-and-Fire model (AdEx)
describes the evolution of the membrane potential V (t) when
a current I (t) is injected. It consists of a system of two dif-
ferential equations:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
+ I − w,

(1)

τw

dw

dt
= a(V − EL) − w. (2)

When the current drives the potential beyound VT the expo-
nential term actuates a positive feedback which leads to the
upswing of the action potential. The exponential is related
to the quasi-instantaneous reaction of the activation variable
of the sodium channel in a Hodgkin–Huxley-type neuron
model. The upswing is stopped at a reset threshold which
we fix at 0 mV. The downswing of the action potential, is
replaced by the reset condition:

if V > 0 mV then

{
V → Vr

w → wr = w + b.
(3)

We emphasize that voltage reset is to a fixed value Vr , whe-
reas w-reset is by a fixed amount b. Therefore the adaptation
variable w can accumulate during a spike train whereas vol-
tage does not.

There are nine parameters required to define the evolu-
tion of the membrane potential (V ) and the adaptation cur-
rent (w). The nine parameters can be separated into scaling
parameters and bifurcation parameters. The scaling para-
meters are the parameters responsible for scaling the time
axis, for the stretch and for the offset of state variables. The
five scaling parameters are: total capacitance (C), total leak
conductance (gL ), effective rest potential (EL ), threshold
slope factor (∆T ), effective threshold potential (VT ). Absor-
bing the parameters C and gL into the time scale τm = C/gL ,
and using ∆T and VT to set the scale and offset of the
membrane potential, then after appropriate rescaling of I
and w, Eqs. 1 and 2 can be reduced to a system of equa-

tions with dimensionless variables and only four parameters
(Touboul 2008). The resulting four parameters are bifurca-
tion parameters and are directly proportional to the conduc-
tance a, the time constant τw the spike triggered adaptation
b, and the reset potential Vr . Modifying these parameters
brings qualitative changes in the behavior of the system,
such that different firing patterns become possible. Note that
a controls the sensitivity of the adaptation current to vol-
tage even in the absence of spikes. This voltage coupling
can arise from linearized ion channels (Sabah and Leibovic
1969; Mauro et al. 1970; Koch 1999; Richardson et al. 2003)
or from the interaction with a passive dendritic compartment
which is not modeled explicitly. Voltage coupling via the
parameter a with a > 0 acts like a negative feedback and
leads to adaptation. This parameter can arise from the linea-
rization of “resonant currents” (Hutcheon and Yarom 2000)
and can give rise to damped subthreshold oscillations. In the
AdEx we assume that the voltage coupling (characterized by
a) and the spike-triggered adaptation (characterized by b)
have a similar time constant and can thus be lumped together
in a single equation (Eq. 1). The biophysical mechanisms
for spike-triggered adaptation are ion channels such as IM ,
IK (slow), or IK (Ca) (Benda and Herz 2003). Note that the
spike triggered adaptation has contributions from both the
a-term and the b-term. Having two parameters (a and b)
allows to decouple the spike-triggered adaptation from the
voltage coupling.

The role of the bifurcation parameters is best understood
through phase plane analysis (for an introduction see
Izhikevich (2007)). Briefly, phase plane analysis involves
plotting the state variables relative to each other. Nullclines
represent the area in phase space in which a given variable
remains constant. The V -nullcline (or w-nullcline) is defi-
ned as the set of points with dV

dt = 0 (or dw
dt = 0 respecti-

vely). The shape and position of the nullclines depends on
the parameters of the model. For instance the minimum of
the V -nullcline is given by the parameter VT . The slope of
the left branch of the V -nullcline is proportional to the leak
conductance gL . Changing the current in Eq. 1 involves a
vertical shift in the V -nullcline without changing its shape
(Figs. 1, 2, 3). The intersection of the two nullclines defines
fixed points which can be stable or unstable. In particular,
these fixed points can change position, merge and disappear
or simply loose or gain stability upon changes in one or seve-
ral parameters. At a bifurcation, a change in the stability of
the pattern of fixed points occurs, and this qualitatively modi-
fies the behavior of the system. In the system of Eqs. 1 and
2, the choice of a and τw determines whether an increase
in current induces a loss of stability via an Andronov–Hopf
or via a saddle-node bifurcation (Fig. 1). When the current
is increased such that the stable fixed point of Eqs. 1 and 2
looses stability, repetitive spiking ensues and the current at
which this occurs is called the rheobase.
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Fig. 1 Phase plane representation of a step current injected in an AdEx
model where a a saddle-node bifurcation is responsible for the loss of
stability, and b the Andronov–Hopf bifurcation is responsible for the
loss of stability. In the phase planes the trajectories of the first and second
spikes are represented by blue squares and the state of rest is indicated by
the blue cross. As the current increases, the V -nullcline shifts upwards.
This makes the two fixed points move toward each other. a In the saddle-
node bifurcation, the fixed points disappear after the stable fixed point
merges with the unstable fixed point. The point where the two fixed
points merge lies close to (but slightly to the right of) the voltage VT ,
i.e. the minimum of the V -nullcline. b As the stable fixed point moves
towards the right, the slope of the V -nullcline increases at the fixed
point. If the slope of the w-nullcline is sufficiently high, this can lead
to a loss of stability of the stable fixed point before the fixed points
disappear. The w-nullcline is shown in green, the V -nullcline in the
absence of current is the curved dash line, the V -nullcline in the presence
of stimulating current is the curved solid line (black). Unstable fixed
points are encircled. The scale bars corresponds to 20 mV vertically
and 20 ms horizontally

A mathematical analysis (Touboul 2008) has shown that
under the condition a/gL > τm/τw the transition occurs via
the Andronov–Hopf bifurcation at the value:

IAH = (gL + a)

[
VT − EL − ∆T + ∆T ln

(
1 + τm

τw

)]

+∆T gL

(
a

gL
− τm

τw

)
, (4)

and otherwise (a/gL < τm/τw) via the saddle-node bifurca-
tion at the value

ISN = (gL + a)

[
VT − EL − ∆T + ∆T ln

(
1 + a

gL

)]
.

(5)

Together, ISN or IAH define the current at which the AdEx
starts spiking, i.e. the rheobase. In continuous two-
dimensional neuron models such as the Morris–Lecar model,

a

b

Fig. 2 The Type of f –I curve depends on the point of reset. a When
a = 0 only type I f –I curves are possible. The phase plane at a current
just above rheobase (I = ISN + 0.5 pA) shows that the trajectories
are forced to pass through the ghost of the saddle-node bifurcation
independently of the starting point (three steady-state trajectories are
shown for three different values of Vr voltage reset). The frequency–
current plot on the right shows the f –I curve corresponding the the three
different reset conditions (consistent line types; full, dash or dot/dash).
b When a > 0 it is possible to have type I and type II depending on
the reset. The region in pink shows the basin of attraction of the stable
fixed point just before (I = ISN − 0.1 pA) the system loses stability
via a saddle-node bifurcation. The resets at −50 and −60 mV result in
trajectories that pass very near the two nullclines, and are therefore very
slow. The reset at −80 mV is outside the ghost of the attraction basin so
that its trajectory passes further away from the saddle-node bifurcation.
The insets show the enlarged areas enclosed by the gray rectangles. The
arrow on the I -axis of the f –I plot indicates the current that was used
to draw nullclines and trajectories in the phase plane. The conventions
for line colors is the same as in Fig. 1

the type of bifurcation is directly related to the type of
frequency–current ( f –I ) relation (Rinzel and Ermentrout
1998). Model neurons with a saddle-node on invariant circle
bifurcation have a continuous f –I curve (very low firing
frequency for currents just above rheobase) and are classi-
fied as type I neurons, whereas neurons with an Andronov–
Hopf-bifurcation or a saddle-node bifurcation off invariant
circle have a discontinuous f –I curve with a jump to finite
firing frequency just above rheobase and are classified as type
II (Izhikevich 2007). A one-dimensional quadratic (Latham
et al. 2000) or exponential (Fourcaud-Trocme et al. 2003)
integrate-and-fire with voltage reset to the resting potential
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Fig. 3 Phase diagram and associated traces illustrating two types of
tonic spiking: tonic spiking with sharp reset (a) and tonic spiking with
broad reset (b). The only modifications needed to change the neuron
model (a sharp resets) into the neuron model (b broad resets) is an
increase of the spike triggered adaptation b and increase of the voltage
reset, Vr . In both cases, some degree of adaptation is seen, yet both
traces do not belong to the continuously adapting class because there is
no substantial adaptation beyond the first two inter-spike intervals. The
convention for symbols, line colors and scale bars was the same as in
Fig. 1

model has a saddle-node bifurcation, and is always type I.
Interestingly, such a simple relation between bifurcation class
and type of f –I curve does not hold for the AdEx model,
because of an intricate interplay between the continuous two-
dimensional dynamics and the discontinuous reset. Different
values of the reset parameters Vr and b can yield a continuous
f-I curve as in a type I neuron model, or a discontinuous f –I
curve as in a type II neuron model (Fig. 2c, d). Very low
firing frequencies in a neuron with saddle-node bifurcation
just above rheobase are possible if the limit cycle passes
through the region where at rheobase current, the saddle and
the node merged. In this region (the ‘ghost’ of the saddle-node
bifurcation) the speed of the trajectory is very low leading to
long inter-spike intervals. However, for some combinations
of the reset values Vr and b, the trajectory in the AdEx model
does not pass nearby the lost fixed point, but passes further
away, leading to a finite period of the limit cycle (Fig. 2c,
d). This is the case where the system just below rheobase is
bistable, i.e., at the same constant subthreshold input, both
periodic firing and constant membrane potential are possible.
We note that for a small adaptation parameter a → 0, such
a bistability is not possible unless the reset Vr is above VT .
To summarize, the value of the reset parameters have a cru-
cial role in determining the neuronal firing patterns—and this
will be explored in the next section.

3 Multiple firing patterns

In order to study the range of firing patterns accessible with
the AdEx, we simulate the injection of a step current. This
is the most common experimental paradigm used by electro-
physiologists to study and classify neurons (Markram et al.
2004). Mathematically, this situation corresponds to the solu-
tion of Eqs. 1 and 2 with constant current and initial values
V (0) = EL and w(0) = 0. Similar to what is seen in real
neurons, the response of the model to the step current is very
diverse, and depends on the choice of parameters. In Fig. 4
we show an example of typical firing patterns that can be
generated by varying the parameters of the AdEx. The para-
meters associated with each example are given in Table 1. In
this section we will describe how the different firing patterns
arise with our simple model.

Sharp versus broad spike after potential (SAP) The AdEx
can produce adapting and tonic traces of two qualitatively
different types. In Fig. 3a we see an example of sharp SAPs
where the potential increases monotonically after a rapid
downswing of the action potential. This type of reset is com-
monly seen in fast spiking interneurons (Bean 2007), and
corresponds to a low value of the voltage reset Vr , combined
with a weak spike-triggered adaptation b. In the phase plane
we see that the reset is made at a point below the V -nullcline.

Broad SAPs, on the other hand, are observed in regular
spiking pyramidal neurons (Connors and Gutnick 1990) and
in the continuously adapting interneurons. A broad SAP is
recognized by its low curvature at all times after the spike
(Fig. 3b).

The two types of SAPs correspond to two different spiking
trajectories in the phase plane of the AdEx model. These are
determined by the location of the reset point in the phase
plane. If the reset point is above the V -nullcline (where
dV
dt < 0 everywhere), the voltage will decrease before increa-

sing in preparation of a spike, this trajectory is termed a broad
SAP or broad reset. If the reset point is below the V -nullcline,
the spiking trajectory starts to increase immediately after the
reset ( dV

dt > 0 everywhere below the V -nullcline), and the
SAP appears as a sharp reset. We can write this distinction as
an analytical relation that depends on the reset point (Vr , wr ).
There is a broad reset if

wr > −gL(Vr − EL) + gL∆T exp

(
Vr − VT

∆T

)
+ I, (6)

and otherwise the reset is sharp.

Tonic versus adapting The simplest type of spiking pattern
is the regular discharge of action potentials (tonic firing,
see Fig. 4a). This firing pattern is the only firing pattern

123



Biol Cybern (2008) 99:335–347 339

−70 −50

0

200

400

V (mV)

w
 
(
p
A
)

a

−70 −50

0

200

400

V (mV)

w
 
(
p
A
)

b

1

5

−60 −50 −40

0

200

400

V (mV)

w
 
(
p
A
)

1

4
c

−60 −50 −40

0

200

400

V (mV)

w
 
(
p
A
)

1

5d

−70 −50
−200

−100

0

100

200

V (mV)

w
 
(
p
A
)

1

2

e

−60 −50 −40
−100

−50

0

50

100

V (mV)

w
 
(
p
A
)

1

4

f

−70

0

200

400

V (mV)

w
 
(
p
A
)

g

−60 −50 −40
−100

−50

0

50

100

V (mV)

w
 
(
p
A
)

1

5h

−60 −50 −40

Fig. 4 Phase plane representation of eight firing patterns. Firing
patterns observed during a step current stimulation are: a tonic spiking,
b adaptation, c initial burst, d regular bursting, e delayed accelerating,
f delayed regular bursting, g transient spiking and h irregular spiking.
The voltage traces are shown with a scale bar that corresponds to 100
and 20 mV. The graphs on the left show the traces in the phase planes
as a trajectory (blue line) in the two state variables (V (t), w(t)). The
w-nullcline (green) is a straight line, the V -nullcline before current

stimulation is the curved dashed black line, and in the presence of sti-
mulation, the curved solid line (black). The stable fixed point in (g) is
indicated with a black, filled circle, and all the other symbols refer to
the same convention as in Figs. 1 and 2. Comparing b with c illustrates
that reset points jumping above the V -nullcline lead to initial bursting.
Comparing c with d clarifies that regular bursting is obtained when the
first broad reset generate a trajectory that passes below at least one of
the previous reset points

that a standard leaky or non-leaky integrate-and-fire model
can generate subject to constant current injection. In the
framework of the AdEx, it corresponds to the absence of
spike-triggered adaptation and adaptation sensitivity to sub-
threshold voltage (a, b = 0). Most neurons, however, show
some level of spike-frequency adaptation. In this firing pat-
tern, the inter-spike interval (ISI) grows during a sustained
stimulus (Fig. 4b). The classification between adapting and
non-adapting can be drawn from the adaptation index:

A = 1

N − k − 1

N∑
i=k

ISIi − ISIi−1

ISIi + ISIi−1
(7)

where k ≥ 2 is used to disregard any initial transient.
Consistent with other studies (Druckmann et al. 2007), we
take k = 4; i.e. we disregard the first two inter-spike intervals.
Typically fast spiking interneurons have an adaptation index,
A, of 0.005 whereas regular spiking pyramidal neurons have
A = 0.015 (with N = 15 to 40 spikes, Druckmann et al.
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Table 1 Parameters and cost for fits shown in Fig. 8 and for firing pattern examples shown in Fig. 4

Type C (pF) gL (nS) EL (mV) VT (mV) ∆T (mV) a (nS) τw (ms) b (pA) Vr (mV) C(βββ) I (pA)

Fig. 8, cNA 59 2.9 −62 −42 3.0 1.8 16 61 −54 8.4 184

Fig. 8, cAD 83 1.7 −59 −56 5.5 2.0 41 55 −54 10.4 116

Fig. 8, RS 104 4.3 −65 −52 0.8 −0.8 88 65 −53 10.4 98

Fig. 4a 200 10 −70 −50 2 2 30 0 −58 – 500

Fig. 4b 200 12 −70 −50 2 2 300 60 −58 – 500

Fig. 4c 130 18 −58 −50 2 4 150 120 −50 – 400

Fig. 4d 200 10 −58 −50 2 2 120 100 −46 – 210

Fig. 4e 200 12 −70 −50 2 −10 300 0 −58 – 300

Fig. 4f 200 12 −70 −50 2 −6 300 0 −58 – 110

Fig. 4g 100 10 −65 −50 2 -10 90 30 −47 – 350

Figs. 4h, 5 100 12 −60 −50 2 −11 130 30 −48 – 160

(2007)). The adaptation index will depend on the number of
spikes considered, in this article, we will compute the adap-
tation index with N fixed to 20 spikes, and take Ac = 0.01
as a critical value for classifying a spike train as adapting
(A ≤ Ac) or non-adapting (A > Ac).

Initial bursting versus adapting Initial bursting denotes a
group of spikes that were emitted at a frequency considerably
greater than the steady-state frequency. This definition is very
ambiguous and in many experimental traces initial bursting
is indistinguishable from pronounced adaptation. In the fra-
mework of the AdEx, a clear definition becomes apparent.
Initial bursting arises when the spiking starts with one or
several sharp reset followed by broad resets only (Fig. 4c).
With this definition, there is a qualitative difference bet-
ween the SAP forming the initial burst and the SAP forming
the tonic spiking that follows, as observed in experiments
(Markram et al. 2004).

Regular bursting Regular bursting appears in a scenario
similar to initial bursting except that the trajectory starting
after the first broad reset projects below at least one of the
previous reset points in the phase plane, such that the next
reset point is below the V -nullcline; i.e. the next reset is sharp
(Fig. 4d). This situation leads to an alternation between sharp
and broad resets. Regular bursting is made possible with a Vr

higher than the effective threshold VT (note that VT corres-
ponds to the minimum of the V -nullcline), so as to ‘shield’
some reset points on the right hand side of the V -nullcline.

Delayed spiking and acceleration A negative a acts as a posi-
tive feedback which can be responsible for delayed initiation.
Delayed spiking appears when injecting a current close to the
rheobase. Because of a < 0, the (hyperpolarizing) adapta-
tion current w is slowly decreasing at a depolarized V , allo-
wing the neuron to eventually spike once the adaptation has

decreased sufficiently (Fig. 4e). In the phase plane, the tra-
jectory of the first spike stays below, but follows the contour
of the V -nullcline. As it approaches the V -nullcline, the tra-
jectory slows down since the magnitude of | dV

dt | decreases.
With a < 0, the system of equations of the AdEx can lead
to spike frequency acceleration (Fig. 4e, similar to experi-
ments by Beierlein et al. (2003)) if the spike-triggered adap-
tation b is weak, as shown in Fig. 4e. For greater values of
spike-triggered adaptation, it is also possible to get a delayed
adapting trace (not shown) and a delayed bursting trace
(Fig. 4f). Note that in both Fig. 4e and f, the trajectory starts
with negative slope ( dw

dt < 0 while dV
dt > 0) reflecting the

decreasing adaptation current.

Rebound or transient spikes Post-inhibitory rebound is seen
in several types of neurons. When a hyperpolarizing step
current is released abruptly, some neurons will spike one or
several time(s) before reaching their state of rest. This phe-
nomenon is very similar to transient spiking observed during
a step of depolarizing current. In both cases a stable fixed
point remains, even after the sudden increase in current. A
spike is nevertheless produced because the adaptation current
is too slow to compensate for the sharp change in current. If
the applied current was increased gradually to the same step
size, the neuron would not spike because it would have had
time to adapt. In the phase plane, rebound corresponds to
a situation where the initial condition is located outside the
basin of attraction of the stable fixed point, but the reset point
is located inside this basin of attraction (Fig. 4g).

Irregular spiking Irregular spiking can occur in an AdEx
model despite the fact that the equations are deterministic.
Irregular spiking is manifest when the interspike interval
keeps on changing without periodicity during the observation
interval. There is an alternation of sharp and broad resets,
but—unlike the case of initial bursting or regular bursting
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firing patterns—in the case of irregular spiking the sequence
is not periodic, reminiscent of stuttering cells observed in
some nest basket cells (Wang et al. 2002). The irregular firing
pattern appears for a restricted set of parameters, and the
volume occupied by the irregular spiking pattern in the para-
meter space seems to be patchy. We verified that the behavior
was not due to a numerical artifact: Simulating the model
neuron with the same parameter set with different numerical
integration methods (reducing the forward-Euler time step,
using Runge–Kutta or Adams–Bashforth–Moulton) always
produced an irregular spiking pattern. Even though the exact
spike train was not identical, spiking was aperiodic so that the
classification of the spike pattern (adaptive, bursting, irregu-
lar) did not change after a change in the numerical method.
Though other regions of the parameter space may produce
irregular spiking, the pattern was found to be most noticeable
at negative a, large spike-triggered adaptation (b) and high
voltage reset (Fig. 4h).

For a given set of parameters, irregular spiking emerges for
a restricted range of injection current (Fig. 5a). We checked
that for this set of parameters the AdEx model showed chaotic
behavior (Strogatz 1994) by testing the dependence of the
numerical integration on the initial conditions. We perturbed
the initial conditions by a very small value δ = 10−12 and
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Fig. 5 Irregular firing is chaos in the AdEx. a Spikes times of
an irregular spiking model are shown for three different ampli-
tudes of the stimulating current step. At medium current amplitude
(I = 150 pA) it spikes without periodicity, this current ampli-
tude was used to make b and c. b The numerical integration of
an irregular spiking model depends heavily on the initial conditions,
such that ξ grows exponentially with the number of spikes simulated.
The stars denote a modification of the initial condition in w only, the
diamonds is a modification in V and the circles a modification in both
w and V . c A linear fit shows a slope of 2.56 (full line). The interval
map between each interspike interval and the preceding one appears
as a thin, continous curve (n = 1240 spikes). The parameters for the
irregular spiking model are given in Table 1

evaluated the error, ξi , in the adaptation variable at each spike:

ξi = (
w(t̂i ) − wδ(t̂i )

)2 (8)

where w(t̂i ) and wδ(t̂i ) is the adaptation current at the time of
the spike i for the unperturbed and perturbed initial condition,
respectively. Fig. 5b shows that this error grows exponentially
with the number of spikes. The slope in the semi-log plot is
2.56. Therefore, there is a great sensitivity of the solution
on the initial conditions, this confirms that irregular spiking
is due to chaos. A recurrence relation (map) can be found
by plotting the magnitude of the interspike interval with res-
pect to the preceding interspike interval. After a very large
number of spikes (n = 1240), the interval map appears as
a continuous function (Fig. 5c). The points in Fig. 5c all lie
on a line of very small thickness, illustrating that the system
is deterministic and neither artifacts nor noise is responsible
for the observed irregularity in the interspike interval pattern.

4 Parameter space

Given the definitions for each firing pattern, we can now
investigate how these firing patterns depend on the specific
set of parameters. Since this problem depends only on the
bifurcation parameters, we fixed the scaling parameters to
realistic values: C = 100 pF, gL = 10 nS, EL = −70 mV,
VT = −50 mV and ∆T = 2 mV. This corresponds to a
membrane time constant τ = C/gL of 10 ms. Resting poten-
tial (EL ), effective threshold (VT ) and slope factor (∆T ) are
in the range seen in experiments (Badel et al. 2007; Clopath
et al. 2007). Changing the scaling parameters does not change
the set of firing patterns accessible for a given set of bifur-
cation parameters, but may modify the amount of current
necessary to go from one firing type to another. In addition,
some firing patterns exist only close to the rheobase current
(delayed spiking, transient spiking). In this section we will
consider only the firing patterns that appear at a step current
twice the amplitude of the rheobase current. The rheobase
was determined according to analytical expressions given in
Eqs. 5 and 6. The firing pattern is likely to change for dif-
ferent step current amplitudes, but we limit our study to just
one amplitude of current step.

For each set of the bifurcation parameters, Eqs. 1–3 were
solved with the Adams–Bashforth–Moulton numerical inte-
gration method (ode113 in Matlab), we stopped the simula-
tion after 50 spikes or 16 s in model time whatever occurred
earlier. We characterized the firing pattern according to the
following simple rules:

– tonic: strictly sharp resets or strictly broad resets and
−0.01 < A < 0.01;
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– adapting: strictly sharp resets or strictly broad resets and
A > 0.01;

– accelerating: strictly sharp resets or strictly broad resets
and A < −0.01;

– initial bursting: ordered sequence going from sharp to
broad resets (e.g. sharp–sharp–broad–broad–broad);

– regular bursting: alternation between broad and sharp
SAP such that the number of sharp resets between each
broad reset is constant;

– irregular spiking: alternation between broad and sharp
SAP such that the number of sharp resets between each
broad reset is not constant after the third broad reset;

All programs were written in Matlab (The Mathworks,
Natick, MA) and ran on a personal computer.

In Fig. 6, the distribution of firing patterns is shown as a
function of the reset parameters Vr and b with fixed values
of a and τw. The fixed τw was 5 or 100 ms such that the
w-variable can be interpreted as a refractory current or an
adaptation current, respectively. The a parameter was fixed
to −5, 0.001 or 30 nS, corresponding to a system loosing
stability via a saddle-node (Fig. 6a–d) or Andronov-Hopf
(Fig. 6e, f) bifurcation. The range of reset parameters consi-
dered was limited to realistic values for spiking neurons
(Vr ∈ [−70,−40] mV, and b ∈ [0, 400] pA).

The adaptive models (τw = 100 ms, Fig. 6a, c, e) have
bursting firing patterns extending to larger areas in the para-
meter space than the refractory models (τw = 5 ms, Fig. 6b,
d, f), which have their diversity almost uniquely constrained
to resets above VT . In all cases, the border between bursting
(initial or regular) and tonic-adapting firing patterns can be
approximated by a curve with linear plus exponential terms,
similar to a shifted version of the V -nullcline. This can be
related to the qualitative arguments in Sect. 3 (see subsection
on initial bursting above and Fig. 4e as well as the Sect. 5
below). In Fig. 6a and b, the tonic spiking (red areas) at low
b and at high b corresponds to tonic with sharp resets and
tonic with broad resets, respectively.

An adaptive current with high subthreshold adaptation
yields predominantly bursting (initial and regular) and adap-
ting firing patterns. However, a strong subthreshold
adaptation is not sufficient on its own to model adapting
and bursting patterns (Fig. 6d), but needs to be combined
with high values of Vr . The refractory time constant in that
case is often smaller than the interspike interval, this prevents
cumulative increase of w since the adaptation current decays
almost completely between spikes. Parameters combinations
leading to irregular spiking (black pixels in Fig. 6) make a
sparse and patchy structure that is entirely contained in the
larger region of regular bursting. This firing pattern appears
predominantly close to the border between initial and regular
bursting.

Fig. 6 Parameter space exploration of the four bifurcation parameters.
Tonic spiking in red, adapting in yellow, initial bursting in green, regular
bursting in cyan, irregular spiking in black and accelerating in blue. The
four-dimensional parameter space was reduced to six relevant planes:
a adaptive time constant (τw = 100 ms) and negative a (a = −5 nS), b
refractory time constant (τw = 5 ms) and negative a (a = −5 nS),
c adaptive time constant (τw = 100 ms) and low a (a = 0.001
nS), d refractory time constant (τw = 5 ms) and low a (a = 0.001 nS),
e adaptive time constant (τw = 100 ms) and high a (a = 30 nS),
f refractory time constant (τw = 5 ms) and high a (a = 30 nS). The
firing pattern was classified for injection of current twice the rheobase,
according to the criteria exposed in Sect. 3

Delayed spiking and transient spiking are absent from
Fig. 6 because these firing patterns do not exist when the cur-
rent is well above the rheobase. Delayed spiking will appear
at injection current slightly above the rheobase and are more
salient at low or negative a. Transient spiking is produced
with current not sufficient to make the stable fixed point loose
stability, and this firing pattern depends heavily on a as it
occurs only for sizable a. The accelerating firing pattern is
also associated with current close to rheobase. Nevertheless
Fig. 6a shows that the accelerating firing pattern persists at
higher step current amplitudes given that b is very small and
Vr is within a small range below VT .
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5 Boundaries in parameter space

In Fig. 6c, the boundary between initial bursting and tonic
spiking appears as a line that can be described as linear plus
exponential terms. Hence the shape of the boundary reflects
the shape of the V -nullcline. In this section we analyze why
this is so.

To study the relation between the the boundary and the
shape of the V -nullcline we consider a slightly simpler neuron
model with a piecewise linear V -nullcline:

C
dV

dt
= F(V ) − w + I

τw

dw

dt
= a(V − EL) − w.

(9)

where the nonlinearity in the first equation is a piecewise
linear function

F(V ) =
{−gL(V − EL) if V ≤ VT

gL∆T (V − E) otherwise
(10)

with E = VT + VT − EL

∆T

We assume that the evolution of the w-variable is much
slower than the evolution of the voltage V . The voltage equa-
tion is characterized by a time scale τ = C/gL , the w variable
by a time scale τw. We observe that, in the limit of separa-
tion of timescales (τ/τw � 1), the trajectories in the (V, w)

phase space are nearly horizontal since dV/dt � dw/dt -
unless one of the trajectories gets close to the V -nullcline.
Note that, by definition dV/dt vanishes on the V -nullcline,
and because of continuity, dV/dt is small in the neighbo-
rhood of the nullcline. It can be shown that, in the limit of
a separation of time scales, the trajectory follows the left
branch V -nullcline staying at a vertical distance X (V )

X (V ) = τ

τw gL
[I − (a + gL)(V − EL)] . (11)

below it (Gerstner and Kistler 2002). In the case of piece-
wise linear nullclines, the trajectory can hence be obtained
analytically.

More importantly for the present study, we can use the
above result to get an approximation for the evolution of
the adaptation variable w during spiking. After a spike, a
trajectory restarts at the reset point (Vr , wr ) with a w-value
wr calculated from the reset condition in Eq. 3. Along the
trajectory, both V and w change. A trajectory ends if V hits
the upper bound V = 0 at which point the dynamics is reset
and the next trajectory starts. We focus on a function M that
maps the starting point (Vr , wr ) of the trajectory to the value
we of the adaptation variable at the end of the trajectory.
We note that this function depends on Vr and write we =
M(wr , Vr ).

Let us now calculate we. With F(V ) defined in Eq. 10
it is useful to split the problem in two cases depending on

b c

a

Fig. 7 Phase diagram and parameter space for a piecewise linear
V -nullcline in the limit of separation of timescales. a The firing pattern
predicted from the analytical expression given in the text for the limit
of separation of timescales is shown with the same color scheme as in
Fig. 6. b Trajectories for reset points where Vr ≤ VT go to high poten-
tial with little change in w unless they must contour the V -nullcline.
c When Vr > VT the trajectories go along the V -nullcline only when
the reset point is situated above the dV

dt = 0. In both cases, the func-
tion M plateaus at a value wc = F(VT ) − X (V ). The trajectories
follow the V nullcline at a distance X (V ), as illustrated in the inset of
b (C = 100 pF, gL = 10 nS, EL = −70 mV, VT = −50 mV, a = 0 nS,
∆ = 3, τw = 2000 ms)

whether the voltage reset Vr leads to a value above or below
VT . If Vr < VT , separation of timescales means that V will
increase too fast for w to change significantly unless the
trajectory encounters the V -nullcline. This is illustrated in
Fig. 7b where we see two trajectories: one with low wr

and another with high wr . The former travels straight to
high voltages with little change in w, the latter approaches
rapidly the neighborhood of the V -nullcline which it follows
at a distance X (V ) before going to high V . Therefore, with
Vr ≤ VT :

M(wr , Vr ) =
{

wr if wr < F(VT ) + I − X (VT ),

F(VT ) + I − X (VT ) otherwise.

(12)

If Vr > VT , then the trajectory evolves (nearly) horizon-
tally to the right (increasing potential) unless the initial point
is situated above the V -nullcline in which case the move-
ment starts towards the left. This is illustrated in Fig. 7c
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where we see that trajectories starting above the V -nullcline
again follow F(V )+ I with a distance X (V ). This gives, for
Vr > VT :

M(wr , Vr ) =
{

wr if wr < F((Vr ) + I,
F(VT ) + I − X (VT ) otherwise.

(13)

Given M , it is now straightforward to classify tonic, ini-
tial bursting or regular bursting according to the definitions
mentioned above. We simply have to note that (1) we at the
moment of the first spike is still close to its resting value
we ≈ 0 and (2) in the case of periodic spiking the reset wr

is given by wr = we + b. Hence, If Vr ≤ VT

– tonic spiking with broad resets if b > F(Vr ) + I ,
– tonic spiking with sharp resets if b < F(Vr ) − F(VT )

+ X (VT ),
– initial bursting if F(Vr ) + I > b > F(Vr ) − F(VT )

+ X (VT ).

If Vr > VT

– tonic spiking with broad resets if b > F(Vr ) + I ,
– regular bursting if b < F(Vr ) − F(VT ) + X (VT ),
– initial bursting if F(Vr ) + I > b > F(Vr ) − F(VT )

+ X (VT ).

These relations can be used to draw a picture of the parame-
ter space for the case of a piecewise linear V -nullcline F(V )

(Fig. 7a) which holds in the limit of separation of timescales.
Note that in the AdEx model of Fig. 6c, we have τ/τw = 0.1
so that the assumption of a separation of timescales is justi-
fiable. Indeed, in the AdEx model the boundaries between the
firing patterns in Fig. 6c reflects the shape of the nullclines
as should be expected based on the results of this section.

6 Comparison with cortical neurons

We can test that the AdEx model accurately reproduces the
firing patterns of real neurons by comparing with experimen-
tal injections of step currents into neurons of the cortex (data,
courtesy of Henry Markram and Maria Toledo-Rodriguez,
see Markram et al. (2004) and Toledo-Rodriguez et al. (2004)
for the complete details on the experiments). Briefly, the
experiments consist of 2–5 repetitions of 2 s step current
injections with three different amplitudes. The amplitude of
the steps ranged from 100 to 200 pA. The electrophysiologi-
cal class was defined according to Markram et al. (2004) for
the inhibitory neurons and according to Connors and Gutnick
(1990) for the excitatory neurons. We will be considering
only three different classes. In particular, we will compare
the AdEx with two types of inhibitory neurons (continuous
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Fig. 8 Comparison of the AdEx with three types of cortical neurons
on step current injections. From left to right: experimental traces (red),
AdEx model (blue), and overlay of the traces during onset and offset of
the current step. From top to bottom: cNA (a), cAD (b), and RS (c). The
left scale bar shows 20 mV and 300 ms, the scale bar for the overlays
shows 20 mV and 20 ms. The current injections corresponds to 150 pA
for cNA, 105 pA for cAD, and 130 pA for RS. Only one of the five
repetitions is shown for clarity. Across multiple repetitions of the same
stimulus, the time of the first spike or the first interspike intervals may
jitter around what is seen on this figure. The f –I curves (d, e, f) of the
fitted models show a steeper slope for the interneurons (d and e cNA
and cAD, respectively) and a slow, type-I slope for the RS cells (f)

accommodating, cAD, and continuous non-adapting, cNA)
and one type of excitatory neuron (regular spiking, RS).

In order to compare the experiments with the AdEx model,
we fit the parameters of the model neuron per neuron. The fit-
ting method was chosen for the ease of implementation and
for the capability to handle an optimization problem with
many local minima (see further below). Optimized model
traces are compared with the experimental traces in Fig. 8. We
can see that the AdEx model offers a good qualitative match
akin to optimized Hodgkin and Huxley models (Druckmann
et al. 2007). The optimized parameters for each chosen cell
are given in Table 1. From this table, we see that the inhi-
bitory cells correspond to smaller membrane capacitance,
consistent with the smaller size of these cells. The parameter
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a is low for all three cells and does not strongly influence the
features used as optimization criteria. The timescale of the
adaptation is the largest for the RS cells, which is expected
because of the slow adaptation currents known to be present
in these cells. Figure 8d–f show the steady-state f –I curve
for the fitted models corresponding to the three different cells.
We see that the two interneuron models show type II f –I
curves of a high slope, while the RS neuron have an f –I
curve of I slow slope. Although the full f –I curve was not
available with the experiments we used, we can see a qua-
litative link with the stereotypical f –I curves that are to be
expected for these types of cells (Tateno et al. 2004).

Optimization methods Brette and Gerstner (2005) have pro-
posed an experimental protocol to determine the parameters
of the model. The experiments used here were done before
the work of Brette and Gerstner was published, and no fit-
ting method based on step current stimulation only has been
reported for the AdEx model. Here we will describe the opti-
mization methods used to find the best set of parameters
(βββ). Inspired from Druckmann et al. (2007) and Vanier and
Bower (1999), we used a MATLAB implementation of a
genetic algorithm (The Mathworks, Natick, MA) to solve
the optimization problem. The cost associated with a para-
meter set, C(βββ), was defined with six features of the observed
responses. The six features are:

– f1: Number of spikes, n,
– f2: First spike latency,
– f3: First inter-spike interval,
– f4: Last inter-spike interval,
– f5: First inter-spike minimum potential,
– f6: Waveform before the first spike.

The spike times were defined as zero-crossings of the voltage
and the inter-spike minimum potential was taken to be the
lowest voltage observed between the first and the second
spike. For each feature we define a χ2 which averages the
χ2 value across all three step current amplitudes. Illustrating
this with the first feature we have:

χ2
1 = 1

3

3∑
j=1

〈n(obs)
j 〉 − n(βββ)

j

Var[n(obs)
j ]

(14)

where n j is the number of spikes for stimulus amplitude
j observed in experimental traces (obs) or in a model with
parameters βββ. The angular brackets denote the average and
V ar is the variance of the observed features across the repe-
titions. A similar equation can be written for each feature,
except for feature 6:

χ2
6 = 1

3

3∑
j=1

∫ (
V (obs)(t) − V (βββ)(t)

)2
dt

(0.2 mV)2 (15)

where the integral runs from the onset of the step to two
standard deviation before the first spike mean latency. Finally,
the cost associated with a parameter set is:

Cost =
6∑

i=1

χ2
i . (16)

This is minimized with a genetic algorithm with a popula-
tion of 100 individuals for 200 generations and a crossover
fraction of 0.6.

7 Discussion

The AdEx model can produce multiple firing patterns
depending on parameters. The model neuron can exhibit
initial bursting, regularly bursting, tonic spiking, adapting,
accelerating, irregular spiking, or show delayed initiation.
We have drawn clear definitions of these firing patterns in
terms of two types of spiking trajectories. The two types
of spiking trajectories depends on whether the adaptation
current immediately after spiking is strong enough to make
the membrane potential decrease slowly before starting to
increase in preparation for the next spike. The explicit dis-
tinction between continuous adaptation, initial bursting, and
the description of irregular spiking extends previous work
on firing patterns in model neurons (Izhikevich 2003, 2007;
Touboul 2008). Whereas Touboul and Brette (2008) focuses
on types of excitability, stationary limit cycles and their rela-
tion to the underlying bifurcations, we studied the transient
response to step currents since this is the prevalent experi-
mental paradigm for classifying firing patterns.

Chaotic responses have been observed in neuron models
as well as real neurons under periodic forcing (Holden 1986;
Brumberg and Gutkin 2007). The type of chaos that we report
does not depend on a periodic forcing. Rather it is closely
related to the chaos observed in Hodgkin–Huxley equations
(Chay and Rinzel 1985). The presence of chaos in the AdEx
model is restricted to small regions of the parameter space
(Fig. 6). It is nevertheless possible that neurons access a simi-
lar chaotic regime. Evidences for the existence of chaos at
all levels of the nervous system accumulate, despite tech-
nical limitations (Korn and Faure 2003). Figure 5 provides
a method with which experiments could be made to verify
the existence of the irregular firing pattern described. The
irregular firing pattern appears in a narrow range of step cur-
rent amplitudes (Fig. 5a) surrounded by a bursting at smaller
and stronger current amplitude. Irregularity can be distingui-
shed from noise by looking at the interval map, which is a
thin continuous line (Fig. 5b) for the irregular spiking AdEx
model.
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The AdEx model can be fit with good agreement to three
types of cortical neurons, as can be seen from the comparison
between model and experimental traces on the time scale of
seconds (two first columns in Fig. 8). A closer look on the
overlay unveils some discrepancies: the spike initiation of the
cAD and FS interneurons is not fully captured by the model.
The first interspike interval is too long in the case for the
RS cell, while the last interspike interval is too short in the
cNA cell. This makes the trade-off between different features
evident, and our simple model cannot fit with high precision
both the initial burst of RS cells and the broad SAP observed
in these cells. Important improvement is to be expected by
adding another adaptation current but here we restricted the
investigation to the capability of only one adaptation variable.

Our study has shown that the value of the voltage reset is an
important parameter of the model. The voltage reset allows
to include some, but not all refractory properties in a neu-
ron model (Badel et al. 2007). Refractoriness arises from the
combined contributions of increased firing threshold, redu-
ced membrane time constant and hyperpolarized voltage. If
the point-neuron model is replaced by a multi-compartment
model, the effective voltage reset depends also on the amount
of current flowing from the dendritic compartments into the
soma. This can lead to an After Spike Depolarization (ADP).
The most convenient choice for a voltage reset would be the
maximum of the ADP. Mainen and Sejnowski (1996) have
shown previously that variable electrical coupling with an
active dendritic compartment tunes the ADP and can be made
responsible for multiple firing patterns. The AdEx provides
a simpler framework to switch between firing patterns by
changing reset parameters—and these changes could indeed
reflect, amongst other influences, changes in electrical cou-
pling.

We can conclude that the diversity of firing patterns is
explained in the AdEX model by simple dynamical processes
that can be completely analyzed in the phase plane. The AdEx
model represents an attractive candidate neuron model for
use in large-scale network simulations. Earlier studies have
shown that it is sufficiently accurate for the prediction of
spike timing when a RS pyramidal neuron receives noisy
current injection at the soma (Jolivet et al. 2007). Network
simulations of large systems such as a column of the bar-
rel cortex (Markram 2006), or thalamocortical systems (Hill
and Tononi 2005; Izhikevich and Edelman 2008) require the
description of different neuron types. In this paper we addres-
sed this issue by providing parameter sets that describe three
types of cortical neurons, within the framework of a single
and attractively simple neuron model. Further work will be
needed to extend this to a larger number of neuron types and
stimulation paradigms.
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