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Abstract Frequently hailed for their dynamical capabili-
ties, quadrotor vehicles are often employed as experimental
platforms. However, questions surrounding achievable per-
formance, influence of design parameters, and performance
assessment of control strategies have remained largely unan-
swered. This paper presents an algorithm that allows the
computation of quadrotor maneuvers that satisfy Pontrya-
gin’s minimum principle with respect to time-optimality.
Such maneuvers provide a useful lower bound on the du-
ration of maneuvers, which can be used to assess perfor-
mance of controllers and vehicle design parameters. Com-
putations are based on a two-dimensional first-principles
quadrotor model. The minimum principle is applied to this
model to find that time-optimal trajectories are bang-bang in
the thrust command, and bang-singular in the rotational rate
control. This paper presents a procedure allowing the com-
putation of time-optimal maneuvers for arbitrary initial and
final states by solving the boundary value problem induced
by the minimum principle. The usage of the computed ma-
neuvers as a benchmark is demonstrated by evaluating quad-
rotor design parameters, and a linear feedback control law as
an example of a control strategy. Computed maneuvers are
verified experimentally by applying them to quadrocopters
in the ETH Zurich Flying Machine Arena testbed.

Keywords Aerial robotics · Motion planning and control ·
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1 Introduction

Quadrotor vehicles are an increasingly popular aerial ve-
hicle platform. Advantages compared to other micro un-
manned aerial vehicle (UAV) platforms are the ability to
hover, robustness and straightforwardness of design due to
mechanical simplicity (Pounds et al. 2006), and safety bene-
fits due to smaller rotor sizes compared to most other hover-
capable UAVs (Hoffmann et al. 2007).

Most early research on quadrocopter control focused
on near-hover operation. This operation was commonly
achieved using linear controllers, which were tuned through
various strategies (see, for example, Bouabdallah et al. 2004,
and references therein). Trajectories are typically generated
by connecting waypoints by lines or circles, and choosing
flight velocity sufficiently low to satisfy near-hover assump-
tions (e.g. How et al. 2008).

With the above advantages making quadrocopters attrac-
tive platforms for numerous research fields, another key
strength of these vehicles is increasingly being exploited:
They offer exceptional agility in the rotational degrees of
freedom due to the off-center mounting of the propellers,
which allows the generation of large torques. Most plat-
forms also provide high thrust-to-weight ratios, allowing
fast translational dynamics. This has lead to numerous more
complex control strategies that leverage these capabilities
by explicitly considering the feasibility of trajectories. Ex-
amples include fast translations (Mellinger et al. 2010;
Purwin and D’Andrea 2011; Hehn and D’Andrea 2011),
flips (Lupashin et al. 2010), and dancing motions (Schoel-
lig et al. 2011). Several authors have also introduced algo-
rithms that generate trajectories from a class of motion prim-
itives (lines, polynomials, or splines) and respect the dy-
namic constraints of quadrocopters (Hoffmann et al. 2008;
Cowling et al. 2007; Bouktir et al. 2008). These algorithms
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enforce dynamic feasibility by designing trajectories in a
two-step process, first determining the shape of the trajec-
tory and subsequently determining an appropriate speed pro-
file such that feasibility constraints are not violated.

While this work has lead to impressive results, it has not
answered one key question: Given the specifications of a
quadrotor vehicle, how fast can a certain maneuver be com-
pleted? More formally, this can be stated as: What is the
time-optimal trajectory for given initial and final states? The
ability to compute accurate answers to this question offers
insight that may be helpful for many performance-related
topics: How much of the theoretical speed potential does a
certain control strategy utilize? Are there specific maneu-
vers for which there exists a large improvement potential for
a given controller? How do the physical parameters of the
vehicle, such as mass or maximum thrust, influence perfor-
mance?

The computation of time-optimal trajectories provides a
useful tool to answer these questions: The duration of such
trajectories provides an absolute lower bound, which may
be used for comparisons. Several approaches have been pro-
posed to compute time-optimal trajectories: Lai et al. (2006)
proposed a direct method using control inputs discretized in
time, and solved the resulting optimization problem using
genetic algorithms and nonlinear programming. Bouktir et
al. (2008) presented a different direct method, exploiting the
differential flatness of the system dynamics and parameter-
izing the output trajectory by a set of control points, which
are then connected by B-spline functions. While both meth-
ods have been successfully demonstrated, the optimality of
solutions remained unanswered.

In this paper, we present an algorithm that allows the
computation of state and input trajectories between two
states. Pontryagin’s minimum principle is employed to de-
termine the structure of time-optimal trajectories, and com-
puted trajectories can be verified to satisfy the minimum
principle conditions. While these conditions are necessary—
but not sufficient—for optimality, they do provide a strong
argument for the found trajectories.

The computation of maneuvers that satisfy the minimum
principle using the algorithm presented herein requires con-
siderable computational effort. This makes it an unattrac-
tive proposition in real-time scenarios. However, the off-line
computation of a selection of maneuvers, chosen to be repre-
sentative for the motion of the vehicle in a specific applica-
tion, provides a lower bound on the maneuver duration, to
which real-time capable controllers may be compared as a
means of benchmarking their performance. If certain mo-
tions are expected to be carried out repeatedly, this method
may be used to design nominal trajectories, for which stabi-
lizing controllers could then be designed.

We base our calculations on a two-dimensional first-prin-
ciples model of the quadrotor vehicle. Because the algorithm

presented herein is meant as a benchmarking tool rather than
a control algorithm, the choice of a two-dimensional model
provides a reasonable trade-off: The omission of the third di-
mension makes the problem tractable by reducing its dimen-
sionality. At the same time, two-dimensional problems cover
a large class of maneuvers that are interesting to benchmark.
Through rotations of the coordinate system, all maneuvers
that start and end at rest may be treated as two-dimensional
problems, as well as maneuvers where initial and final ve-
locities and rotations are aligned with the rotated coordinate
system. This provides a large number of control scenarios
that may be benchmarked, such that the benchmarking re-
sults can be considered representative of the performance.

The quadrotor model is presented in Sect. 2. The struc-
ture of time-optimal trajectories is determined in Sect. 3,
and the algorithm used to solve the induced boundary value
problem is presented in Sect. 4. Numerous sample maneu-
vers have been computed with this algorithm, a selection of
which are shown in Sect. 5. The application of time-optimal
maneuvers as a benchmarking tool is demonstrated by com-
puting the influence of model parameters and evaluating the
performance of a linear controller (Sect. 6). The computed
trajectories are validated in actual flight tests, with the ex-
perimental results (Sect. 7) demonstrating their validity.

2 Modeling of vehicle dynamics

This section introduces the two-dimensional first-principles
model, on which we base our calculations. Furthermore,
a non-dimensionalizing coordinate transformation is em-
ployed to reduce the number of model parameters to two.

2.1 First-principles model

The two-dimensional model has three degrees of freedom:
the horizontal position x, the vertical position z, and the
pitch angle θ , as shown in Fig. 1.

The quadrocopter is controlled by two inputs: the total
thrust force FT and the pitch rate ω, shown in Fig. 1. The
control inputs are subject to saturation. In particular, the

Fig. 1 Coordinate system and control inputs of the quadrotor model
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pitch rate is limited to a maximum allowable magnitude ω,
and the thrust is constrained to be between FT and FT :

|ω| ≤ ω, (1)

FT ≤ FT ≤ FT . (2)

The pitch rate is limited by the range of the gyroscopic on-
board sensors, and the maximum collective thrust is deter-
mined by the maximum thrust each propeller can produce.
Because commonly available motor drivers do not allow
changes of the direction of rotation mid-flight, and because
the propellers are of fixed-pitch type, it is assumed that the
collective thrust is always positive: FT > 0.

The equations of motion are

ẍ = FT

m
sin θ, (3)

z̈ = FT

m
cos θ − g, (4)

θ̇ = ω, (5)

where g denotes the gravitational acceleration and m is the
mass of the quadrocopter.

We assume that the angular velocity θ̇ can be set directly
without dynamics and delay. This is motivated by the very
high angular accelerations that quadrotors can reach (typ-
ically on the order of several hundred rad/s2), while the
angular velocity is usually limited by the gyroscopic sen-
sors used for feedback control on the vehicle (Lupashin et
al. 2010). This means that aggressive maneuvering is often
more severely limited by the achievable rotational rate than
the available angular acceleration. The simplification of the
model to a constrained rotational rate makes the derivations
and numerical computations in this paper tractable.

It should be noted that the first-principles model pre-
sented above not only assumes there is direct control of
the rotational rate, but also neglects numerous dynamic ef-
fects, such as propeller speed change dynamics (Lupashin
et al. 2010), blade flapping (Pounds et al. 2006), changes
in the angle of attack of the propellers (Huang et al. 2009),
and drag forces. Considering that we seek to compute very
fast maneuvers, it is to be expected that such effects are
significant. However, the purpose of the method presented
herein is to allow the benchmarking of quadrotor perfor-
mance. Because such benchmarks typically serve compar-
ative purposes, modeling inaccuracies play a less significant
role than in other applications: As long as the model cap-
tures the dominant dynamics, one can expect relative com-
parisons based on the model to provide meaningful answers.
Differences of results based on different models, for exam-
ple between simulative and experimental results, highlight
that the model does not capture all effects; however, when
comparing results obtained using the same dynamics, one

can expect the neglected effects to, for the most part, can-
cel out. We therefore believe the trade-off between modeling
complexity (and therefore tractability of the optimal control
problem) and accuracy to be reasonable. This is further sup-
ported by the comparison of numerical and experimental re-
sults, which show a reasonable qualitative match with some
quantitative discrepancies between simulations and reality
(see Sect. 7).

2.2 Non-dimensional model

In order to allow simple comparisons between different con-
figurations, it is beneficial to describe the quadrotor model
with as few parameters as possible. We therefore introduce
a non-dimensionalizing transformation:

t̂ := ωt, (6)

x̂ := ω2x

g
, (7)

ẑ := ω2z

g
. (8)

In the transformed coordinates and time, the gravitational
acceleration is unity. Defining the state vector

x := (x̂, ˙̂x, ẑ, ˙̂z, θ), (9)

and the transformed control input vector

u = (uR,uT ) :=
(

ω

ω
,
FT

mg

)
, (10)

the quadrotor dynamics may be written as

ẋ =

⎛
⎜⎜⎜⎜⎜⎝

˙̂x
¨̂x
˙̂z
¨̂z
θ̇

⎞
⎟⎟⎟⎟⎟⎠

= f (x,u) =

⎛
⎜⎜⎜⎜⎝

˙̂x
uT sin θ

˙̂z
uT cos θ − 1

uR

⎞
⎟⎟⎟⎟⎠ . (11)

It is important to note that in the above equations, the deriva-
tive ẋ is taken with respect to the transformed time t̂ .

The transformed control inputs are bounded by the min-
imum and maximum thrust in units of gravitational acceler-
ation, and unit allowable rotational rate:

uT = FT

mg
≤ uT ≤ uT = FT

mg
, |uR| ≤ 1. (12)

The dimensionless model contains two model parame-
ters: The lower and upper limit of the collective thrust input
(uT and uT ).

For the remainder of the paper, the hat notation will be
omitted. It is understood that calculations are carried out us-
ing the dimensionless coordinates, but could equivalently be
done in the original system.
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3 Minimum principle for time-optimal maneuvers

This section demonstrates how Pontryagin’s minimum prin-
ciple for time-optimality is applied to the vehicle dynamics.
It is shown that the thrust input is bang-bang and that the
rotational control is bang-singular, meaning that the control
input is always at full positive or negative saturation, ex-
cept during singular arcs. The system is augmented by the
switching function of the rotational rate input, leading to a
boundary value problem containing five unknowns. The ex-
istence of optimal trajectories is shown.

The time-optimal quadrocopter trajectory between the
initial state x0 and the final state xT is characterized by its
state trajectory x∗(t), t ∈ [0, T ], or equivalently by the cor-
responding control inputs u∗(t), t ∈ [0, T ]. It is the solution
to the optimization problem

minimize
u∈U

T

subject to ẋ = f (x,u),

x(0) = x0,

x(T ) = xT ,

(13)

where U denotes the set of all attainable control vectors, as
defined by (12).

Minima to this problem may be found using Pontrya-
gin’s minimum principle, which provides necessary condi-
tions for optimality (Bertsekas 2005; Geering 2007). With a
cost function equal to 1, i.e., g(x,u) = 1, the Hamiltonian
for the problem yields

H(x,u,p) = g(x,u) + pT f (x,u)

= 1 + p1ẋ + p2uT sin θ

+ p3ż + p4(uT cos θ − 1) + p5uR, (14)

where pi denotes the elements of the costate vector p. Note
that, because the terminal time of the maneuver is free,
the Hamiltonian is always zero along an optimal trajectory
(Bertsekas 2005):

H
(
x∗,u∗,p

) ≡ 0. (15)

Applying the adjoint equation to the Hamiltonian

ṗ = −∇xH
(
x∗,u∗,p

)
, (16)

the first four costates may be expressed explicitly as

ṗ1 = 0 ⇒ p1 = c1,

ṗ2 = −p1 ⇒ p2 = c2 − c1t,

ṗ3 = 0 ⇒ p3 = c3,

ṗ4 = −p3 ⇒ p4 = c4 − c3t,

(17)

where the constants c = (c1, c2, c3, c4) remain to be deter-
mined.

The last element of the costate vector, p5, is given by the
adjoint (16) to be

ṗ5 = −p2u
∗
T cos θ∗ + p4u

∗
T sin θ∗. (18)

The above equation depends on the control input uT , the
trajectory of which is not known a priori. It is therefore not
easily possible to express p5 explicitly.

3.1 Optimal control inputs

The minimum principle states that the optimal control input
trajectory minimizes the Hamiltonian (14) over all possible
values of u. Since the two control inputs do not appear in
the same summand in the Hamiltonian, it can be minimized
separately for uR and uT :

3.1.1 Optimal control input u∗
R

For the rotational control input uR , minimizing (14) results
in

u∗
R = argmin

uR∈[−1,+1]
{p5uR}. (19)

If p5 changes sign, then u∗
R switches from −1 to +1 or vice

versa. We define

�R := p5 (20)

as the switching function of u∗
R . If �R is zero for a nontrivial

interval of time, then the minimum condition (19) is insuf-
ficient to determine u∗

R . In these intervals, which are called
singular arcs, u∗

R is determined using the condition that �R

remains zero: It follows that �̇R vanishes, which results in
the condition

�̇R = −p2u
∗
T cos θ∗ + p4u

∗
T sin θ∗ = 0. (21)

Solving for θ∗ using u∗
T > 0 (as discussed in Sect. 2.1) and

the costate equations (17) yields

θ∗ = arctan

(
p2

p4

)
= arctan

(
c2 − c1t

c4 − c3t

)
. (22)

Differentiating (22) with respect to time gives the trajectory
of the control input u∗

R = θ̇∗ in a singular arc:

u∗
R,sing = c2c3 − c1c4

(c2
1 + c2

3)t
2 − 2(c1c2 + c3c4)t + c2

2 + c2
4

. (23)

The rotational control input u∗
R of a time-optimal maneu-

ver of the quadrocopter can be written as:

u∗
R =

⎧⎪⎨
⎪⎩

+1 if �R < 0,

u∗
R,sing if �R = 0,

−1 if �R > 0.

(24)
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This type of optimal control trajectory is referred to as bang-
bang singular control or bang-singular control (Bertsekas
2005; Ledzewicz et al. 2009).

3.1.2 Optimal control input u∗
T

To compute the optimal control trajectory for the thrust input
u∗

T , the sum of all terms of the Hamiltonian containing uT

must be minimized:

u∗
T = argmin

uT ∈[uT ,uT ]
{
p2uT sin θ∗ + p4uT cos θ∗}. (25)

Again, we define a switching function

�T := p2 sin θ∗ + p4 cos θ∗. (26)

For a singular arc to exist, �T must be zero for a nontrivial
interval of time. Setting �T to zero and solving for θ∗ yields

θ∗ = arctan

(
−p4

p2

)
= arctan

(
c3t − c4

c2 − c1t

)
. (27)

The pitch angle θ∗ is determined by the rotational control
input u∗

R . If u∗
R is in a regular interval, then the pitch angle

is an affine function of time, and (27) can not be satisfied
over a nontrivial time interval. It can therefore be concluded
that u∗

T cannot be in a singular arc when u∗
R is regular. If u∗

R

is singular, θ∗ is given by (22). It follows that, for a singular
arc of u∗

T to exist, the pitch angle trajectory defined by (22)
and by (27) must be identical:

arctan

(
c2 − c1t

c4 − c3t

)
= arctan

(
c3t − c4

c2 − c1t

)
. (28)

Taking the tangent of both sides and multiplying the con-
straint out yields

(
c2

1 + c2
3

)
t2 − 2(c1c2 + c3c4)t + c2

2 + c2
4 = 0. (29)

Neglecting the trivial case c = (0,0,0,0), condition (29)
cannot hold for a nontrivial interval of time. The thrust con-
trol input u∗

T therefore does not contain singular arcs and
can be written as

u∗
T =

{
uT if �T ≤ 0,

uT if �T > 0.
(30)

3.2 Augmented system

Because only the derivative of the switching function �R

is given, we augment the system equations (11) with an ad-
ditional state, representing the switching function �R . We
define xa = (x∗,�R), resulting in the augmented system dy-
namics

ẋa = fa(t,xa)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ∗
u∗

T sin θ∗
ż∗

u∗
T cos θ∗ − 1

u∗
R

(c1t − c2)u
∗
T cos θ∗ + (c4 − c3t)u

∗
T sin θ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

, (31)

where the control inputs u∗
R and u∗

T are given by the control
laws (24) and (30). A quadrotor maneuver from x0 to xT that
satisfies the minimum principle solves the boundary value
problem (BVP)

ẋa = fa(t,xa),

x∗(0) = x0,

x∗(T ) = xT .

(32)

The BVP (32) contains six unknowns: The final time T , the
four unknown constants c, and the initial value of the switch-
ing function �R(t = 0). However, the initial value of the
switching function may not be chosen freely, but must sat-
isfy (15).1

3.3 Existence of optimal trajectories

While Pontryagin’s minimum principle provides necessary
conditions for optimality, it is useful to verify the existence
of optimal trajectories. We apply Roxin’s theorem (Roxin
1962) in order to show this.

We note that all assumptions on the system dynamics
of Roxin’s theorem hold, guaranteeing the existence and
uniqueness of a solution to the system dynamics and the con-
vexity of the system differential equation (11) with respect
to the control inputs u (because the control inputs appear
linearly, this is straightforward to see). All that remains is to
show the reachability of the target state from the initial state.

We show that there is always a trajectory between two ar-
bitrary states. We note that it is sufficient to find a trajectory
from an arbitrary state to the origin. A possible maneuver
between two states is then the motion from the initial state to
the origin, and the reverse of the motion from the final state
to the origin. A strategy to drive the system to the origin can
easily be found, for example by successively applying the
following steps:

1. Apply u = (uR,uT ) or u = (uR,uT ) until the pitch an-
gle θ is zero. Thrust commands now influence only the
vertical dynamics.

1It can be seen from (15) that, depending on the initial state x0 and the
constants c, either �R(t = 0) = 0 is the only allowable initial value of
the switching function (u∗

R(t = 0) is then in a singular arc), or there
are two allowable values that only differ in sign (u∗

R(t = 0) is then in a
regular arc, and its sign is dictated by the sign of �R(t = 0)).
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2. Use the commands u = (0, uT ) and u = (0, uT ) to drive
the states z and ż to zero using a bang-bang strategy.

3. Apply rotational rate commands to drive the horizontal
degree of freedom to zero, while adjusting the thrust such
that the vertical degree of freedom remains at rest. The
corresponding control inputs will be u = (uR,g/ cos θ),
u = (uR,g/ cos θ), and u = (0, g/ cos θ). The allowable
pitch angle during this step is limited by the available
thrust, as g/ cos θ ≤ uT must hold.

As shown in Roxin (1962), the existence of the minimum
follows from the existence of an arbitrary trajectory to the
target state.

4 Algorithm for calculation of time-optimal maneuvers

This section introduces a numerical algorithm that solves
the boundary value problem for the augmented system
(BVP (32)) between arbitrary initial and final states. The
resulting maneuvers satisfy the minimum principle with re-
spect to time-optimality. An implementation of the algo-
rithm in MATLAB for free use is available on the first au-
thor’s website, and is submitted along with this article. This
section aims to provide the reader with a high-level overview
of the algorithm used. A more detailed discussion of the in-
dividual steps may be found in the Appendix.

Finding a solution to the boundary value problem (32) is
generally difficult: The state at the end of the maneuver is
a non-convex function of the six unknowns, with many lo-
cal minima and strongly varying sensitivities. With common
boundary value problem solvers providing only local con-
vergence under these conditions, it is necessary to provide a
good initial guess for the unknowns or the solution trajectory
xa . However, with no straightforward physical interpretation
of the constant vector c and the switching function �R , it is
difficult to provide such an initial guess. The application of
BVP solvers showed that convergence to the correct solution
could only be achieved from initial guesses very close to the
correct values, making it almost impossible to initialize the
algorithm correctly. The problem is further aggravated by
the fact that the numerical integration is highly sensitive to
numerical errors when entering or leaving singular arcs, as
will be discussed in Sect. 4.4.

The algorithm presented herein relaxes these problems
by using more robust optimization methods to produce a
good initial guess for the BVP solver. For this, we ex-
ploit the known bang-singular structure of maneuvers and
parametrize a maneuver by the times at which the con-
trol inputs switch, and by the terminal time. This approach,
commonly referred to as switching time optimization (STO,
Zandvliet et al. 2007), provides the significant advantage of
requiring no initial guess of xa or c. Instead of requiring an

initial guess of xa or c, it requires a guess of the switch-
ing times, which are easier to obtain, and which can lead to
convergence from a much larger range of initial guesses.

The finding of a solution to the STO problem does not
necessarily imply a solution to the conditions derived from
the minimum principle. Therefore, the STO is used only as a
first step of the algorithm. In a second step, the result of it is
used to extract an initial guess of c, which typically lies close
enough to the correct values to allow a BVP solver to solve
the boundary value problem as a third step, and therefore
compute a maneuver that satisfies the minimum principle.

If it is assumed that the maneuver has no singular arcs,
the algorithm is less complex and more intuitive. Therefore,
an algorithm assuming maneuvers with pure bang-bang be-
havior is introduced first, and then the modifications neces-
sary for the computation of maneuvers with singular arcs are
presented.

4.1 Switching time optimization

Under the assumption that the optimal solution is a pure
bang-bang maneuver, the entire maneuver can be character-
ized by the initial values of the two control inputs, the times
at which they switch, and the total duration of the maneu-
ver. The switching time optimization algorithm optimizes
over the switching times and maneuver duration, using the
weighted sum of square state errors at the end of the maneu-
ver as an objective function.

4.2 Parameter extraction

The result of the switching time optimization is a bang-bang
maneuver between the initial and the final state. It is nec-
essary to verify that this maneuver does indeed satisfy the
conditions of the minimum principle, as they were derived
in Sect. 3. To do this, the constants c = (c1, c2, c3, c4) are
computed based on the result of the STO, and then used as
a starting point for a BVP solver.

To compute the constants, a set of equations is obtained
from the known switching times: If the maneuver is to satis-
fy the minimum principle, the switching functions �R and
�T must be zero when a switching time in the control inputs
uT and uR occurs, respectively.

The thrust switching function �T is known explicitly
(26), and it is straightforward to generate constraints from
it. The trajectory of �R , on the other hand, is not known
explicitly (as shown in Sect. 3, only the derivative �̇R of
the switching function is known a priori). However, once
the state trajectories are known from the STO, the condition
H ≡ 0 (which must hold if the maneuver is time-optimal)
can be used to compute �R .

Additional constraints are obtained from the fact that the
switching function trajectory �R must be a solution to the
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differential equation (18), which can be evaluated by numer-
ically integrating the differential equation over time inter-
vals, for example between two switching times.

As shown in the Appendix, all of the resulting constraints
are linear in the constants c. The resulting overconstrained
system of equations can then be solved for the least-squares
solution. If this solution does not satisfy all constraints to an
acceptable accuracy, the found maneuver does not satisfy the
minimum principle. Reasons for this may be an inappropri-
ate choice of the number of switches in the control inputs,
failure of the STO to converge to the correct maneuver, or
the existence of singular arcs in the optimal maneuver.

4.3 BVP solver

The constants extracted from the solution of the STO and the
corresponding maneuver duration are used as initial guesses
in a final step. Using the weighted sum of square final state
errors as an objective function, the constants and the maneu-
ver duration are optimized. In this step, the control inputs
are determined from the control laws defined by the min-
imum principle (24) and (30), which ensures that the ma-
neuver indeed satisfies the minimum principle. Because the
initial guess is typically very close to the optimal values, the
BVP solver converges quickly in most cases.

4.4 Modified algorithm for bang-singular maneuvers

For maneuvers containing singular arcs, the switching time
optimization is modified. In addition to the times at which
the control inputs switch, the durations for which the ro-
tational control input remains in a singular arc after each
switching time are also introduced as optimization variables.
It is no longer possible to optimize the switching times with-
out knowledge of the constants c, as they define the con-
trol input trajectory in singular arcs. The STO algorithm
therefore optimizes over the switching times, the singular
arc durations, and the values of the constants c. While this
overconstrains the optimization problem (the constants c as
well as the switching times and singular arc durations define
the times at which control inputs switch), the optimization
was seen to be significantly more robust when using this
parametrization.

Assuming that the thrust input uT does not switch at the
edges of the singular intervals,2 �̇R is continuous over the
border of the singular arcs, as can be seen from (21). Con-
sequently, the switching function �R enters and leaves a
singular arc tangentially. This makes the maneuver highly

2We conjecture that the assumption that uT does not switch at the edges
of the singular arcs is valid for almost all initial and final conditions,
with an appropriately defined measure. For all maneuvers considered
here, results have shown that this condition has been fulfilled.

sensitive to numerical integration errors, and makes it diffi-
cult to determine the singular arc entry and exit points from
the numerically integrated switching function. The switch-
ing times and singular arc durations are therefore retained as
optimization variables in the BVP solver step. This makes it
necessary to verify the match between the switching func-
tion and these optimization variables after convergence of
the BVP solver.

5 Numerical results

In this section, we present a selection of quadrotor maneu-
vers that were computed using the algorithm introduced in
Sect. 4. While the algorithm allows the computation of mo-
tions between arbitrary states, the results presented herein
focus on position changes where the quadrocopter is at rest
at the beginning and at the end of the maneuver.

The quadrotor parameters for which the maneuvers have
been computed are based on the ETH Zurich Flying Ma-
chine Arena vehicles, as described in Lupashin et al. (2010).
Table 1 shows the used numerical model parameters in the
dimensional form (FT /m,FT /m,ω). The non-dimensional
parameters (uT ,uT ) can easily be calculated from these us-
ing the control input transformation (12). While computa-
tions were carried out in the dimensionless coordinate sys-
tem, the maneuvers presented herein have been transformed
back to the state variables representing physical dimensions,
allowing a more intuitive interpretation.

5.1 Vertical displacements

First, the special case of maneuvers with a purely vertical
displacement is considered. At the beginning of the maneu-
ver, the quadrotor is at rest and at a pitch angle of zero, and
without loss of generality, the initial position of the quadro-
tor can be set to the origin:

x0 = (
x(0), ẋ(0), z(0), ż(0), θ(0)

) = (0,0,0,0,0).

At the end of the vertical displacement maneuver, the quad-
rotor is at rest again, with no overall horizontal displace-
ment, and a final pitch angle that is a multiple of 2π :

xT = (
x(T ), ẋ(T ), z(T ), ż(T ), θ(T )

) = (0,0, zT ,0,N2π).

Table 1 Numerical parameters of the quadrotor model

Parameter Value Description

FT /m 1 m/s2 Minimum mass-normalized thrust

FT /m 20 m/s2 Maximum mass-normalized thrust

ω 10 m/s2 Maximum rotational rate
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Fig. 2 Maneuver duration T as function of the final vertical displace-
ment zT for rest-to-rest maneuvers with no horizontal displacement.
Additionally, the switching times of uR are drawn in the plot on the
top, and the switching times of uT in the plot on the bottom. The ver-
tical solid line denotes where the structure of the minimum principle
solution changes: on the left the solution without a flip, which is faster
for small zT , and on the right the solution where the quadrocopter per-
forms a flip, which is faster for large zT . The line with the arrows
denotes the example maneuver of Fig. 4

To determine time-optimal maneuvers, it is necessary to
compare maneuvers for different values of full rotations N ,
as the equivalence of corresponding terminal states is not
included in the maneuver description. The terminal times of
these different maneuvers are then compared to determine
the fastest one.

We limit the results shown herein to maneuvers with a
positive zT value. Maneuvers have been computed for ver-
tical displacements zT of 0.1 m to 10 m, with a step size
of 0.1 m. In Fig. 2, the maneuver duration T is plotted as
a function of the vertical displacement zT . Furthermore, it
shows the switching times for each maneuver. For a par-
ticular displacement zT , the maneuver starts at the bottom
of the graph (t = 0 s) and, as time passes, moves up in the
positive direction of the t-axis. Every time a switching line
is crossed, the corresponding control input switches to the
value specified in the diagram. The maneuver is finished
when the T -curve is reached.

If the desired vertical displacement is small, i.e. for zT ≤
2.4 m, the quadrocopter is within a singular arc during the
entire maneuver. The pitch angle remains at exactly θ = 0.
The thrust is at its maximum at the beginning and switches
to its minimum at a time such that the quadrocopter comes to
rest due to gravity at the desired height zT . For zT ≥ 2.5 m,
it is beneficial to perform a flip and to make use of the

Fig. 3 Illustration of maneuvers for a purely vertical displacement of
1 m, 3 m, and 5 m. The maneuvers satisfy the minimum principle and
for each maneuver, a quadrotor is plotted every 0.04 s or every 0.01 s
in the zoom box, respectively

thrust for braking while the pitch is around θ ≈ ±π . For
zT ≥ 6.3 m, a singular arc (which keeps the pitch near
θ ≈ ±π for a particular time) appears, as can be seen in
Fig. 2. Thus, the flip is stopped for an interval of decelera-
tion. A selection of maneuvers is depicted in Fig. 3, showing
the different maneuver shapes for varying displacements.

The arrow line in the plots of Fig. 2 denotes an exam-
ple maneuver with a vertical displacement of zT = 5 m. The
state, input and switching function trajectories of this ma-
neuver are shown in Fig. 4. The switches in the control input
trajectories in Fig. 4 can be depicted by following the arrow
line from t = 0 s towards t = T in Fig. 2.

5.2 Horizontal displacements

We now consider maneuvers that lead to a purely horizontal
displacement. For this case, the initial and final state are

x0 = (0,0,0,0,0), xT = (xT ,0,0,0,0).

Considerations of symmetry lead to the conclusion that,
for purely horizontal displacements, the switching times are
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Fig. 4 Input and state trajectories of a vertical displacement maneuver
with zT = 5 m. In the plot of the control inputs, the switching functions
are also drawn, but note that they are scaled to fit into the plot. The
switches of the control input trajectories can be obtained by following
the arrow line from t = 0 s towards t = T in Fig. 2

symmetric about the half-time of the maneuver. This con-
sideration is not proven here, but has shown to always be
correct for the computed horizontal maneuvers, with the re-
sulting symmetric maneuvers satisfying the minimum prin-
ciple. Using this assumption during the STO, the number
of optimization variables can be reduced and the computa-
tion of horizontal displacements becomes particularly sim-
ple.

Maneuvers have been computed for a displacement xT

ranging from 0.1 m to 15 m, with a step size of 0.1 m.
Figure 5 shows the maneuver duration T and the switching
times as a function of xT .

For xT ≤ 1.5 m, the maneuver is bang-bang with no sin-
gular arcs. At the beginning the quadrotor turns at maxi-
mum rate, and around the maximum pitch angle the thrust
is switched to its maximum for acceleration. Then it turns
in the negative direction to decelerate around the minimum
peak of θ , before it goes back to θ = 0. At xT = 1.6 m,
two singular arcs appear. Roughly speaking, the pitch an-
gle is kept at θ ≈ ±π/2 for acceleration and deceleration,
respectively. Because a trade-off between fast acceleration
in x and maintaining altitude in z is necessary, the pitch an-
gle is not exactly θ = ±π/2 within the singular arcs, and is
not constant. For xT ≥ 7.9 m, the two singular arcs merge:
The quadrotor turns smoothly to a negative θ for decelera-
tion, instead of a sharp turn in the middle of the maneuver.
For maneuvers with xT ≥ 2.4 m, the thrust control input is
always at its maximum value. Figure 6 shows an illustration
of some selected maneuvers.

Fig. 5 Maneuver duration T as function of the final displacement xT

for purely horizontal rest-to-rest maneuvers. Additionally, the switch-
ing times of uR are drawn in the plot on the top, and the switching
times of uT in the plot on the bottom

5.3 General displacements

For general two-dimensional displacements, the initial and
final states are

x0 = (0,0,0,0,0), xT = (xT ,0, zT ,0,0).

Since the final state of a general displacement contains two
variables (xT and zT ), the maneuver duration T cannot be
easily plotted in a two-dimensional figure. As an example, a
maneuver with a displacement of 5 m in horizontal and ver-
tical direction, i.e. a maneuver with xT = 5 m and zT = 5 m,
is illustrated here. Figure 7 shows the resulting input, state,
and switching function trajectories of this example maneu-
ver. Note that the control inputs and the switching functions
indeed fulfill the control laws (24) and (30). This implies
that the minimum principle for time-optimality is satisfied.

6 Benchmarking of quadrotor designs and controllers

This section demonstrates the usage of computed time-
optimal maneuvers as a benchmarking tool for quadrotor de-
signs and controllers.

6.1 Variation of the quadrotor design parameters

The computation of time-optimal maneuvers allows the ana-
lysis of the impact of varying quadrotor parameters. These
maneuvers allow the separation of effects of the physical
parameters of the vehicle, from those of the control strategy
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Fig. 6 Illustration of maneuvers for a purely horizontal displacement between 3 m and 15 m. The maneuvers satisfy the minimum principle and
for each maneuver, a quadrotor is plotted every 0.02 s

Fig. 7 Input and state trajectories of an example maneuver with
xT = 5 m and zT = 5 m. The scaled switching functions are also drawn
in the plot of the control inputs

by providing the achievable performance for a control law
that fully utilizes the capabilities of the vehicle.

For a varying maximum pitch rate ω, the adjusted quad-
rotor performance can be obtained very easily: As the com-
putations are done in the dimensionless coordinate system
where the maximum pitch rate is normalized to unity, a
changing ω impacts only the back-transformation to the di-
mensional coordinates. Consequently, no recomputation of
maneuvers is necessary and the structure of the switching
times, as plotted in Figs. 2 and 5, does not change.

For varying thrust limits FT and FT (or equivalently
uT and uT ), the impact of the changing parameters is not
straight-forward. Since uT and uT are used during the com-
putation of the maneuvers, a complete recalculation is re-
quired and the structure of the switching time evolution in
Figs. 2 and 5 may change. As an example, maneuvers for a
horizontal displacement of xT = 5 m have been computed

Fig. 8 Maneuver duration T as function of the mass-normal-
ized thrust FT /m for a horizontal maneuver with a displacement
of xT = 5 m. The switching times of uR are drawn in the plot on the
top, and the switching times of uT in the plot on the bottom

with a maximum mass-normalized thrust FT /m between
10 m/s2 and 30 m/s2 at a step size of 0.5 m/s2, while the
minimum thrust FT /m was kept constant at 1 m/s2. The
resulting maneuver duration T and the switching times are
shown in Fig. 8.

The gravitational acceleration g poses a lower limit: If
the mass-normalized thrust FT /m approaches g, the ma-
neuver duration approaches infinity because the quadrotor
needs all the available thrust force to maintain hover, and
no horizontal displacement can be achieved without height
loss. As FT /m increases, the slope of the T -curve decreases,
which means that the performance gain per additional thrust
becomes smaller. It follows that for large thrust-to-weight
ratios, an increase of the available thrust force does not lead
to significantly better performance with respect to the ma-
neuver duration, with respect to horizontal displacements.
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To achieve faster displacements, the maximum pitch rate ω

would have to be increased as well.

6.2 Benchmarking of a linear controller

To demonstrate the use of time-optimal maneuvers as a con-
troller benchmark, the performance of a linear controller,
as commonly found in quadrotor literature, is evaluated.
The time-optimal maneuvers provide a lower bound on the
achievable maneuver duration, against which the maneuver
duration using the linear controller is compared.

The linear controller consists of cascaded position and at-
titude control loops, as often used in quadrotor control (see,
for example, How et al. (2008), Michael et al. (2010), and
references therein).

The two-dimensional model presented in Sect. 2 can be
linearized around the hover point FT = mg,θ = 0, yielding
the linearized dynamics

ẍ = gθ, (33)

z̈ = FT

m
− g, (34)

θ̇ = ω. (35)

The pitch angle is straightforward to control using a propor-
tional controller:

ω = 1

τθ

(θd − θ), (36)

where θd is the desired pitch angle that is computed by the
position control loop, and τθ is the time constant of the atti-
tude control loop.

The two translational degrees of freedom decouple en-
tirely in the linearization, allowing straightforward con-
troller designs for each of them:

FT = m

(
−2

ζz

τz

ż − 1

τ 2
z

(z − zd)

)
, (37)

θd = 1

g

(
−2

ζx

τx

ẋ − 1

τ 2
x

(x − xd)

)
. (38)

In the above equations, τx and τz are the respective closed
loop time constants, and ζx and ζz are the respective damp-
ing ratios.

The saturations of the control inputs ω and FT are ap-
plied with the same values as for the computation of time-
optimal maneuvers. Additionally, the desired pitch angle θd

is limited to |θd | ≤ π/2.
It is important to note that this controller is not de-

signed for optimal performance, and performance cannot
be expected to match the many more sophisticated con-
trollers that have been presented (see, for example, Hoff-
mann et al. 2008; Cowling et al. 2007; Bouktir et al. 2008;

Table 2 Parameters of the linear controller

Parameter Value Description

τθ 0.18 s Attitude control time constant

τx 0.35 s Horizontal translation control time constant

ζx 0.95 Horizontal translation control damping ratio

τz 0.25 s Vertical translation control time constant

ζz 0.8 Vertical translation control damping ratio

Fig. 9 Comparison of maneuver times for purely horizontal maneu-
vers. The maneuver using the linear controller is considered finished
when the position error remains within 1% of the desired translation

Mellinger et al. 2010; Purwin and D’Andrea 2011; Lupashin
et al. 2010). It is, however, a useful demonstration of the
benchmarking of common ‘everyday’ controllers, and their
performance.

The parameters of the controller are shown in Table 2,
and are based on the parameters of controllers used in the
Flying Machine Arena test bed. These parameters are based
on manual tuning for all-round usability in the testbed,
rather than optimizing simulated performance.

We compare the performance of the linear controller to
the achievable performance when using the model dynam-
ics (3)–(5) and performing translations that start and end at
rest. To evaluate the performance of the linear controller, the
target translation is provided as a setpoint xd and zd , and the
closed-loop dynamics are simulated until the state settles.
The duration of the maneuver is taken to be the time until
the position error remains within 1% of the translation dis-
tance.

Figure 9 shows the duration of purely horizontal maneu-
vers as a function of the translation distance. The results
show that this linear controller achieves maneuver times
that, depending on the translation distance, are between ap-
proximately 175% and 880% of the minimal achievable
time. As one expects, the maneuver duration is approxi-
mately constant for small translations, but varies signifi-
cantly for large translations where model nonlinearities be-
come more dominant. The non-monotonicity of the maneu-
ver duration is caused by position oscillations that either lie
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Fig. 10 Comparison of maneuver times for purely vertical maneuvers.
The maneuver using the linear controller is considered finished when
the position error remains within 1% of the desired translation

within the 1% band defining the end of the maneuver, or
slightly exceed it.

Figure 10 demonstrates the same comparison between
the linear controller and time-optimal maneuvers, this time
demonstrating the performance for purely vertical maneu-
vers. When using the linear controller, the pitch angle θ al-
ways remains at 0. The system dynamics are therefore fully
linear, except for control input saturations. This is repre-
sented in the three distinct regions in the plot: Initially, the
maneuver duration is constant. In a second region, the upper
thrust constraint is reached, increasing the maneuver dura-
tion. In the third section, both upper and lower constraints
are active during the maneuver, and the maneuver duration
rises faster. The maneuver duration using the linear con-
troller is between 155% and 1100% of the minimal time.

The above results show that the linear controller with
saturations leaves considerable room for improvement. The
highest performance gains are achievable for very small
translations, which take approximately constant time with
the linear controller.

7 Experimental results

Selected numerical results were experimentally validated by
applying them on quadrotor vehicles in the ETH Zurich Fly-
ing Machine Arena. The vehicles are based on Ascending
Technologies ‘Humminbird’ quadrocopters (Gurdan et al.
2007), but have been modified with custom electronics pro-
viding additional communications interfaces, sensors with
higher dynamic range, and access to low-level control func-
tions (Lupashin et al. 2010).

Trajectories were recorded using an infrared motion
tracking system. Using retro-reflective markers mounted to
the vehicle, position and attitude were measured at a rate of
200 Hz. The vehicle velocity was obtained through differen-
tiation of non-causally filtered position measurements.

Fig. 11 Measured state trajectories for two example maneuvers: Final
state xT = 0 and zT = 5 m (top), xT = 5 m and zT = 5 m (bottom).
The numerical results for these maneuvers are shown in Figs. 4 and 7,
respectively. It can be seen that the measured trajectories are similar to
the numerical ones, with unmodeled dynamics apparent at high speeds
and around switching times

The control input trajectories are transfered to the quad-
rotor vehicle ahead of the start of the experiment. A hover
controller is employed to stabilize the vehicle at the initial
state. The maneuver is triggered and the vehicle executes
the control input trajectories, using only feedback from the
on board gyroscopes to control its rotational rates. The tra-
jectory is sampled and executed by the on-board microcon-
troller at 800 Hz.

Considering that the numerical results were obtained us-
ing a first-principles model that, as discussed in Sect. 2.1,
neglects a number of known effects, executing the numer-
ically computed input trajectories directly is not sufficient
to achieve a maneuver that is comparable to the simula-
tion results. In order to adapt the input trajectories to mod-
eling inaccuracies, a model-based policy gradient learning
algorithm was applied. This algorithm was presented in Lu-
pashin et al. (2010) and Lupashin and D’Andrea (2011), and
minimizes the final state error over multiple iterations of the
maneuver. The results shown here were obtained after con-
vergence of the learning algorithm.

A video of the experiments presented herein is avail-
able on the first author’s website, and as Electronic
Supplementary Material to this article.

Figure 11 shows the state trajectories of two maneuvers
after convergence of the policy gradient learning algorithm.
The upper graph shows the state trajectories of a purely ver-
tical translation of 5 m, the numerical results of which were
shown in Fig. 4. The lower graph shows a translation of 5 m

http://dx.doi.org/10.1007/s10514-012-9282-3
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in both coordinates, for which the numerical results were
shown in Sect. 5.3 (Fig. 7).

For both experiments, the total duration of the maneu-
ver was longer than the calculated duration (approximately
17% for the vertical translation, and approximately 20% for
the translation in both coordinates). Multiple reasons for this
can be seen in the state trajectories:

The pitch angle trajectories θ show inaccuracies, which
can be explained by unmodeled rotational accelerations and
propeller dynamics. This is particularly obvious around the
switching times of the rotational rate input (e.g. around
t = 0.9 s in the upper graph, and around t = 1.4 s in the
lower graph. This highlights the limitations of the dynamical
model introduced in Sect. 2: The shape of the trajectory is
similar, but with significant differences when large changes
in the pitch rate occur.

The velocity trajectories show a loss of acceleration at
high speeds. This is very clearly visible in the purely vertical
displacement (upper plot), where the rate of increase of ver-
tical velocity ż reduces as the velocity increases (t = 0.2 s
to 0.9 s). Well-known aerodynamic effects on propellers
(Huang et al. 2009) provide a plausible explanation for this
behavior: For a given propeller shaft power, the thrust pro-
duced by the propeller decreases significantly as the flight
speed increases.

Inspecting the velocity trajectories more closely, it also
becomes apparent that sudden changes of acceleration, such
as at the beginning of both maneuvers, are not achieved in
the experiment. This behavior can be explained by examin-
ing the underlying propeller dynamics: For a sudden thrust
change, the propeller speed must be increased or decreased
instantaneously. The true propeller speed change dynamics
are dictated by the available current and by the motor con-
trollers.

The differences between the trajectories are further high-
lighted in Fig. 12, where experimental and simulative results
are superimposed. While the direct comparison highlights
the longer duration of the maneuver, it is also clearly visible
that the general shape of the simulation results is matched

Fig. 12 Overlay of trajectories from simulation and experiment: Fi-
nal state xT = 5 m and zT = 5 m. The direct comparison highlights
the longer duration of the experimental trajectory, with peak velocities
about 16% and 40% lower in x and z, respectively

well by the experiments. With the ability to transfer maneu-
vers from simulation to the experimental platform, it is pos-
sible to perform comparative studies not only in simulation,
but also in reality. For accurate benchmarks, care should be
taken to compare results from similar sources (for example,
obtained using the same simulation, as shown in Sect. 6).
If, when assessing performance, numerical results for time-
optimal maneuvers are to be compared to experimental re-
sults, it may be important to account for differences between
experimental and simulative results.

8 Conclusion and future work

In this paper, a benchmarking methodology for quadro-
copters was presented. Using a two-dimensional first-prin-
ciples model, the algorithm presented herein computes ma-
neuvers that satisfy Pontryagin’s minimum principle with
respect to time-optimality. Using a non-dimensionalized
model, the quadrotor vehicle is characterized by two param-
eters.

Resulting maneuvers for selected initial and final states
were illustrated, highlighting the structure of time-optimal
maneuvers. The use of this method to quantify performance
gains through changes of physical quadrotor parameters was
demonstrated, and the benchmarking of a control algorithm
was demonstrated by benchmarking a linear controller as it
might be used for relatively simple control tasks.

We expect that this method will enable performance
benchmarking of quadrotor controllers and quadrotor design
decisions. Furthermore, the insights gained into the structure
of time-optimal quadrotor maneuvers may be useful in the
development of more advanced control strategies.

To confirm the validity of computed maneuvers, and
to demonstrate the transferability to real quadrocopters,
the maneuvers were successfully demonstrated in the ETH
Zurich Flying Machine Arena testbed. A possible extension
would be the experimental benchmarking of control strate-
gies. While the optimality conditions apply only to the first-
principles model, the experimental results may still serve as
a useful reference point that experimental results of other
controllers can be compared to.

In tasks that require specific point-to-point motions, the
trajectories computed with this algorithm could be applied,
as demonstrated by the experimental results. While the com-
putation of time-optimal trajectories is not fast enough to be
performed on-line, a precomputed set of trajectories could
be stored and applied for specific motions.

An interesting extension of this work would be the com-
putation of time-optimal maneuvers in three dimensions.
While the coordinate system can be appropriately trans-
formed to compute all maneuvers starting and ending at
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standstill using the two-dimensional model, additional in-
sight may be gained through the ability to compute arbitrary
maneuvers.

A further possible extension of the work herein could
be the development of algorithms that permit significantly
faster computation of time-optimal maneuvers, allowing
such maneuvers to be computed at timescales that make
them useful in on-line planning scenarios.
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Appendix: Algorithm for calculation of time-optimal
maneuvers

This appendix discusses the numerical algorithm presented
in Sect. 4 in more detail, with a focus on how the individual
steps were implemented. This implementation (in MATLAB)
of the algorithm is available for free use on the first author’s
website, and is submitted along with this article.

This appendix follows the outline of Sect. 4, first intro-
ducing maneuvers containing no singular arcs in Sects. 9.1–
9.3, and then showing modifications for bang-singular ma-
neuvers in Sect. 9.4.

Figure 13 shows a flowchart diagram of the algorithm for
bang-bang maneuvers, and in the following, the three steps
are introduced in detail.

9.1 Switching time optimization

Due to the assumption that the optimal solution is a bang-
bang maneuver, the control trajectory u can be efficiently
parameterized by the initial control vector u(t = 0) and the
switching times of the two control inputs, denoted by the
sets

{TuR
} = T i

uR
for i = 1,2, . . . ,NR,

{TuT
} = T

j
uT

for j = 1,2, . . . ,NT .
(39)

NR and NT are the number of switches of the rotational con-
trol input and the thrust input, respectively. The principle of
STO is to choose NR and NT , and to then improve an initial
choice of the switching times {TuR

}ini and {TuT
}ini, until a

control trajectory is found that guides the quadrotor from x0

to xT with an acceptable accuracy. The final state error is
measured using the scalar final state residual function

Pres
({TuR

}, {TuT
}, T ) = (

x(T ) − xT

)T
W

(
x(T ) − xT

)
, (40)

where the matrix W = diag(w1,w2,w3,w4,w5) contains
the weights of the different state errors. The final state x(T )

resulting from the chosen switching times can be obtained
by numerically integrating the system dynamics f (x,u)

over the interval [0, T ], where u is defined by the initial

Fig. 13 Flowchart diagram of the algorithm that computes bang-bang
maneuvers satisfying the minimum principle. The three steps are pre-
sented in detail in Sects. 9.1–9.3. In this graph, ≈ is used to denote that
the equation must be solved to acceptable accuracy

control inputs u(t = 0) and the switching times {TuR
} and

{TuT
}. The maneuver duration T is not known a priori and

we seek the minimum T for which Pres = 0 can be obtained.
The problem can be written as

find {TuR
}, {TuT

}, T
subject to Pres

({TuR
}, {TuT

}, T ) = 0,

T ≤ {T }ach,

(41)

where {T }ach is the set of all T for which Pres = 0 is achiev-
able, implying that the maneuver to be found is the one with
the shortest possible duration.

The solution of (41) is computed by a two-step algorithm:
For an initially small, fixed maneuver duration T , the state
residual Pres is minimized by varying the switching times
{TuR

} and {TuT
} using a simplex search method (this choice

was based on the observation that derivative-free optimiza-
tion algorithms have shown to perform significantly better
in this optimization). After the minimization, T is increased
using the secant method

Ti+1 = Ti + Ti − Ti−1

(Pres,i−1/Pres,i ) − 1
, (42)

or by a constant value if convergence of the secant method
is not assumed, see Dahlquist and Björck (2003). These two
steps are repeated until Pres = 0 is achieved. Since the ini-
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tial value of T is chosen to be too small to complete the ma-
neuver, and since T is successively increased, the algorithm
delivers a value close to the smallest T for which Pres = 0 is
achievable.

The choice of the number of switches is based on the
user’s intuition and experience from the computation of
other maneuvers. If the number is chosen too high, the al-
gorithm can converge to the correct result by producing dis-
pensable switching times, as discussed below. The initial
guess for the duration of the maneuver T must be chosen to
be too short to complete the maneuver, and can be obtained
from a guess based on the vehicle’s translational accelera-
tion capabilities, or on similar maneuvers.

9.2 Parameter extraction

After having found a bang-bang trajectory that brings the
quadrotor from the initial state x0 to the desired final
state xT , it is necessary to verify that it is a solution to
BVP (32). Therefore, the constant vector c = (c1, c2, c3, c4)

must be determined, based on the trajectories resulting from
the STO.

9.2.1 Dispensable switching times

If the number of switches NR and NT was chosen too high,
then the STO may converge to a solution containing dis-
pensable switching times, which in fact do not represent
switches. Therefore, before the constant vector c is com-
puted, all switches at t = 0 and t = T are removed, and the
initial control vector u(0) is adjusted accordingly. Further-
more, two switches of the same control input, which occur
at the same time, are dispensable as well and must, conse-
quently, also be removed.

9.2.2 Conditions on the trajectory of �R

The switching function �R must be zero whenever the con-
trol input uR switches. From the STO, the set of switching
times {TuR

} is given, and for each element of this set, �R

must vanish. This leads to the conditions

�R

(
T i

uR

) = 0 for i = 1,2, . . . ,NR. (43)

As shown in Sect. 3, only the derivative �̇R of the switching
function is known a priori. However, once the state trajecto-
ries are known from the STO, the condition H ≡ 0 (which
must hold if the maneuver is time-optimal) can be used to
compute �R . Recalling the Hamiltonian (14) and using the
definition �R = p5 yields

�R = 1 + p1ẋ + p2uT sin θ + p3ż + p4(uT cos θ − 1)

−uR

.

(44)

As shown in (17), the first four costates pi are all linear in c.
The above equation can therefore be written as a linear func-
tion of c:

�R = 1

uR

(−1 + c1(−ẋ + tuT sin θ) + c2(−uT sin θ)

+ c3
(−ż + t (uT cos θ − 1)

) + c4(−uT cos θ + 1)
)
.

(45)

Given the linear form of �R , (43) states NR linear condi-
tions on the constant vector c.

The derivative �̇R is given by (31). For a trajectory that
satisfies the minimum principle, the integral of �̇R must co-
incide with the trajectory of �R given by (45). Hence, for
an arbitrary interval [t1, t2] ∈ [0, T ],
�R(t2) − �R(t1)

=
∫ t2

t1

�̇Rdt

=
∫ t2

t1

(−p2uT cos θ + p4uT sin θ)dt (46)

must hold, where the left side of the equation is computed
using H ≡ 0, i.e. by (45). The costates p2 and p4 are linear
functions of c, and the above equation can be written as

�R(t2) − �R(t1)

= c1

∫ t2

t1

tuT cos θdt − c2

∫ t2

t1

uT cos θdt

− c3

∫ t2

t1

tuT sin θdt + c4

∫ t2

t1

uT sin θdt. (47)

To set up conditions on c based on (47), the maneuver
interval [0, T ] is divided into NR + 1 subintervals that are
separated by the switching times {TuR

}, i.e.

[0, T ] =
⋃{[

0, T 1
uR

]
,
[
T 1

uR
, T 2

uR

]
, . . . ,

[
T NR

uR
, T

]}
. (48)

This choice is beneficial with respect to the computational
effort, because the switching function �R must vanish at the
switching times; the left side of (47) can be set to zero for
all intervals, except for the first and the last one. The NR +1
intervals describe NR +1 additional linear conditions on the
constant vector c.

9.2.3 Conditions on the trajectory of �T

Since the thrust switching function �T is known explic-
itly, the conditions resulting from {TuT

} are straightforward.
From the fact that �T must vanish at each switch of uT , the
condition

�T

(
T i

uT

) = 0 for i = 1,2, . . . ,NT (49)
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must be satisfied, where the set {TuT
} is given by the STO.

The thrust switching function (26) is a linear function of the
costates p2 and p4, and again linear in c:

�T = −c1t sin θ + c2 sin θ − c3t cos θ + c4 cos θ. (50)

This linear form of the thrust switching function �T al-
lows one to define NT additional linear conditions on the
elements of the constant vector c, based on the conditions
from (49).

9.2.4 Condition matrix equation

For the minimum principle to be satisfied, a constant vec-
tor c that fulfills all the linear conditions to an acceptable
accuracy must exist. The conditions on c derived above are
therefore combined into a matrix equation, which we denote
as

Ac = r. (51)

The matrix A is of size (Nc × 4) and the vector r has the
length Nc, where Nc is the total number of linear conditions:

Nc = 2NR + NT + 1. (52)

For all maneuvers considered here, the system of (51) is
overdetermined, permitting no exact solution. Therefore, the
least squares solution of (51) is computed (Bernstein 2005),
which is given by

c∗ = (
AT A

)−1
AT r. (53)

To verify that a solution to the overdetermined system of
equations exists, c∗ is substituted back into (51). If the er-
ror vector exceeds the expected numerical discrepancies,3

then the solution is considered to be invalid. In the context
of the optimal control problem, this implies that there ex-
ists no constant vector c for which the minimum principle is
fulfilled, and consequently the trajectories x and u resulting
from the STO do not satisfy the minimum principle. A pos-
sible reason is that the chosen number of switches NR and
NT and the initial values {TuR

}ini and {TuT
}ini did not cause

the STO to converge to the desired maneuver. This may be
corrected by varying these parameters. Another reason for
the lack of a solution could be that the time-optimal maneu-
ver for the given boundary conditions contains singular arcs,
a case that will be discussed in Sect. 9.4.

If the condition matrix equation is satisfied to an ac-
ceptable accuracy, then a valid parameter vector c has been
found and the parameter extraction step is complete.

3Numerical discrepancies are to be expected from both the accuracy
to which the STO optimization was solved, and numerical integration
errors. The tolerance to which the system of equations must be satisfied
is defined by the user based on values seen in other maneuvers.

9.3 BVP solver

To verify that BVP (32) is fulfilled and to minimize numer-
ical errors, a last step is performed where the BVP is solved
numerically: The state residual Pres is minimized by vary-
ing the constant vector c and the maneuver duration T . The
problem can be written as

minimize Pres(c, T )

subject to ẋa = fa(t,xa),

xa(0) = (
x0,�R(0)

)
.

(54)

The constants c resulting from the parameter extraction and
the maneuver duration T obtained by the STO are used as
initial values. The optimization over the constants c and the
terminal time T is carried out using a simplex algorithm. As
these initial values are close to the exact solution, the BVP
solver converges quickly, provided that the solution result-
ing from the STO is indeed a solution to the minimum prin-
ciple. The initial value of the switching function �R(0) can
be obtained by the condition H ≡ 0, i.e. by (45), evaluated
at t = 0. If Pres is sufficiently small after the minimization,
the maneuver satisfies the boundary conditions of the final
state being reached, and the algorithm has terminated suc-
cessfully.

9.4 Modified algorithm for bang-singular maneuvers

The algorithm described above is able to solve BVP (32),
provided that the resulting maneuver does not contain sin-
gular arcs. In the general case, however, the time-optimal
maneuver is bang-singular, and the algorithm needs to be
modified to take possible singular arcs into account.

Within a singular arc, the trajectory of uR is given by (23)
and depends on the constants c. Due to this dependency,
computing the constants c after the STO is no longer suf-
ficient, since they determine the singular input and have an
impact on the maneuver trajectory. The parameter extraction
is therefore embedded into the STO, and the resulting algo-
rithm consists of two successive steps:

1. Applying STO, a maneuver that brings the quadrotor to
the desired final state is found, and in parallel, a constant
vector c that fulfills the condition matrix equation result-
ing from the parameter extraction is computed.

2. Having a reasonable initial guess of the switching times,
of the maneuver duration T , and of the constant vector c,
a BVP solver that computes a solution to BVP (32) is
applied.

Figure 14 shows a flowchart diagram of the algorithm to find
bang-singular solutions.
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Fig. 14 Flowchart diagram of the algorithm to compute bang-singular
maneuvers that satisfy the minimum principle. The symbol ≈ is used
to denote that the equation must be solved to acceptable accuracy

9.4.1 Switching time optimization with embedded
parameter extraction

For bang-singular maneuvers, uR may stay within a singu-
lar arc for a particular duration each time it switches. We
introduce a new set of parameters that describes the dura-
tions of the singular arcs, and denote the duration within the
singular arc at the switching time T i

uR
as Di

s,uR
. At the time

T i
uR

the control input uR enters the singular arc, and at time
T i

uR
+ Di

s,uR
the singular arc is left and uR switches to −1

or +1.4 A bang-singular maneuver is characterized by the
sets

{TuR
} = T i

uR
for i = 1,2, . . . ,NR,

{Ds,uR
} = Di

s,uR
for i = 1,2, . . . ,NR,

{TuT
} = T

j
uT

for j = 1,2, . . . ,NT .

(55)

Within a singular arc, uR is given by (23) and its trajectory
depends on the constants c. The final state residual Pres is
therefore not only a function of the maneuver duration T

and of the sets of the switching times, but also of the constant
vector c. Accordingly, the state residual may be written as

Pres
({TuR

}, {TuT
}, {Ds,uR

}, c, T
)

= (
x(T ) − xT

)T
W

(
x(T ) − xT

)
. (56)

The new parameter set {Ds,uR
} and the constant vector c are

additional optimization variables during the STO.

4It is necessary to additionally specify whether uR switches to −1 or
+1 at the end of the singular arc. We employ the convention that uR

switches to the opposing value of the one before the singular arc. A sin-
gular arc where uR returns to the same value after the singular arc can
be modeled by an additional switch at the end of the singular arc, with
the corresponding duration of the additional singular arc being zero.

If the solution is to satisfy the minimum principle, the
optimization variables overconstrain the problem: For the
solution to satisfy the optimality conditions, the control in-
puts must be the optimal control inputs, as specified by (24)
and (30). These optimal inputs could be found using c to
compute the switching functions. This is avoided, however,
because the separate optimization of the switching times and
c has shown to be more robust.

Because only constants c that satisfy the condition matrix
equation Ac = r from the parameter extraction are a valid
choice, we define the condition residual to be

Cres
({TuR

}, {TuT
}, {Ds,uR

}, c, T
) = (Ac − r)T Wc(Ac − r),

(57)

where Wc is a diagonal matrix containing the weights of the
different linear conditions. It is important to note that the
matrix A and the vector r are functions of the switching
times {TuR

} and {TuT
}, of the singular arc durations {Ds,uR

},
of the maneuver duration T , and of the constants c. For a
maneuver that satisfies the minimum principle, the condition
residual Cres must vanish. Consequently, the STO problem
for bang-singular maneuvers can be written as

find {TuR
}, {TuT

}, {Ds,uR
}, c, T

subject to Pres({TuR
}, {TuT

}, {Ds,uR
}, c, T ) = 0,

Cres({TuR
}, {TuT

}, {Ds,uR
}, c, T ) = 0,

T ≤ {T }ach,

(58)

where {T }ach denotes the set of all T for which Pres = 0 and
Cres = 0 is achievable.

For bang-singular maneuvers, the sum of the state and the
condition residual Pres + Cres is minimized during the STO.
For the computation of Cres, the matrix A and the vector r

are required: The parameter extraction is no longer an iso-
lated step, but needs to be performed for each evaluation of
Cres within the STO minimization. The parameter extraction
is not used to compute the constants c (which are optimiza-
tion variables), but to compute A and r .

9.4.2 Additional linear conditions for bang-singular
maneuvers

For the parameter extraction of bang-singular maneuvers,
which is needed to obtain A and r , there exist additional lin-
ear conditions that take the requirements on the switching
functions within singular arcs into account.

Additional conditions on the trajectory of �R Considering
bang-singular maneuvers, the rotational switching function
�R must not only have a zero-crossing at each T i

uR
, but it

must also stay at zero for the duration of the corresponding
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singular arc Di
s,uR

. An additional set of constraints is intro-
duced, requiring that �R is zero at the beginning and at the
end of the singular arcs:

�R

(
T i

uR

) = 0 for i = 1,2, . . . ,NR,

�R

(
T i

uR
+ Di

s,uR

) = 0 for i = 1,2, . . . ,NR.
(59)

Because these conditions do not imply that �R is zero dur-
ing the entire singular arc, it is necessary to verify the tra-
jectory of �R after the computation. If a switch T i

uR
has no

singular arc, i.e. if Di
s,uR

= 0, then the corresponding two
conditions in (59) are identical. From this it follows that
one additional condition results for each singular arc. We
denote the number of singular arcs as Ns , hence (59) de-
scribes NR + Ns conditions. This means that Ns additional
conditions have been identified, compared to the bang-bang
case. As derived in Sect. 9.2, these conditions are linear with
respect to c.

As the derivative of the rotational switching function �̇R

is known explicitly, we demand that the integration value
of �̇R between two switches of uR is zero for bang-bang
maneuvers. For bang-singular maneuvers, we pose similar
conditions, but extra time intervals over the singular arcs are
created. An integration value of zero does not imply that
�R stays at zero during the whole singular arc, but constant
drifts of �R are penalized. Hence, the intervals over which
�̇R is integrated are

[0, T ] = ⋃{[
0, T 1

uR

]
,
[
T 1

uR
, T 1

s,uR

]
,
[
T 1

s,uR
, T 2

uR

]
, . . .

. . . ,
[
T

NR−1
s,uR

, T
NR
uR

]
,
[
T

NR
uR

, T
NR
s,uR

]
,
[
T

NR
s,uR

, T
]}

,

(60)

where T i
s,uR

= T i
uR

+Di
s,uR

is used for a more compact nota-
tion. Analogously to the bang-bang case, a linear condition
for each of these intervals can be constructed using (47). If
a switch has no singular arc, then Di

s,uR
= 0 and the cor-

responding interval vanishes. Hence, for bang-singular ma-
neuvers, NR + Ns + 1 linear conditions on the constant vec-
tor c result. Compared to a bang-bang maneuver, Ns addi-
tional conditions are introduced.

Assuming that the thrust input uT does not switch at the
edges of the singular intervals, �̇R is continuous over the
border of the singular arcs, as can be seen from (21). Conse-
quently, the switching function �R enters and leaves a sin-
gular arc tangentially. We therefore impose the conditions
that the derivative �̇R is zero at the edges of every singu-
lar arc. For each singular arc, i.e. for each Di

s,uR
> 0, two

additional conditions result:

�̇R

(
T i

uR

) = 0 for i = 1,2, . . . ,Ns,

�̇R

(
T i

uR
+ Di

s,uR

) = 0 for i = 1,2, . . . ,Ns.
(61)

The derivative of the rotational switching function is given
by

�̇R = (c1t − c2)uT cos θ + (c4 − c3t)uT sin θ, (62)

which has been derived in Sect. 3. This is a linear function
of the constants c, and yields 2Ns additional conditions.

General condition matrix equation In total, 4Ns additional
conditions have been identified. It follows that in the case of
a bang-singular maneuver, the condition matrix equation

Ac = r (63)

has Nc rows, with a total number of conditions of

Nc = 2NR + NT + 4Ns + 1. (64)

The condition matrix equation is overdetermined as soon as
the maneuver has at least one singular arc.

9.4.3 BVP solver for bang-singular maneuvers

Similar to the algorithm for bang-bang maneuvers, the fi-
nal step is the reduction of errors through the application of
a BVP solver. If the maneuver contains singular arcs, �R

stays at zero for a nontrivial interval of time. Since the sys-
tem is integrated numerically, �R is near zero during the
singular arcs, but does not vanish completely due to numer-
ical inaccuracies. As �R enters and leaves the singular arcs
tangentially, defining a threshold value below which �R is
considered to be zero is not a straightforward task. For this
reason, the rotational control trajectory uR is not determined
using the optimal control law (i.e. based on its switching
function �R), but is based on the sets {TuR

} and {Ds,uR
}.

Consequently, {TuR
} and {Ds,uR

} are optimizing variables
during the BVP minimization, because they impact the con-
trol trajectory u. Further, since the switching times of uR are
not determined based on the constants c, the optimal control
laws are not implicitly satisfied. One must thus ensure that
the condition matrix equation is fulfilled, which is the case
if Cres vanishes. Thus, as during the switching time opti-
mization, the sum of the state residual Pres and the condi-
tion residual Cres is minimized. The BVP solver problem
for bang-singular maneuvers becomes

minimize Pres + Cres

subject to ẋ = f (x,u),

x(0) = x0,

(65)

where the control trajectory uR is computed according to the
switching times and singular arc durations, and uT accord-
ing to the optimal control law (30). Note that the arguments
({TuR

}, {Ds,uR
}, c, T ) of Pres and Cres have been omitted for

reasons of clarity.
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In the BVP Solver step, the NT linear conditions result-
ing from the thrust input are trivially satisfied, because uT is
computed based on its switching function �T . Hence, when
the matrix condition equation is computed for the evaluation
of Cres during the BVP minimization, it has only

Nc,uR
= 2NR + 4Ns + 1 (66)

rows, since the conditions resulting from uT can be ne-
glected.

For bang-singular maneuvers, the BVP solver is similar
to the STO. The only differences are that the thrust input
uT is determined based on its control law (30), and that the
maneuver duration T is an optimization variable, too, and
not kept constant during the minimization of Pres + Cres.

Because uR is not determined by its control law, and
since a vanishing condition residual Cres does not guaran-
tee that the control law holds, it is necessary to verify that
the control law (24) is satisfied by inspecting the switching
function �R .

If the residuals Pres and Cres are sufficiently small af-
ter the minimization, and if the control law for the rota-
tional input uR is fulfilled, then the maneuver is a solution
to BVP (32), and therefore satisfies the minimum principle
with respect to time-optimality.
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