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Abstract: At first order phase transition the free energy does not have an analytic con-
tinuation in the thermodynamical variable, which is conjugate to an order parameter for
the transition. This result is proved at low temperature for lattice models with finite range
interaction and two periodic ground-states, under the only condition that they satisfy the
Peierls condition.

1. Introduction

We study a lattice model with finite state space on Z
d , d ≥ 2. The Hamiltonian Hµ =

H0 + µH1 is the sum of two Hamiltonians, which have finite-range and periodic inter-
actions. We assume that H0 has two periodic ground-states ψ1 and ψ2, and so that the
Peierls condition is satisfied, and that H1 splits the degeneracy of the ground-states of
H0: ifµ < 0, then Hµ has a unique ground-stateψ2, and ifµ > 0, then Hµ has a unique
ground-state ψ1. The free energy of the model, at inverse temperature β, is denoted by
f (µ, β). Our main result is

Theorem 1.1. Under the above setting, there exist an open interval U0 � 0, β∗ ∈ R
+

and, for all β ≥ β∗, µ∗(β) ∈ U0 with the following properties:

1. There is a first-order phase transition at µ∗(β).
2. The free energy f (µ, β) is real-analytic in µ in {µ ∈ U0 : µ < µ∗(β)}; it has a C∞

continuation in {µ ∈ U0 : µ ≤ µ∗(β)}.
3. The free energy f (µ, β) is real-analytic in µ in {µ ∈ U0 : µ > µ∗(β)}; it has a C∞

continuation in {µ ∈ U0 : µ ≥ µ∗(β)}.
4. There is no analytic continuation off along a real path fromµ < µ∗(β) toµ > µ∗(β)

crossing µ∗(β), or vice-versa.

� Supported by Fonds National Suisse de la Recherche Scientifique.
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This theorem answers a fundamental theoretical question: does the free energy, which
is analytic in the region of a single phase, have an analytic continuation beyond a first-
order phase transition point? The answer is yes for the theory of a simple fluid of van der
Waals or for mean-field theories. The analytic continuation of the free energy beyond
the transition point was interpreted as the free energy of a metastable phase. The answer
is no for models with finite range interaction, under very general conditions, as Theorem
1.1 shows. This contrasted behavior has its origin in the fact that for models with finite
range interaction there is spatial phase separation at first order phase transition, contrary
to what happens in a mean-field model. Theorem 1.1 and its proof confirm the prediction
of the droplet model [1].

Theorem 1.1 generalizes the works of Isakov [2] for the Ising model and [3], where a
similar theorem is proven under additional assumptions, which are not easy to verify in a
concrete model. Our version of Theorem 1.1, which relies uniquely on Peierls condition,
is therefore a genuine improvement of [3]. The first result of this kind was proven by
Kunz and Souillard [4]; it concerns the non-analytic behavior of the generating function
of the cluster size distribution in percolation, which plays the role of a free energy in that
model. The first statement of Theorem 1.1 is a particular case of the theory of Pirogov
and Sinai (see [6]). We give a proof of this result, as far as it concerns the free energy,
since we need detailed information about the phase diagram in the complex plane of the
parameter µ.

The obstruction to an analytic continuation of the free energy in the variable µ is due
to the stability of the droplets of both phases in a neighborhood ofµ∗. Our proof follows
essentially that of Isakov in [2]. We give a detailed proof of Theorem 1.1, and do not
assume any familiarity with [2] or [3]. On the other hand we assume that the reader is
familiar with the cluster expansion technique.

The results presented here are true for a much larger class of systems, but for the sake
of simplicity we restrict our discussion in that paper to the above setting, which is already
quite general. For example, Theorem 1.1 is true for the Potts model with a high number
q of components at the first order phase transition point βc, where the q ordered phases
coexist with the disordered phase. Here µ = β, the inverse temperature, and the state-
ment is that the free energy, which is analytic for β > βc, or for β < βc, does not have
an analytic continuation across βc. Theorem 1.1 is also true when the model has more
than two ground-states. For example, for the Blume-Capel model, whose Hamiltonian
is ∑

i,j

(si − sj )
2 − h

∑

i

si − λ
∑

i

s2
i with si ∈ {−1, 0, 1} ,

the free energy is an analytic function of h and λ in the single phase regions. At low
temperature, at the triple point occurring at h = 0 and λ = λ∗(β) there is no analytic
continuation of the free energy in λ, along the path h = 0, or in the variable h, along
the path λ = λ∗. The case of coexistence of more than two phases will be treated in a
separate paper.

In the rest of the section we fix the main notations following chapter two of Sinai’s
book [6], so that the reader may easily find more information if necessary. We also state
Lemma 1.1 which contains all estimates on partition functions or free energies.

The model is defined on the lattice Z
d , d ≥ 2. The spin variables ϕ(x), x ∈ Z

d , take
values in a finite state space. If ϕ,ψ are two spin configurations, then ϕ = ψ (a.s.) means
that ϕ(x) �= ψ(x) holds only on a finite subset of Z

d . The restriction of ϕ to a subset
A ⊂ Z

d is denoted by ϕ(A). The cardinality of a subset S is denoted by |S|. If x, y ∈ Z
d ,

then |x−y| := maxdi=1 |xi−yi |; ifW ⊂ Z
d andx ∈ Z

d , thend(x,W) := miny∈W |x−y|
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and if W,W ′ are subsets of Z
d , then d(W,W ′) = minx∈W d(x,W ′). We define for

W ⊂ Z
d ,

∂W := {x ∈ W : d(x,Zd\W) = 1} .
A subset W ⊂ Z

d is connected if any two points x, y ∈ W are connected by a path
{x0, x1, . . . , xn} ⊂ W , with x0 = x, xn = y and |xi − xi+1| = 1, i = 0, 1, . . . , n− 1.
A component is a maximally connected subset.

Let H be a Hamiltonian with finite-range and periodic bounded interaction. By intro-
ducing an equivalent model on a sublattice, with a larger state space, we can assume that
the model is translation invariant with interaction between neighboring spins ϕ(x) and
ϕ(y), |x − y| = 1, only. Therefore, without restricting the generality, we assume that
this is the case and that the interaction is Z

d -invariant. The Hamiltonian is written

Hµ = H0 + µH1 , µ ∈ R .

H0 has two Z
d -invariant ground-states ψ1 and ψ2, and the perturbation H1 splits the

degeneracy of the ground-states of H0. We assume that the energy (per unit spin) of the
ground-states of H0 is 0. Uµx (ϕ) ≡ U0,x + µU1,x is the interaction energy of the spin
located at x for the configuration ϕ, so that by definition

Hµ(ϕ) =
∑

x∈Zd

Uµx (ϕ) (formal sum) .

U1,x is an order parameter for the phase transition. If ϕ and ψ are two configurations
and ϕ = ψ (a.s.), then

Hµ(ϕ|ψ) :=
∑

x∈Zd

(Uµx (ϕ)− Uµx (ψ)
)
.

This last sum is finite since only finitely many terms are non-zero. The main condition,
which we impose on H0, is Peierls condition for the ground-statesψ1 andψ2. Let x ∈ Z

d

and
W1(x) := {y ∈ Z

d : |y − x| ≤ 1} .
The boundary ∂ϕ of the configuration ϕ is the subset of Z

d defined by

∂ϕ :=
⋃

x∈Zd

{
W1(x) : ϕ(W1(x)) �= ψm(W1(x)) , m = 1, 2

}
.

Peierls condition means that there exists a positive constant ρ such that for m = 1, 2,

H0(ϕ|ψm) ≥ ρ|∂ϕ| ∀ ϕ such that ϕ = ψm (a.s.) .

We shall not usually write the µ-dependence of some quantity; we write for example H
or Ux instead of Hµ or Uµx .

Definition 1.1. Let M denote a finite connected subset of Z
d , and let ϕ be a configura-

tion. Then a couple � = (M, ϕ(M)) is called a contour of ϕ if M is a component of
the boundary ∂ϕ of ϕ. A couple � = (M, ϕ(M)) of this type is called a contour if there
exists at least one configuration ϕ such that � is a contour of ϕ.
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If � = (M, ϕ(M)) is a contour, thenM is the support of �, which we also denote by
supp�. Suppose that � = (M, ϕ(M)) is a contour and consider the components Aα of
Z
d\M . Then for each component Aα there exists a unique ground-state ψq(α), such that

for each x ∈ ∂Aα one has ϕ(W1(x)) = ψq(α)(W1(x)). The index q(α) is the label of the
componentAα . For any contour� there exists a unique infinite component of Z

d\supp�,
Ext �, called the exterior of �; all other components are called internal components of
�. The ground-state corresponding to the label of Ext � is the boundary condition of �;
the superscript q in �q indicates that � is a contour with boundary condition ψq . Intm �
is the union of all internal components of � with label m; Int � := ⋃

m=1,2 Intm � is
the interior of �. We use the abbreviations |�| := |supp�| and Vm(�) := |Intm �|. We
define1

V (�q) := Vm(�
q) m �= q . (1.1)

For x ∈ Z
d , let

c(x) := {y ∈ R
d :

d
max
i=1

|xi − yi | ≤ 1/2
}

be the unit cube of center x in R
d . If 
 ⊂ Z

d , then |
| is equal to the d-volume of
⋃

x∈

c(x) ⊂ R

d . (1.2)

The (d − 1)-volume of the boundary of the set (1.2) is denoted by ∂|
|. We have

2d |
| d−1
d ≤ ∂|
| . (1.3)

The equality in (1.3) is true for cubes only. When 
 = Intm �q , m �= q, V (�q) ≡ |
|
and ∂V (�q) ≡ ∂|
|; there exists a positive constant C0 such that

∂V (�q) ≤ C0|�q | q = 1, 2 . (1.4)

For each contour � = (M, ϕ(M)) there corresponds a unique configuration ϕ� with the
properties: ϕ� = ψq on Ext �, where q is the label of Ext �, ϕ�(M) = ϕ(M), ϕ� = ψm

on Intm �,m = 1, 2.� is the only contour of ϕ� . Let
 ⊂ Z
d ; the notation� ⊂ 
means

that supp� ⊂ 
, Int � ⊂ 
 and d(supp�,
c) > 1. A contour � of a configuration ϕ
is an external contour of ϕ if and only if supp� ⊂ Ext �′ for any contour �′ of ϕ.

Definition 1.2. Let�(�q) be the set of configurations ϕ = ψq (a.s.) such that �q is the
only external contour of ϕ. Then

�(�q) :=
∑

ϕ∈�(�q)
exp
[− βH(ϕ|ψq)

]
.

Let
 ⊂ Z
d be a finite subset; let�q(
) be the set of configurations ϕ = ψq (a.s.) such

that � ⊂ 
 whenever � is a contour of ϕ. Then

�q(
) :=
∑

ϕ∈�q(
)
exp
[− βH(ϕ|ψq)

]
.

1 Here our convention differs from [6].
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Two fundamental identities relate the partition functions �(�q) and �q(
),

�q(
) =
∑ n∏

i=1

�(�
q
i ) , (1.5)

where the sum is over the set of all families {�q1 , . . . , �qn} of external contours in
, and

�(�q) = exp
[− βH(ϕ�q |ψq)

] 2∏

m=1

�m(Intm �
q) . (1.6)

We define (limit in the sense of van Hove)

gq := lim

↑Zd

− 1

β|
| log�q(
) .

The energy (per unit volume) of ψm for the Hamiltonian H1 is

h(ψm) := U1,x(ψm) .

By definition of H1, h(ψ2)− h(ψ1) �= 0, and we assume that

 := h(ψ2)− h(ψ1) > 0 .

The free energy in the thermodynamical limit is

f = lim

↑Zd

− 1

β|
| log�q(
)+ lim

↑Zd

1

|
|
∑

x∈

Ux(ψq) = gq + µh(ψq) . (1.7)

It is independent of the boundary condition ψq .

Definition 1.3. Let �q be a contour with boundary condition ψq . The weight ω(�q) of
�q is

ω(�q) := exp
[− βH(ϕ�q |ψq)

]�m(Intm �q)

�q(Intm �q)
(m �= q) .

The (bare) surface energy of a contour �q is

‖�q‖ := H0(ϕ�q |ψq) .
For a contour �q we set

a(ϕ�q ) :=
∑

x∈supp�q
U1,x(ϕ�q )− U1,x(ψq) .

Since the interaction is bounded, there exists a constant C1 so that

|a(ϕ�q )| ≤ C1|�q | . (1.8)

Using these notations we have

H(ϕ�q |ψq) =
∑

x∈supp�q

(Ux(ϕ�q )− Ux(ψq)
)+

∑

x∈Int �q

(Ux(ϕ�q )− Ux(ψq)
)

= H0(ϕ�q |ψq)+ µa(ϕ�q )+ µ(h(ψm)− h(ψq))V (�
q)

= ‖�q‖ + µa(ϕ�q )+ µ(h(ψm)− h(ψq))V (�
q) (m �= q) . (1.9)

The surface energy ‖�q‖ is always strictly positive since Peierls condition holds, and
there exists a constant C2, independent of q = 1, 2, such that

ρ|�q | ≤ ‖�q‖ ≤ C2|�q | . (1.10)
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Definition 1.4. The weight ω(�q) is τ -stable for �q if

|ω(�q)| ≤ exp(−τ |�q |) .
For a finite subset 
 ⊂ Z

d , using (1.5) and (1.6), one obtains easily the following
identity for the partition function �q(
),

�q(
) = 1 +
∑ n∏

i=1

ω(�
q
i ) , (1.11)

where the sum is over all families of compatible contours {�q1 , . . . , �qn} with boundary
condition ψq , that is, �qi ⊂ 
 and d(supp�qi , supp�qj ) > 1 for all i �= j , i, j =
1, . . . , n, n ≥ 1. We also introduce restricted partition functions and free energies. For
each n = 0, 1, . . . , we define new weights ωn(�q),

ωn(�
q) :=

{
ω(�q) if V (�q) ≤ n,
0 otherwise.

(1.12)

For q = 1, 2, we define�nq by Eq. (1.11), using ωn(�q) instead of ω(�q). It is essential
later on to replace the real parameter µ by a complex parameter z; we set (provided that
�nq(
)(z) �= 0 for all 
)

gnq (z) := − lim

↑Zd

1

β|
| log�nq(
)(z) and f nq (z) := gnq (z)+ z h(ψq) . (1.13)

f nq is the restricted free energy of order n and boundary condition ψq . Let

l(n) := C−1
0

⌈
2dn

d−1
d
⌉

n ≥ 1 . (1.14)

Notice that �nq(
) = �q(
) if |
| ≤ n, and that V (�q) ≥ n implies that |�q | ≥ l(n)

since (1.3) and (1.4) hold. Lemma 1.1 gives basic, but essential, estimates for the rest
of the paper. The only hypothesis for this lemma is that the weights of the contours are
τ -stable.

Lemma 1.1. Let ω(�q) be any complex weights, and define ωn(�q) by (1.12). Suppose
that the weights ωn(�q) are τ -stable for all �q . Then there existsK0 < ∞ and τ ∗

0 < ∞
independent of n, so that for all τ ≥ τ ∗

0 ,

β|gnq | ≤ K0e−τ . (1.15)

For all finite subsets 
 ⊂ Z
d ,

∣∣ log�nq(
)+ βgnq |
|∣∣ ≤ K0e−τ ∂|
| . (1.16)

If ωn(�q) = 0 for all �q such that |�q | ≤ k, then

β|gnq | ≤ (K0e−τ )k . (1.17)

For n ≥ k and k ≥ 1,

β|gnq − gk−1
q | ≤ (K0e−τ )l(k) . (1.18)
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Furthermore, if ωn(�q) depends on a parameter t and

∣∣ d
dt
ωn(�

q)
∣∣ ≤ D1e−τ |�q | and

∣∣ d
2

dt2
ωn(�

q)
∣∣ ≤ D2e−τ |�q | , (1.19)

then there exists Kj < ∞ and τ ∗
j < ∞ independent of n, j = 1, 2, so that for all

τ ≥ τ ∗
j ,
dj

dtj
gnq exists and

β
∣∣ d
dt
gnq

∣∣ ≤ D1K1e−τ and β
∣∣ d

2

dt2
gnq

∣∣ ≤ max{D2,D
2
1}K2e−τ . (1.20)

For all finite subsets 
 ⊂ Z
d ,

∣∣ d
dt

log�nq(
)+ β
d

dt
gnq |
|∣∣ ≤ D1K1e−τ ∂|
| (1.21)

and

∣∣ d
2

dt2
log�nq(
)+ β

d2

dt2
gnq |
|∣∣ ≤ max{D2,D

2
1}K2e−τ ∂|
| . (1.22)

If the weights ωn(�q) are τ -stable for all �q and all n ≥ 1, then all these estimates hold
for gq and�q instead of gnq and�nq . Moreover, gnq and its first two derivatives converge
to gq and its first two derivatives.

Proof. Let ω(�q) be an arbitrary weight, satisfying the only condition that it is τ -stable
for any �q . The partition function �q(
) is defined in (1.11) by

�q(
) = 1 +
∑ n∏

i=1

ω(�
q
i ) ,

where the sum is over all families of compatible contours {�q1 , . . . , �qn} with boundary
condition ψq , that is, �qi ⊂ 
 and d(supp�qi , supp�qj ) > 1 for all i �= j , i, j =
1, . . . , n, n ≥ 1. We set, following reference [5] Sect. 3 2,

�q := {x ∈ Z
d : d(x, supp�2) ≤ 1} . (1.23)

There exists a constant C5 such that |�q | ≤ C5|�q |, and

(�qi and �qj not compatible) �⇒ (supp�qi ∩ �qj �= ∅) .

We introduce

ϕ2(�
q
i , �

q
j ) :=

{
0 if �qi and �qj compatible
−1 if �qi and �qj not compatible .

2 In [5] �q is denoted by i(�q), which has another meaning here (see Subsect. 2.3).
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If the weights of all contours with boundary condition ψq are τ -stable and if τ is large
enough, then one can express the logarithm of �q(
) as

log�q(
) =
∑

m≥1

1

m!

∑

�
q
1 ⊂


· · ·
∑

�
q
m⊂


ϕTm(�
q
1 , . . . , �

q
m)

m∏

i=1

ω(�
q
i )

=
∑

m≥1

1

m!

∑

x∈


∑

�
q
1 ⊂


x∈supp�q1

· · ·
∑

�
q
m⊂


ϕTm(�
q
1 , . . . , �

q
m)

|supp�q1 |
m∏

i=1

ω(�
q
i ) . (1.24)

In (1.24) ϕTm(�
q
1 , . . . , �

q
m) is a purely combinatorial factor (see [5], Formulas (3.20) and

(3.42)). This is the basic identity which is used for controlling �q(
). An important
property of ϕTm(�

q
1 , . . . , �

q
m) is that ϕTm(�

q
1 , . . . , �

q
m) = 0 if the following graph is not

connected (Lemma 3.3 in [5]): to each �qi we associate a vertex vi , and to each pair
{vi, vj } we associate an edge if and only if ϕ2(�

q
i , �

q
j ) �= 0.

Lemma 1.2. Assume that

C :=
∑

�q :supp�q�0

|ω(�q)| exp(|�q |) < ∞ .

Then
∑

�
q
1 :

0∈supp�q1

∑

�
q
2

· · ·
∑

�
q
m

|ϕTm(�q1 , . . . , �qm)|
m∏

i=1

|ω(�qi )| ≤ (m− 1)!Cm .

If, furthermore C < 1, then (1.24) is true, and the right-hand side of (1.24) is an
absolutely convergent sum.

Lemma 1.2 is Lemma 3.5 in [5], where a proof is given. There exists a constant,KP ,
called the Peierls constant, such that

|{�q : supp�q � 0 and |supp�q | = n}| ≤ Kn
P .

If ω(�q) is τ -stable, then there exist K̂0 < ∞ and τ ∗
0 < ∞ so that K̂0 e−τ∗

0 < 1, and
for all τ ≥ τ ∗

0 ,

C =
∑

�q :supp�q�0

|ω(�q)| exp(|�q |) ≤
∑

j≥1

K
j
P e−(τ−C5)j ≤ K̂0 e−τ . (1.25)

If this is true, (1.24) implies3 that

−β gq =
∑

m≥1

1

m!

∑

�
q
1

0∈supp�q1

· · ·
∑

�
q
m

1

|supp�q1 | ϕ
T
m(�

q
1 , . . . , �

q
m)

m∏

i=1

ω(�
q
i ) .

3 The corresponding formula (3.58) in [5] is incorrect; a factor |γ1 ∩ Z
2∗|−1 is missing.
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Therefore, there exists K0 < ∞ so that for all τ ≥ τ ∗
0 ,

β|gq | ≤ C

1 − C
≤ K̂0

1 − K̂0
e−τ ≡ K0 e−τ .

We have for all finite subsets 
 ⊂ Z
d ,

∣∣ log�q(
)+ βgq |
|∣∣ ≤
∑

x∈∂


∑

m≥1

1

m!

∑

�
q
1 ,... ,�

q
m

∃i �qi �x

|ϕTm(�q1 , . . . , �qm)|
m∏

i=1

|ω(�qi )|

≤ K0 e−τ ∂|
| .
If ω(�q) = 0 for all �q such that |�q | ≤ m, then C ≤ K̂m

0 e−τm, and

β|gq | ≤ (K0e−τ )m .
If n ≥ k and k ≥ 1, then

β|gnq − gk−1
q | ≤

∑

j≥1

1

j !

∑

�
q
1 �0,�q2 ,... ,�

q
j

∃i V (�qi )≥k

|ϕTj (�q1 , . . . , �qj )|
j∏

i=1

|ωn(�qi )|

≤
∑

j≥1

1

j !

j∑

i=1

∑

�
q
1 �0,�q2 ,... ,�

q
j

V (�
q
i ) ≥ k

|ϕTk (�q1 , . . . , �qj )|
j∏

i=1

|ωn(�qi )|

≤ (K0e−τ )l(k) .
The last inequality is proved by a straightforward generalization of the proof of Lemma
3.5 in [5]. The last statements of Lemma 1.1 are proven in the same way, by deriving
(1.24) term by term. ��

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is given in the next five subsections. In Subsect. 2.1 we
construct the phase diagram and in Subsect. 2.2 we study the analytic continuation of
the weights of contours in a neighborhood of the point of phase coexistence µ∗. These
results about the analytic continuation are crucial for the rest of the analysis and cannot
be found in the literature. We need stronger results than those of Isakov [3] in order to
prove Theorem 1.1 under the only assumption that Peierls condition is true. For the con-
struction of the phase diagram in the complex plane we follow Isakov [3] and Zahradnik
[7]. In Subsect. 2.3 we derive an expression of the derivatives of the free energy at finite
volume. We prove a lower bound for a restricted class of terms of this expression. This
is an improved version of a similar analysis of Isakov [2]. From these results we obtain
a lower bound for the derivatives of the free energy f
 in a finite box 
. We show in
Subsect. 2.4 that for large β, there exists an increasing diverging sequence {kn}, so that

the kthn -derivative of f
 with respect toµ, evaluated atµ∗, behaves like kn!
d
d−1 (provided

that 
 is large enough). In the last subsection we end the proof of the impossibility of
an analytic continuation of the free energy across µ∗, by showing that the results of
Subsect. 2.4 remain true in the thermodynamical limit.
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2.1. Construction of the phase diagram in the complex plane. We construct the phase
diagram for complex values of the parameter µ, by constructing iteratively the phase
diagram for the restricted free energies f nq (see (1.13)). We set z := µ+ iν. The method
consists in finding a sequence of intervals for each ν ∈ R,

Un(ν;β) := (µ∗
n(ν;β)− b1

n, µ
∗
n(ν;β)+ b2

n) ,

with the properties

(µ∗
n(ν;β)− b1

n, µ
∗
n(ν;β)+ b2

n) ⊂ (µ∗
n−1(ν;β)− b1

n−1, µ
∗
n−1(ν;β)+ b2

n−1) (2.1)

and limn b
q
n = 0, q = 1, 2. By construction of the intervals Un−1(ν;β) the restricted

free energies f n−1
q of order n− 1, q = 1, 2, are well-defined and analytic on

Un−1 := {z ∈ C : Rez ∈ Un−1(Imz;β)} .
The point µ∗

n(ν;β), n ≥ 1, is the solution of the equation

Re
(
f n−1

2 (µ∗
n(ν;β)+ iν)− f n−1

1 (µ∗
n(ν;β)+ iν)

) = 0 .

µ∗
n(0;β) is the point of phase coexistence for the restricted free energies of order n− 1,

and the point of phase coexistence of the model is given by µ∗(0;β) = limn µ
∗
n(0;β).

This iterative construction is as important as the statement of Proposition 2.1, which is
the main result of Subsect. 2.1.

Proposition 2.1. Let 0 < ε < ρ and 0 < δ < 1 so that − 2δ > 0. Set

U0 := (−C−1
1 ε, C−1

1 ε) and U0 := {z ∈ C : Rez ∈ U0}
and

τ(β) := β(ρ − ε)− 3C0δ .

There exists β0 ∈ R
+ such that for all β ≥ β0 the following holds:

1. There exists a continuous real-valued function on R, ν �→ µ∗(ν;β) ∈ U0, so that
µ∗(ν;β)+ iν ∈ U0.

2. If µ+ iν ∈ U0 and µ ≤ µ∗(ν;β), then the weight ω(�2) is τ(β)-stable for all con-
tours �2 with boundary condition ψ2, and analytic in z = µ+ iν if µ < µ∗(ν;β).

3. If µ+ iν ∈ U0 and µ ≥ µ∗(ν;β), then the weight ω(�1) is τ(β)-stable for all con-
tours �1 with boundary condition ψ1, and analytic in z = µ+ iν if µ > µ∗(ν;β).
It is useful to put into evidence here some points of the proof of Proposition 2.1,

before giving it in detail.

Remark 2.1. The iterative method depends on a free parameter θ ′, 0 < θ ′ < 1, which
is fixed at the end of the proof of Theorem 1.1. Let 0 < θ ′ < 1 be given, as well as ε
and δ as in the proposition. We list here all major constants which appear in the proof,
since these constants are used at different places in the paper. We use the isoperimetric
constant χ , which is defined as the best constant in (2.2),

V (�q)
d−1
d ≤ χ−1‖�q‖ ∀ �q , q = 1, 2 . (2.2)

Existence of χ in (2.2) follows from (1.3), (1.4) and (1.10). We set

τ1(β; θ ′) := β
(
ρ(1 − θ ′)− ε

)− 2δC0 ; (2.3)
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τ2(β; θ ′) := τ1(β; θ ′)− d

d − 1
; (2.4)

C3 := C1 + 2δC0 + (+ 2δ)(χ−1C2)
d
d−1 . (2.5)

We choose β0 so that, for all β ≥ β0, τ2(β) > max{τ ∗
0 , τ

∗
1 , τ

∗
2 }, (2.18) holds4,

Ke−τ1(β) ≤ δ and C3Ke−τ2(β) ≤ δ . (2.6)

K is a constant, which is greater than max{K0,K1}, and K0, K1 are the constants of
Lemma 1.1; ρ is the constant of Peierls condition and  = h(ψ2) − h(ψ1) > 0. We
also require for Proposition 2.3 that

τ(β)− max
{ d

d − 1
, p
} ≥ τ2(β; θ ′) ∀β ≥ β0 .

Here p ∈ N is fixed in the proof of Proposition 2.2.

Remark 2.2. In the above formulas we may choose δ in such a way that δ = δ(β) and
limβ→∞ δ(β) = 0. Indeed, the only condition which we need to satisfy is (2.6). So,
whenever we need it, we consider δ as a function of β, so that by taking β large enough,
we have δ as small as we wish.

Remark 2.3. The main technical part of the proof of Proposition 2.1 is the proof of point
D below. If we want to prove only the first statement of Theorem 1.1, then it is sufficient
to prove points A, B and C below. This gives a constructive definition of the point of
phase coexistence µ∗(β), as well as the main estimates necessary to construct the dif-
ferent phases at this point, since we get that all contours are τ1(β)-stable at µ∗(β). For
example, existence of two phases follows from a straightforward Peierls argument.

Remark 2.4. We emphasize here a key step of the iterative proof of Proposition 2.1.
Assume that β ≥ β0, and for q = 1, 2, that the weights ωn−1(�

q) are τ1(β; θ ′)-stable
and ∣∣ d

dz
ωn−1(�)

∣∣ ≤ βC3e−τ2(β;θ ′)|�| .

From (1.20) and (1.16),

∣∣ d
dz

(
f n−1

2 − f n−1
1

)−)
∣∣ ≤ 2δ , (2.7)

and (m �= q)
∣∣ log�n−1

q (Intm �
q)+ βgn−1

q V (�q)|∣∣ ≤ δ C0|�q |
∣∣ log�n−1

m (Intm �
q)+ βgn−1

m V (�q)|∣∣ ≤ δ C0|�q | .
Let �q be a contour with V (�q) = n. Then

|ω(�q)| = exp
[− βReH(ϕ�q |ψq)

] ∣∣∣
�m(Intm �q)

�q(Intm �q)

∣∣∣ (m �= q)

≤ exp
[
− β‖�q‖ + (βε + 2C0δ

)|�q | − βRe
(
f n−1
m − f n−1

q

)
V (�q)

]
, (2.8)

4 τ∗
k , k = 0, 1, 2, are defined in Lemma 1.1. Condition τ2(β) > τ∗

2 is needed only in Lemma 2.1. We
have stated Lemma 2.1 separately in order to simplify the proof of Proposition 2.1.
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since all contours inside Intm �q have a volume smaller than n− 1, and (see (1.8))

|Rez a(ϕ�q )| ≤ ε ∀ z ∈ U0 .

To prove the stability of ω(�q) we must control the volume term in the right-hand side
of inequality (2.8). If

−Re
(
f n−1

1 − f n−1
2

)
V (�2) ≤ θ ′‖�2‖ , (2.9)

−Re
(
f n−1

2 − f n−1
1

)
V (�1) ≤ θ ′‖�1‖ , (2.10)

then ω(�2) and ω(�1) are τ1(β; θ ′)-stable. Indeed, these inequalities imply

|ω(�q)| ≤ exp
[

− β(1 − θ ′)‖�q‖ + (βε + 2C0δ
)|�q |

]

≤ exp
[

− (β(1 − θ ′)ρ − βε − 2C0δ
)|�q |

]
.

Verification of the inequalities (2.9) and (2.10) is possible because (2.7) provides a sharp
estimate of the derivative of f n−1

2 −f n−1
1 . We also use the isoperimetric inequality (2.2).

Proof. Let θ ′, 0 < θ ′ < 1. On the interval U0(ν;β) := (−b0, b0) with b0 = εC−1
1 ,

f 0
q (µ + iν) is defined and we set µ∗

0(ν;β) := 0. The two decreasing sequences {bqn},
q = 1, 2 and n ≥ 1, are defined by

b1
n ≡ b2

n := χθ ′

(+ 2δ)n
1
d

, n ≥ 1 . (2.11)

Then it is immediate to verify, when β is large enough or δ small enough, that

b
q
n − b

q
n+1 >

2δl(n)

β(− 2δ)
, ∀n ≥ 1 . (2.12)

On U0 all contours � with empty interior are β(ρ − ε)-stable, and

∣∣∣
d

dz
ω(�)

∣∣∣ ≤ βC1|�|e−β(ρ−ε)|�| ≤ βC1e−[β(ρ−ε)−1]|�| ≤ βC3e−τ2(β)|�| .

We prove iteratively the following statements.

A. There exists a continuous solution ν �→ µ∗
n(ν;β) of the equation

Re
(
f n−1

2 (µ∗
n(ν;β)+ iν)− f n−1

1 (µ∗
n(ν;β)+ iν)

) = 0 ,

so that (2.1) holds.
B. ωn(�q) is well-defined and analytic on Un, for any contour�q , q = 1, 2, andωn(�q)

is τ1(β)-stable. Moreover, �nq(
) �= 0 for any finite 
, and f nq (z;β) is analytic on
Un.

C. On Un,
∣∣ d
dz
ωn(�

q)
∣∣ ≤ βC3e−τ2(β)|�q |.

D. If z = µ + iν ∈ U0 and µ ≤ µ∗
n(ν;β) − b1

n, then ω(�2) is τ(β)-stable for any
�2 with boundary condition ψ2. If z = µ+ iν ∈ U0 and µ ≥ µ∗

n(ν;β)+ b2
n, then

ω(�1) is τ(β)-stable for any �1 with boundary condition ψ1.
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From these results the proposition follows with

µ∗(ν;β) = lim
n→∞µ

∗
n(ν;β) .

We assume that the construction has been done for all k ≤ n− 1.

A. We prove the existence of µ∗
n(ν;β) ∈ Un−1. µ∗

n(ν;β) is a solution of the equation

Re
(
f n−1

2 (µ∗
n(ν;β)+ iν)− f n−1

1 (µ∗
n(ν;β)+ iν)

) = 0 .

Let Fk(z) := f k2 (z)− f k1 (z). Then, for µ′ + iν ∈ Un−1,

Fn−1(µ′ + iν) = Fn−1(µ′ + iν)− Fn−2(µ∗
n−1 + iν)

= Fn−1(µ′ + iν)− Fn−1(µ∗
n−1 + iν)+ Fn−1(µ∗

n−1 + iν)

− Fn−2(µ∗
n−1 + iν)

=
∫ µ′

µ∗
n−1

d

dµ
Fn−1(µ+ iν) dµ+ (gn−1

2 − gn−2
2

)
(µ∗
n−1 + iν)

− (gn−1
1 − gn−2

1

)
(µ∗
n−1 + iν) . (2.13)

If V (�) = n− 1, then |�| ≥ l(n− 1). Therefore, (1.18) gives

|(gn−1
q − gn−2

q

)
(µ∗
n−1 + iν)| ≤ β−1δl(n−1) . (2.14)

If z′ = µ′ + iν ∈ Un−1, then (2.13), (2.7) and (2.14) imply

(µ′ − µ∗
n−1)+ 2δ|µ′ − µ∗

n−1| + 2β−1δl(n−1) ≥ ReFn−1(z′)

≥ (µ′ − µ∗
n−1)− 2δ|µ′ − µ∗

n−1| − 2β−1δl(n−1) .

Since (2.12) holds,

b
q
n−1 > b

q
n−1 − b

q
n >

2δl(n−1)

β(− 2δ)
,

so that ReFn−1(µ∗
n−1 − b1

n−1 + iν) < 0 and ReFn−1(µ∗
n−1 + b2

n−1 + iν) > 0. This
proves the existence ofµ∗

n and its uniqueness, sinceµ �→ ReFn−1(µ+ iν) is strictly
increasing (see (2.7)). Moreover, by putting µ′ = µ∗

n(ν;β) in (2.13), we get

|µ∗
n(ν;β)− µ∗

n−1(ν;β)| ≤ 2δl(n−1)

β(− 2δ)
.

Therefore Un ⊂ Un−1. The implicit function theorem implies that ν �→ µ∗
n(ν;β) is

continuous (even C∞).
B. By the induction hypothesis the weights ωn(�q) are analytic in Un−1. We prove that

on Un ωn(�
q) is τ1-stable for all contours �q , q = 1, 2. This implies that f nq is

analytic on Un. The proof of the stability of the contours is the content of Remark
2.4. Let �q be a contour with V (�q) = n. We verify (2.9) ifµ ≤ µ∗

n+b2
n, and (2.10)

if µ ≥ µ∗
n − b1

n. The choice of {bqn} and the isoperimetric inequality (2.2) imply

∣∣Re
(
f n−1
m − f n−1

q

)∣∣V (�
q)

‖�q‖ =
∣∣∣Re
∫ µ

µ∗
n

d

dµ

(
f n−1
m − f n−1

q

)
dµ

∣∣∣
V (�q)

‖�q‖

≤ |µ− µ∗
n|(+ 2δ)

V (�q)

‖�q‖ ≤ θ ′ .
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C. We prove that on Un ∣∣ d
dz
ωn(�)

∣∣ ≤ βC3e−τ2(β)|�| .

Let V (�q) = n; from (1.9)

d

dz
ωn(�

q) = ωn(�
q)
(

− βa(ϕ�q )− β
(
h(ψm)− h(ψq)

)
V (�q)

+ d

dz

(
log�m(Intm �

q)− log�q(Intm �
q)
))
.

Equations (1.20), (1.21), (1.4), (1.8), (2.2) and (1.10) imply

∣∣ d
dz
ωn(�

q)
∣∣ ≤ β|ωn(�q)|

(|�q |(C1 + 2δC0)+ V (�q)(+ 2δ)
)

≤ βC3|ωn(�q)||�q |
d
d−1

≤ βC3e−τ2(β)|�q | .

D. We prove that ω(�2)(z) is τ(β)-stable for any contour �2 with boundary condition
ψ2, if µ ≤ µ∗

n(ν;β) − b1
n. Using the induction hypothesis it is sufficient to prove

this statement for z = µ+ iν ∈ Un−1 and µ ≤ µ∗
n(ν;β)− b1

n.

The next observation, leading to (2.15) and (2.17), is the key point of the proof of D.
If z = µ + iν ∈ Un−1, then all contours with volume V (�) ≤ n − 1 are τ1(β)-stable;
(2.7) and µ ≤ µ∗

n imply that µ �→ Re(f n−1
1 − f n−1

2 )(µ+ iν) is strictly decreasing. If
µ ≤ µ∗

n(ν;β)− b1
n, then (see (2.11) and (2.12))

βRe(f n−1
1 − f n−1

2 )(µ+ iν) = −β
∫ µ∗

n

µ

d

dµ
Re(f n−1

1 − f n−1
2 )(µ+ iν) dµ

≥ −β
∫ µ∗

n

µ∗
n−b1

n

d

dµ
Re(f n−1

1 − f n−1
2 )(µ+ iν) dµ

≥ βb1
n(− 2δ) ≥ 2δl(n) . (2.15)

First suppose that V (�2) ≤ n. From (2.15) and (2.8) it follows that ω(�2) is β(ρ −
ε − 2β−1C0δ)-stable, in particular τ(β)-stable. Moreover, if |
| ≤ n, then

∣∣∣ exp
[− βz(h(ψ1)− h(ψ2))|
|]�1(
)

�2(
)

∣∣∣ ≤ e3δ∂|
| . (2.16)

Indeed, all contours inside 
 are τ1(β)-stable. By (1.16) and (2.15),
∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣ ≤
∣∣ e−β(zh(ψ1)−zh(ψ2)+gn−1

1 −gn−1
2 )|
|∣∣ e2δ∂|
|

= e−βRe(f n−1
1 (z)−f n−1

2 (z))|
|e2δ∂|
|

≤ e2δ∂|
| .

To prove point D, we prove by induction on |
| that (2.16) holds for any 
. Indeed, if
(2.16) is true and if we set 
 := Int1�

2, then it follows easily from the definition of
ω(�2) and from (1.9) that ω(�2) is τ(β)-stable.
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The argument to prove (2.16) is due to Zahradnik [7]. The statement is true for
|
| ≤ n. Suppose that it is true for |
| ≤ k, k > n, and let |
| = k + 1. The induction
hypothesis implies that ω(�2)(z) is τ(β)-stable if V (�2) ≤ k. Therefore (1.16) gives

∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣ ≤
∣∣ e−β(zh(ψ1)−zh(ψ2)−gk2)|
|�1(
)

∣∣eδ∂|
| .

From (1.5)

�1(
) =
∑ r∏

j=1

�(�1
j ) ,

where the sum is over all families {�1
1, . . . , �

1
r } of compatible external contours in 
.

We say that an external contour �1
j is large if V (�1

j ) ≥ n. Suppose that the contours

�1
1, . . . �

1
p are large and all other contours �1

p+1, . . . �
1
r not large. We set

Extp1 (
) := (
p⋂

j=1

Ext�1
j

) ∩
 .

Summing over all contours which are not large, we get from (1.6) and (1.9),

�1(
) =
∑

�n−1
1

(
Extp1 (
)

) p∏

j=1

exp
[− βH(ϕ�1

j
|ψ1)

]
�1(Int1�

1
j )�2(Int2�

1
j )

=
∑

�n−1
1

(
Extp1 (
)

) p∏

j=1

e
−β‖�1

j ‖−βza(ϕ�1
j
)+βz(h(ψ1)−h(ψ2))|Int2�1

j |

·
�1(Int1�

1
j )

�2(Int1�
1
j )
�2(Int1�

1
j )�2(Int2�

1
j ) ;

the sums are over all families {�1
1, . . . , �

1
p} of compatible external large contours in


. All contours which are not large are τ1(β)-stable, and we use Lemma 1.1 to control
�n−1

1

(
Extp1 (
)

)
, �2(Int1�

1
j ) and �2(Int2�

1
j ). We have

∂|Extp1 (
)| ≤ ∂|
| +
p∑

j=1

C0|�1
j | .

Hence, (1.16), Int�1
j = Int1�

1
j ∪ Int2�

1
j and the induction hypothesis imply that (Rez =

µ)

∣∣�1(
)
∣∣ ≤ eδ∂|
|∑ e−βRegn−1

1 |Extp1 (
)|
p∏

j=1

e−(β(ρ−ε)−C0δ)|�1
j |

· eβµ(h(ψ1)−h(ψ2))(|Int�1
j |−|Int1�1

j |)
∣∣∣
�1(Int1�

1
j )

�2(Int1�
1
j )

∣∣∣
∣∣�2(Int1�

1
j )�2(Int2�

1
j )
∣∣
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≤ eδ∂|
|∑ e−βRegn−1
1 |Extp1 (
)|

p∏

j=1

e−(β(ρ−ε)−4C0δ)|�1
j |

· eβµ(h(ψ1)−h(ψ2))|Int�1
j | ∣∣�2(Int1�

1
j )�2(Int2�

1
j )
∣∣

≤ eδ∂|
|∑ e−βRegn−1
1 |Extp1 (
)|

p∏

j=1

e−(βρ−βε−5C0δ)|�1
j |

· eβ(µh(ψ1)−µh(ψ2)−gk2)|Int�1
j | .

We have

|
| = |Extp1 (
)| +
p∑

j=1

|�1
j | +

p∑

j=1

|Int�1
j | .

Writing zh(ψ2) = f n−1
2 − gn−1

2 , and adding and subtracting
∑
j g

n−1
1 |�1

j |, we get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣

≤ e2δ∂|
|∑ e−βRe(f n−1
1 −f n−1

2 +gn−1
2 −gk2)|Extp1 (
)|

·
p∏

j=1

e−(βρ−βε−6C0δ)|�1
j |e−βRe(f n−1

1 −f n−1
2 +gn−1

2 −gk2)|�1
j | .

We define
τ̂ (β) := β(ρ − ε)− 6C0δ .

From (2.15) and (1.18) we have

βRe(f n−1
1 − f n−1

2 − gk2 + gn−1
2 ) ≥ δl(n) . (2.17)

Hence,

∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣ ≤ e2δ∂|
|∑ e−δl(n)|Extp1 (
)|
p∏

j=1

e−(δl(n)+τ̂ (β))|�1
j | .

We define (C0δ is introduced for controlling boundary terms later on)

ω̂(�) :=
{

e−(τ̂ (β)−C0δ)|�| if |�| ≥ l(n);
0 otherwise.

Let �̂(
) be defined by (1.11), replacing ω(�q) by ω̂(�), and let

ĝ := lim

↑Zd

− 1

β|
| log �̂(
) .

Our definition of β0 is such that for all β ≥ β0,

Ke−τ̂ (β) ≤ δ . (2.18)
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Since β|ĝ| ≤ δl(n), putting into evidence a factor eβĝ|
|, we get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣ ≤ e2δ∂|
|+βĝ|
|∑
p∏

j=1

e−τ̂ (β)|�1
j |e−βĝ|Int �1

j |

≤ e2δ∂|
|+βĝ|
|∑
p∏

j=1

e−(τ̂ (β)−C0δ)|�1
j |�̂(Int �1

j ) .

We have interpreted e−βĝ|Int �1| as a partition function (up to a boundary term), since by
(1.16)

e−βĝ|Int �1| ≤ �̂(Int �1) eC0δ|�1| .

We sum over external contours and get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|
|�1(
)

�2(
)

∣∣∣ ≤ e2δ∂|
|+βĝ|
|�̂(
) ≤ e3δ∂|
| . ��

It is not difficult to prove more regularity for the curve ν �→ µ∗(ν;β). We need below
only the following result.

Lemma 2.1. Let 0 < δ < 1. If β is sufficiently large, then for all n ≥ 1
d

dν
µ∗
n(0;β) = 0,

and
∣∣ d

2

dν2µ
∗
n(ν;β)

∣∣ ≤ 2δ

− 2δ

(( 2δ

− 2δ

)2 + 2δ

− 2δ
+ 1
)
.

Proof. Let δ be as in the proof of Proposition 2.1. Because the free energies f n−1
1 and

f n−1
2 are real on the real axis, it follows that they satisfy f n−1

q (z) = f n−1
q (z), and there-

fore ν �→ µ∗
n(ν;β) is even, and

d

dν
µ∗
n(0;β) = 0. By definition µ∗

n(ν;β) is solution

of
Re
(
f n−1

2 (µ∗
n(ν;β)+ iν)− f n−1

1 (µ∗
n(ν;β)+ iν)

) = 0 ,

which implies that


dµ∗

n

dν
= d

dµ
Re
(
gn−1

1 − gn−1
2

)dµ∗
n

dν
+ d

dν
Re
(
gn−1

1 − gn−1
2

)

and


d2µ∗

n

dν2 = d

dµ
Re
(
gn−1

1 − gn−1
2

)d2µ∗
n

dν2 + d2

dµ2 Re
(
gn−1

1 − gn−1
2

)(dµ∗
n

dν

)2

+ d2

dµdν
Re
(
gn−1

1 − gn−1
2

)dµ∗
n

dν
+ d2

dν2 Re
(
gn−1

1 − gn−1
2

)
.

From the Proof of Proposition 2.1, Step C, we have on Uk ,

∣∣ d
dz
ωk(�)

∣∣ ≤ βC3e−τ2(β)|�| .
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Let τ3(β) := τ1(β) − 2 d
d−1 . A similar proof shows for β sufficiently large, that there

exists C4 with the property

∣∣ d
2

dz2ωk(�)
∣∣ ≤ β2C4e−τ3(β)|�| .

Assume that β is large enough so that

β max{C4, C
2
3 }K2e−τ3(β)|�| ≤ δ .

Let Gn−1 := Re
(
gn−1

1 − gn−1
2

)
; by Lemma 1.1

∣∣ d
dµ
Gn−1

∣∣ ≤ 2δ ,
∣∣ d
dν
Gn−1

∣∣ ≤ 2δ ,

∣∣ d
2

dµ2G
n−1
∣∣ ≤ 2δ ,

∣∣ d
2

dν2G
n−1
∣∣ ≤ 2δ ,

∣∣ d2

dµdν
Gn−1

∣∣ ≤ 2δ .

Hence

∣∣dµ
∗
n

dν

∣∣ ≤ 2δ

− 2δ
,
∣∣d

2µ∗
n

dν2

∣∣ ≤ 2δ

− 2δ

(( 2δ

− 2δ

)2 + 2δ

− 2δ
+ 1
)
. ��

Proposition 2.2. Under the conditions of Proposition 2.1, there exist β0 ∈ R
+ and

p ∈ N so that the following holds for all β ≥ β0. Let

τ ′(β) := τ(β)− max
{ d

d − 1
, p
}
.

1. If µ+ iν ∈ U0 and µ ≤ µ∗(ν;β), then

∣∣ d
dz
ω(�2)(z)

∣∣ ≤ βC3e−τ ′(β)|�2| .

2. If µ+ iν ∈ U0 and µ ≥ µ∗(ν;β), then

∣∣ d
dz
ω(�1)(z)

∣∣ ≤ βC3e−τ ′(β)|�1| .

Proof. Let Un and bqn be as in Proposition 2.1. Suppose that z = µ+ iν ∈ Un−1\Un and
µ ≤ µ∗(ν;β). We distinguish two cases, V (�2) ≤ n and V (�2) > n. If V (�2) ≤ n,
then Step C of the iteration method of Proposition 2.1 implies that

∣∣ d
dz
ω(�2)

∣∣ ≤ β|ω(�2)|(|�2|(C1 + 2δC0)+ V (�2)(+ 2δ)
)

≤ βC3|�q |
d
d−1 |ω(�2)| .

Since by Proposition 2.1 ω(�2) is τ(β)-stable, we get for all �2 such that V (�2) ≤ n,

∣∣ d
dz
ω(�2)

∣∣ ≤ βC3|�2| d
d−1 e−τ(β)|�2| ≤ βC3e−τ ′(β)|�2| .
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Suppose that V (�2) ≥ n+ 1. We estimate the derivative at z of ω(�2) using Cauchy’s
formula with a circle of center z contained in {µ + iν : µ ≤ µ∗(ν;β)}. We estimate
from below |Rez− µ∗(ν;β)| when z ∈ Un−1\Un, uniformly in ν.

|Rez− µ∗| ≥ |Rez− µ∗
n| − |µ∗

n − µ∗| ≥ b2
n − |µ∗

n − µ∗| .
We estimate |µ∗

n − µ∗| by first estimating |µ∗
k − µ∗

n|. Let k > n; then, since µ∗
k ∈ Un,

0 = Re
(
f k−1

2 (µ∗
k)− f k−1

1 (µ∗
k)
)− Re

(
f n−1

2 (µ∗
n)− f n−1

1 (µ∗
n)
)

= Re
(
f k−1

2 (µ∗
k)− f n−1

2 (µ∗
k)
)− Re

(
f k−1

1 (µ∗
k)− f n−1

1 (µ∗
k)
)

+Re
(
f n−1

2 (µ∗
k)− f n−1

2 (µ∗
n)
)− Re

(
f n−1

1 (µ∗
k)− f n−1

1 (µ∗
n)
)
.

From (2.14) we get

|µ∗
k(ν;β)− µ∗

n(ν;β)| ≤ 2δl(n)

β(− 2δ)
∀ k > n ,

so that

|µ∗(ν;β)− µ∗
n(ν;β)| ≤ 2δl(n)

β(− 2δ)
. (2.19)

If V (�2) ≥ n+ 1, then |�2| ≥ l(n+ 1). Choose p ∈ N so that for all n ≥ 1,

1

|�2|p ≤
( 1

2dn
d−1
d

)p ≤ χθ ′

(+ 2δ)n
1
d

− 2δl(n)

β(− 2δ)

≤ b2
n − |µ∗ − µ∗

n| ≤ |Rez− µ∗| .
We use Cauchy’s formula, with a circle of center z and radius |�2|−p, to estimate
d
dz
ω(�2),

∣∣ d
dz
ω(�2)

∣∣ ≤ |�2|pe−τ(β)|�2| ≤ e−τ ′(β)|�2| . ��

2.2. Analytic continuation of the weights of contours at µ∗. In this subsection we con-
sider how the weight ω(�2) for a contour with boundary condition ψ2 behaves as a
function of z = µ+ iν in the vicinity of z∗ := µ∗(ν;β)+ iν. We obtain new domains of
analyticity of the weights of contours, by introducing the isoperimetric constant χ2(n)

(see (2.20)), which differs from that used in [3]. This is one very important point of our
analysis. The main result of this subsection is Proposition 2.3. At z∗ the (complex) free
energies fq , q = 1, 2, are well-defined and can be computed by the cluster expansion
method. Moreover,

Ref2(z
∗) = Ref1(z

∗) .
Therefore

Reg1(z
∗)+ µ∗(ν;β)h(ψ1) = Reg2(z

∗)+ µ∗(ν;β)h(ψ2) .

With δ as in the proof of Proposition 2.1, we get

|µ∗(ν;β)| ≤ 2δ

β
,
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and

|ω(�q)(z∗)| ≤ exp
[− β‖�q‖ + 2C1δ


|�q | + δC0|�q |

]
, ∀ �q .

We set
µ∗ := µ∗(0;β) ,

and adopt the following convention: if a quantity, say H or fq , is evaluated at the tran-
sition point µ∗, we simply write H∗ or f ∗

q .
The analyticity properties of ω(�2) near µ∗ are controlled by isoperimetric inequal-

ities

V (�2)
d−1
d ≤ χ2(n)

−1‖�2‖ ∀ �2 , V (�2) ≥ n . (2.20)

The difference with (2.2) is that only contours with boundary conditionψ2 and V (�2) ≥
n are considered for a given n. By definition the isoperimetric constants χ2(n) satisfy

χ2(n)
−1 := inf

{
C :

V (�2)
d−1
d

‖�2‖ ≤ C , ∀ �2 such that V (�2) ≥ n
}
.

χ2(n) is a bounded increasing sequence; we set χ2(∞) := limn χ2(n), and define

R2(n) := inf
m:m≤n

χ2(m)

m
1
d

.

There are similar definitions for χ1(n) and R1(n). The corresponding isoperimetric
inequalities control the analyticity properties of ω(�1) around µ∗.

Lemma 2.2. For any χ ′
q < χq(∞), there exists N(χ ′

q) such that for all n ≥ N(χ ′
q),

χ ′
q

n
1
d

≤ Rq(n) ≤ χq(∞)

n
1
d

.

For q = 1, 2, n �→ naRq(n) is increasing in n, provided that a ≥ 1
d

.

Proof. Let q = 2 and suppose that

R2(n) = χ2(m)

m
1
d

for m < n.

Then R2(m
′) = R2(n) for all m ≤ m′ ≤ n. Let n′ be the largest n ≥ m such that

R2(n) = χ2(m)

m
1
d

.

We have n′ < ∞, otherwise

0 < R2(m) = R2(n) ≤ χ2(∞)

n
1
d

∀ n ≥ m,

which is impossible. Therefore, either

R2(n
′) = χ2(n

′)

n′ 1
d

or R2(n
′ + 1) = χ2(n

′ + 1)

(n′ + 1)
1
d

,
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and for all k ≥ n′ + 1, since χ2(m) is increasing,

R2(k) = inf
m≤k

χ2(m)

m
1
d

= inf
n′≤m≤k

χ2(m)

m
1
d

≥ inf
n′≤m≤k

χ2(n
′)

m
1
d

= χ2(n
′)

k
1
d

. (2.21)

Inequality (2.21) is true for infinitely many n′; since there existsm such thatχ ′
2 ≤ χ2(m),

the first statement is proved.
On an interval of constancy ofR2(n), n �→ naR2(n) is increasing. On the other hand,

if on [m1,m2]

R2(n) = χ2(n)

n
1
d

,

then n �→ naR2(n) is increasing on [m1,m2] since n �→ χ2(n) and n �→ na−
1
d are

increasing. ��
The next proposition gives the domains of analyticity and the stability properties of

the weights ω(�) needed for estimating the derivatives of the free energy.

Proposition 2.3. Let 0 < θ < 1 and 0 < ε < 1 so that ρ(1 − θ) − ε > 0. There exist
0 < δ < 1, 0 < θ ′ < 1 and β ′

0 ≥ β0, such that for all β ≥ β ′
0 ω(�

2) is analytic and
τ1(β; θ ′)-stable in a complex neighborhood of

{
z ∈ C : Rez ≤ µ∗(Imz;β)+ θ−1R2(V (�

2))
} ∩ U0 .

Moreover ∣∣ d
dz
ω(�2)

∣∣ ≤ βC3e−τ2(β;θ ′)|�2| .

Similar properties hold for ω(�1) in a complex neighborhood of
{
z ∈ C : µ∗(Imz;β)− θ−1R1(V (�

1)) ≤ Rez
} ∩ U0 .

τ1(β; θ ′) and τ2(β; θ ′) are defined at (2.3) and (2.4).

Proof. We prove the proposition for ω(�2). By Proposition 2.1 ω(�2) is τ(β)-stable
if Rez ≤ µ∗(ν;β) ∩ U0, and by Proposition 2.2 d

dz
ω(�2) is τ ′(β)-stable on the same

region. Let

In(ν;β) := (µ∗(ν;β)− θ−1R1(n), µ
∗(ν;β)+ θ−1R2(n)

)
. (2.22)

We prove by iteration, that on the intervals In(ν;β) ω(�q), q = 1, 2, is τ1(β; θ ′)-stable,
and d

dz
ω(�q) is τ2(β; θ ′)-stable. To prove the stability ofω(�q) it is sufficient by Remark

2.4 to verify (2.9) and (2.10). Suppose that the statement is correct for V (�q) ≤ n− 1.
Let V (�2) = n, z = µ+ iν, and µ ≥ µ∗(ν;β). Then

−Re
(
f n−1

1 (z)− f n−1
2 (z)

)V (�2)

‖�2‖ = −Re
∫ µ

µ∗
n

d

dµ

(
f n−1

1 (z)− f n−1
2 (z)

)V (�2)

‖�2‖

≤ (+ 2δ)
(|µ− µ∗| + |µ∗ − µ∗

n|
) n

1
d

χ2(n)

≤ + 2δ


θ + 2(+ 2δ)δl(n)

β(− 2δ)

n
1
d

χ2(n)

≤ θ ′ .
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We used (2.19) to control |µ∗ −µ∗
n|. If β is large enough and δ small enough, then there

exists θ ′ < 1. The stability of d
dz
ω(�2) is a consequence of

∣∣ d
dz
ω(�2)

∣∣ ≤ β|ω(�2)|(|�2|(C1 + 2δC0)+ V (�2)(+ 2δ)
)

≤ βC3|�q |
d
d−1 |ω(�2)| . ��

2.3. Derivatives of the free energy at finite volume. Although non-analytic behavior of
the free energy occurs only in the thermodynamical limit, most of the analysis is done
at finite volume. We write

[g](k)
t ′ := dk

dtk
g(t)

∣∣∣∣
t=t ′

for the kth order derivative at t ′ of the function g. The method of Isakov [2] allows to get
estimates of the derivatives of the free energy at µ∗, which are uniform in the volume.
We consider the case of the boundary condition ψ2. The other case is similar. We tacitly
assume that β is large enough so that Lemma 1.1 and all results of Subsects. 2.1 and
2.2 are valid. The main tool for estimating the derivatives of the free energy is Cauchy’s
formula. However, we need to establish several results before we can obtain the desired
estimates on the derivatives of the free energy. The preparatory work is done in this
subsection, which is divided into three subsections. In 2.3.1 we give an expression of
the derivatives of the free energy in terms of the derivatives of a free energy of a contour
u(�2) = − log(1 + φ
(�

2)) ≈ −φ
(�2) (see (2.24)). The main work is to estimate

k!

2πi

∮

∂Dr

φ
(�
2)n(z)

(z− µ∗)k+1 dz .

The boundary of the disc Dr is decomposed naturally into two parts, ∂Dgr and ∂Ddr ,
and the integral into two integrals Igk,n(�

2) and I dk,n(�
2) (see (2.26) and (2.27)). In 2.3.2

we prove the upper bound (2.28) for Igk,n(�
2), and in 2.3.3 we evaluate I dk,n(�

2) by
the stationary phase method, see (2.34) and (2.35). This is a key point in the proof of
Theorem 1.1, since we obtain lower and upper bounds for I dk,n(�

2).

2.3.1. An expression for the derivatives of the free energy Let 
 = 
(L) be the cubic
box


(L) := {x ∈ Z
d : |x| ≤ L} .

We introduce a linear order, denoted by ≤, among all contours �q ⊂ 
 with boundary
conditionψq . We assume that the linear order is such that V (�′q) ≤ V (�q) if �′q ≤ �q .
There exists a natural enumeration of the contours by the positive integers. The predeces-
sor of �q in that enumeration (if �q is not the smallest contour) is denoted by i(�q). We
introduce the restricted partition function��q (
), which is computed with the contours
of

C
(�q) := {�′q ⊂ 
 : �′q ≤ �q} ,
that is

��q (
) := 1 +
∑ n∏

i=1

ω(�
q
i ) , (2.23)
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where the sum is over all families of compatible contours {�q1 , . . . , �qn} which belong
to C
(�q). The partition function �q(
) is written as a finite product

�q(
) =
∏

�q⊂


��q (
)

�i(�q)(
)
.

By convention �i(�q)(
) := 1 when �q is the smallest contour. We set

u
(�
q) := − log

��q (
)

�i(�q)(
)
.

u
(�
q) is the free energy cost for introducing the new contour�q in the restricted model,

where all contours satisfy �′q ≤ �q . We have the identity

��q (
) = �i(�q)(
)+ ω(�q)�i(�q)(
(�
q))

= �i(�q)(
)

(
1 + ω(�q)

�i(�q)(
(�
q))

�i(�q)(
)

)
.

In this last expression �i(�q)(
(�q)) denotes the restricted partition function

�i(�q)(
(�
q)) := 1 +

∑ n∏

i=1

ω(�
q
i ) ,

where the sum is over all families of compatible contours {�q1 , . . . , �qn} which belong
to C
(i(�q)), and such that {�q, �q1 , . . . , �qn} is a compatible family. We also set

φ
(�
q) := ω(�q)

�i(�q)(
(�
q))

�i(�q)(
)
.

With these notations

u
(�
q) = − log

(
1 + φ
(�

q)
) =

∑

n≥1

(−1)n

n
φ
(�

q)n , (2.24)

and for k ≥ 2,

|
|β[f q
](k)µ∗ =
∑

�q⊂

[u
(�

q)](k)µ∗ .

We consider the case of the boundary condition ψ2. [φ
(�2)n](k)µ∗ is computed using
Cauchy’s formula,

[φ
(�
2)n](k)µ∗ = k!

2πi

∮

∂Dr

φ
(�
2)n(z)

(z− µ∗)k+1 dz ,

where ∂Dr is the boundary of a disc Dr of radius r and center µ∗ inside the analyticity
region of Proposition 2.3,

U0 ∩ {z ∈ C : Rez ≤ µ∗(Im(z);β)+ θ−1R2(V (�
2))
}
.
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The function z �→ φ
(�
2)n(z)

(z−µ∗)k+1 is real on the real axis, so that

( φ
(�2)n(z)

(z− µ∗)k+1

)
= φ
(�

2)n(z)

(z− µ∗)k+1 ,

and consequently

k!

2πi

∮

∂Dr

φ
(�
2)n(z)

(z− µ∗)k+1 dz = Re
{ k!

2πi

∮

∂Dr

φ
(�
2)n(z)

(z− µ∗)k+1 dz
}
. (2.25)

Remark 2.5. From Lemma 2.1, there exists C′ independent of ν and n, so that

µ∗
n(ν;β) ≥ µ∗

n(0;β)− C′ν2 .

This implies that the region {Rez ≤ µ∗ − C′(Imz)2 + θ−1R2(V (�
2))} is always in

the analyticity region of ω(�2), which is given in Proposition 2.3. Therefore, if

C′ ≤ 1

2
(
θ−1R2(V (�2))

)2 ,

then the disc Dr of center µ∗ and radius r = θ−1R2(V (�
2)) is inside the analyticity

region of ω(�2). This happens as soon as V (�2) is large enough.

Assuming that the disc Dr is inside the analyticity region of ω(�2), we decompose
∂Dr into

∂D
g
r := ∂Dr ∩ {z : Rez ≤ µ∗(Im(z);β)− θ−1R1(V (�

2))} ,

and

∂Ddr := ∂Dr ∩ {z : Rez ≥ µ∗(Im(z);β)− θ−1R1(V (�
2))} ,

and write (2.25) as a sum of two integrals Igk,n(�
2) and I dk,n(�

2),

I
g
k,n(�

2) := Re
{ k!

2πi

∮

∂D
g
r

φ
(�
2)n(z)

(z− µ∗)k+1 dz
}

(2.26)

and

I dk,n(�
2) := Re

{ k!

2πi

∮

∂Ddr

φ
(�
2)n(z)

(z− µ∗)k+1 dz
}
. (2.27)
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2.3.2. An upper bound for Igk,n(�
2) I

g
k,n(�

2) is not the main contribution to (2.25), so that
it is sufficient to get an upper bound for this integral. Let z ∈ U0 and Rez ≤ µ∗(Im(z);β).
From (2.16) we get

|ω(�2)| ≤ exp
[− β‖�2‖ + β|Rez|C1|�2| + 3C0δ|�2|] .

Using formula (1.24), we get after cancellation and the use of Lemma 1.2 and Proposition
2.3 (see also (1.23)),

∣∣∣
�i(�2)(
(�

2))

�i(�2)(
)

∣∣∣ ≤ eδ|�2| ≤ eδC5|�2| .

We set
ζ := z− µ∗ .

Therefore, there exists a constant C6 so that

|φ
(�2)| ≤ e−β‖�2‖(1−C6δ−|Reζ |C1ρ
−1) if Reζ ≤ µ∗(Im(ζ );β)− µ∗ .

This upper bound implies

I
g
k,n(�

2) ≤ k!

rk
e−nβ‖�2‖(1−C6δ−rC1ρ

−1) . (2.28)

2.3.3. Lower and upper bounds for I dk,n(�
2). In order to apply the stationary phase

method to evaluate I dk,n(�
2), we first rewrite φ
(�2) in the following form,

φ
(�
2)(z) = φ∗


(�
2) eβV (�

2)(ζ+g(�2)(ζ )) , (2.29)

where g(�2) is an analytic function of ζ in a neighborhood of ζ = 0 and g(�2)(0) = 0.
Let

µ∗(Im(z);β)− θ−1R1(V (�
2)) ≤ Rez ≤ µ∗(Im(z);β)+ θ−1R2(V (�

2)) .

In this region (see Fig. 2.1) we control the weights of contours with boundary conditions
ψ2 andψ1. Therefore, by the cluster expansion method, we control log�1(Int1 �

2), and
we can write

φ
(�
2) = exp

[
− βH(ϕ�2 |ψ2)+ log

�1(Int1 �
2)

�2(Int1 �2)
+ log

�i(�2)(
(�
2))

�i(�2)(
)︸ ︷︷ ︸
:=G(�2)

]
.

By definition z = ζ + µ∗, so that we have (see (1.9))

−βH(ϕ�2 |ψ2)(z)+ G(�2)(z) = −βH(ϕ�2 |ψ2)(µ
∗)+ βV (�2)ζ

−βa(ϕ�2)ζ +
∫ µ∗+ζ

µ∗

d

dz′
G(�2)(z′)dz′ + G(�2)(µ∗)

= −βH(ϕ�2 |ψ2)(µ
∗)+ G(�2)(µ∗)+ βV (�2)ζ

+
∫ µ∗+ζ

µ∗

( d
dz′

G(�2)(z′)− βa(ϕ�2)
)
dz′

︸ ︷︷ ︸
:=βV (�2)g(�2)(ζ )

.
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∂Dd
r

∂Dg
r

r

µ∗(ν;β)
ν

µ
µ∗(0;β)

θ�−1R1(V (�
2))

θ�−1R2(V (�
2))

Fig. 2.1. The decomposition of the integral into Igk,n(�
2) and Idk,n(�

2)

This proves (2.29). For large enough β, τ(β) ≥ τ1(β, θ
′) ≥ τ2(β, θ

′),

d

dζ
g(�2)(ζ ) = 1

βV (�2)

( d
dζ

log�1(Int1 �
2)− d

dζ
log�2(Int1 �

2)

+ d

dζ
log

�i(�2)(
(�
2))

�i(�2)(
)
− βa(ϕ�2)

)
. (2.30)

The last term of the right-hand side of (2.30) is estimated using (1.8). The first two
terms are estimated using Proposition 2.3, (1.21) and (1.20). The third term is estimated
by writing explicitly the logarithm of the quotient, using (1.24). After cancellation the
resulting series is derived term by term and is estimated as in Lemma 1.2 using the basic
estimates of Proposition 2.3. There exists K ≥ max{K1,K0}, such that

∣∣ d
dζ

g(�2)(ζ )
∣∣ ≤ 2C3Ke−τ2(β;θ ′)

( 1


+ C0|�2|
V (�2)

+ |�2|
V (�2)

)
+ C1|�2|
V (�2)

≤ C7 e−τ2(β;θ ′) + C8
|�2|
V (�2)

, (2.31)

for suitable constants C7 and C8. Moreover, there exists a constant C9 so that

exp
[− β‖�2‖(1 + C9δ)] ≤ φ∗


(�
2) ≤ exp[−β‖�2‖(1 − C9δ)] . (2.32)

Let
c(n) := nβV (�2) .

We parametrize ∂Ddr by z := µ∗ + reiα , −α1 ≤ α ≤ α2, 0 < αi ≤ π ,

I dk,n(�
2) = k!

φ∗

(�

2)n

2πrk

∫ α2

−α1

ec(n)r cosα+c(n)Re g(�2)(ζ )
[

cos(ψ̃(α))
]
dα ,
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where

ψ̃(α) := c(n)r sin α + c(n) Im g(�2)(ζ )− kα .

We search for a stationary phase point ζk,n = rk,neiαk,n defined by the equations

d

dα

(
c(n)r cosα + c(n)Re g(�2)

(
reiα

)) = 0 and
d

dα
ψ̃(α) = 0 .

These equations are equivalent to the equations ( ′ denotes the derivative with respect
to ζ )

c(n) sin α
(
1 + Re g(�2)′(ζ )

)+ cosαIm g(�2)′(ζ ) = 0 ;
c(n)r cosα

(
1 + Re g(�2)′(ζ )

)− r sin αIm g(�2)′(ζ ) = k .

Since g(�2) is real on the real axis, αk,n = 0 and rk,n is a solution of

c(n)r
(
1 + g(�2)′(r)

) = k . (2.33)

Lemma 2.3. Let αi ≥ π/4, i = 1, 2, A ≤ 1/25 and c(n) ≥ 1. If g(ζ ) is analytic in ζ in
the disc {ζ : |ζ | ≤ R}, real on the real axis, and for all ζ in that disc

∣∣ d
dζ

g(�2)(ζ )
∣∣ ≤ A ,

then there exists k0(A) ∈ N, such that for all integers k,

k ∈ [k0(A), c(n)(1 − 2
√
A)R

]
,

there is a unique solution 0 < rk,n < R of (2.33). Moreover,

ecrk,n+c(n)g(�2)(rk,n)

10
√
c(n)rk,n

≤ 1

2π

∫ α2

−α1

ec(n)r cosα+c(n)Re g(�2)
[

cos(ψ̃(α))
]
dα

≤ ec(n)rk,n+c(n)g(�2)(rk,n)

√
c(n)rk,n

.

Proof. Existence and uniqueness of rk,n is a consequence of the monotonicity of r �→
c(n)r

(
1 + g(�2)′(r)

)
. The last part of Lemma 2.3 is proven in the Appendix of [2]. The

computation is relatively long, but standard. ��
Setting c(n) = nβV (�2) and R = θ−1R2(V (�

2)) in Lemma 2.3 we get suffi-
cient conditions for the existence of a stationary phase point and the following evaluation
of the integral I dk,n(�

2) by that method. Since rk,n is solution of (2.33), we have

k − kA

(1 + A)
= k

(1 + A)
≤ c(n)rk,n ≤ k

(1 − A)
= k + kA

(1 − A)
,

and

c(n)|g(�2)(rk,n)| = c(n)

∣∣∣
∫ rk,n

0
g(�2)′(ζ )dζ

∣∣∣ ≤ Ac(n)rk,n ≤ k
A

1 − A
.
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Therefore Lemma 2.3 implies
√

1 − A

10
√
k
ck− c(n)

k k! ek

kk
φ∗

(�

2)n ≤ I dk,n(�
2)

≤
√

1 + A√
k

ck+ c(n)
k k! ek

kk
φ∗

(�

2)n , (2.34)

with

c+(A) : = (1 + A) exp
[ 2A

1 − A

]
, (2.35)

c−(A) : = (1 − A) exp
[

− 2A

1 − A2

]
.

If A converges to 0, then c± converges to 1. We assume that (see (2.31))

C7 e−τ2(β;θ ′) ≤ A

2
and C8

|�2|
V (�2)

≤ A

2
. (2.36)

A can be chosen as small as we wish, provided that β is large enough and |�2|
V (�2)

small
enough.

2.4. Lower bounds on the derivatives of the free energy at finite volume. We estimate the
derivative of [f 2


](k)µ∗ for large enough k. The main result of this subsection is Proposition
2.4. Subsection 2.4.2 is a very important point of our analysis.

Let 0 < θ < 1, A ≤ 1/25, and set

θ̂ := θ(1 − 2
√
A) .

Let ε′ > 0 and χ ′
2 so that

(1 + ε′)χ ′
2 > χ2(∞) . (2.37)

The whole analysis depends on the parameters θ and ε′. We fix the values of θ , and ε′ by
the following conditions, which are needed for the proof of Proposition 2.4. We choose
0 < A0 < 1/25, θ and ε′ so that

e
1
d

1

θ(1 − 2
√
A0)

<
d

d − 1

c−(A0)
d−1
d

1 + ε′
and

1 − 2
√
A0

1 + ε′
d

d − 1
> 1 . (2.38)

This is possible, since
d

(d − 1) e
1
d

> 1 .

Indeed,

d
(

e
1
d − 1

)
= d
(

e
1
d − 1 − 1

d
+ 1

d

)
=
∑

n≥2

1

n!

( 1

d

)n−1 + 1

= 1 +
∑

n≥1

1

(n+ 1)!

( 1

d

)n

< 1 − 1

2d
+
∑

n≥1

1

n!

( 1

d

)n = e
1
d − 1

2d
.
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Notice that conditions (2.38) are still satisfied with the same values of θ and ε′ if we
replace A0 by 0 < A < A0. Given θ , the value of θ ′ is fixed in Proposition 2.3. From
now we assume that β is so large that all results of Subsects. 2.1 and 2.2 are valid. The
value of 0 < A < A0 is fixed in the proof of Lemma 2.5.

Given k large enough, there is a natural distinction between contours �2 such that
θ̂βV (�2)R2(V (�

2)) ≤ k and those such that θ̂βV (�2)R2(V (�
2)) > k. For the latter

we can estimate I dk,n(�
2) by the stationary phase method. We need as a matter of fact a

finer distinction between contours. We distinguish three classes of contours:

1. k-small contours: θ̂βV (�2)R2(V (�
2)) ≤ k;

2. fat contours: for η ≥ 0, fixed later by (2.41), V (�2)
d−1
d ≤ η ‖�2‖;

3. k-large and thin contours: θ̂βV (�2)R2(V (�
2)) > k, V (�2)

d−1
d > η ‖�2‖.

We make precise the meaning of k large enough. By Lemma 2.2 V �→ VR2(V ) is
increasing in V , and there exists N(χ ′

2) such that

R2(V ) ≥ χ ′
2

V
1
d

if V ≥ N(χ ′
2) .

We assume that there is a k-small contour �2 such that V (�2) ≥ N(χ ′
2), and that the

maximal volume of the k-small contours is so large that Remark 2.5 is valid. We also
assume (see Lemma 2.3) that k > k0(A) and that for a k-large and thin contour (see
(2.31) and (2.36))

C8
|�2|
V (�2)

≤ C8

ρηV (�2)
1
d

≤ A

2
,

so that |g(�2)′| ≤ A, and

C1k

ρ(1 − A0)ηV (�2)
1
d

≤ k

10
(2.39)

are verified. There existsK(A, η, β) such that if k ≥ K(A, η, β), then k is large enough.
From now on k ≥ K(A, η, β).

2.4.1. Contribution to [f q
](k)µ∗ from the k-small and fat contours. Let �2 be a k-small

contour. Since V �→ R2(V ) is decreasing in V , u
(�2) is analytic in the region

{z : Rez ≤ µ∗(Imz;β)+ θ−1R2(V
∗)} ∩ U0 ,

where V ∗ is the maximal volume of k-small contours. V ∗ satisfies

V ∗ d−1
d ≤ k

θ̂βχ ′
2

.

Hence

θ−1R2(V
∗) ≥ θ̂−1χ ′

2V
∗− 1

d ≥ −1(θ̂χ ′
2

) d
d−1 β

1
d−1 k− 1

d−1 .
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Since Remark 2.5 is valid, we estimate the derivative of u
(�2) by Cauchy’s formula

with a disc centered at µ∗ with radius−1
(
θ̂χ ′

2

) d
d−1 β

1
d−1 k− 1

d−1 . There exists a constant
C10 such that

∣∣∣
∑

�2:Int �2�0

V (�2)
d−1
d ≤ k

θ̂βχ ′
2

[u
(�
2)](k)µ∗

∣∣∣ ≤ C10

( 

β
1
d−1 (θ̂χ ′

2)
d
d−1

)k
k! k

k
d−1 . (2.40)

Let �2 be a fat contour, which is not k-small. We use in Cauchy’s formula a disc
centered at µ∗ with radius

θ̂−1χ2(1)V (�
2)−

1
d ≤ θ−1R2(V (�

2)) .

We get (see (1.10))

∣∣[φ
(�2)n](k)µ∗
∣∣ ≤ k!

(
V (�2)

1
d

χ2(1)θ̂

)k
e−n[τ1(β;θ ′)−C5δ]|�2|

≤ k!

(
(C2η)

1
d−1

χ2(1)θ̂

)k
|�2| k

d−1 e−n[τ1(β;θ ′)−C5δ]|�2| .

We sum over n and over �2 using the inequality

∑

m≥1

mp e−qm ≤ 1

qp
�(p + 1) (p ≥ 2 , q ≥ 2) .

There exist C11 and C12(θ
′) > 0 so that

∑

�2:Int �d�0

V (�2)
d−1
d ≤η‖�2‖

�2 not k-small

∣∣[u
(�2)](k)µ∗
∣∣ ≤ C11

(
(C2η)

1
d−1

(C12β)
1
d−1χ2(1)θ̂

)k
k!�

( k

d − 1
+ 1
)

≤ C11

(
(C2η)

1
d−1

(C12β)
1
d−1χ2(1)θ̂

)k
k! k

k
d−1 .

We choose η so small that (see (2.40))

(C2η)
1
d−1

(C12β)
1
d−1χ2(1)θ̂

<


β
1
d−1 (θ̂χ2(∞))

d
d−1

<


β
1
d−1 (θ̂χ ′

2)
d
d−1

. (2.41)
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2.4.2. Contribution to [f q
](k)µ∗ from the k-large and thin contours. For k-large and thin

contours we get lower and upper bounds for [φ
(�2)n](k)µ∗ . There are two cases.

A. Assume that R1(V (�
2)) ≥ R2(V (�

2)), or that V (�2) is so large that

θ̂βV (�2)R1(V (�
2)) > k .

For each n ≥ 1 let c(n) = nβV (�2). Under these conditions we can apply Lemma
2.3 with a disc Drk,n so that ∂Drk,n = ∂Ddrk,n . Indeed, if R1(V (�

2)) ≥ R2(V (�
2)),

then we apply Lemma 2.3 with R = θ−1R2(V (�
2)), and in the other case we set

R = θ−1R1(V (�
2)). In both cases rk,n < R, which implies ∂Drk,n = ∂Ddrk,n . There-

fore we get for I dk,n(�
2) the lower and upper bounds (2.34).

Lemma 2.4. There exists a function D(k), limk→∞D(k) = 0, such that for β suf-
ficiently large and A sufficiently small the following holds. If k ≥ K(A, η, β) and
R1(V (�

2)) ≥ R2(V (�
2)) or θ̂βV (�2)R1(V (�

2)) > k, then

(1 −D(k)) [φ
(�
2)](k)µ∗ ≤ −[u
(�

2)](k)µ∗ ≤ (1 +D(k)) [φ
(�
2)](k)µ∗ .

Proof. We have

−[u
(�
2)](k)µ∗ = [φ
(�

2)](k)µ∗ + [φ
(�
2)](k)µ∗

∑

n≥2

(−1)(n−1)

n

[φ
(�2)n](k)µ∗

[φ
(�2)](k)µ∗
.

From (2.34) there exists a constant C13,

[φ
(�2)n](k)µ∗

[φ
(�2)](k)µ∗
≤ C13 φ

∗

(�

2)(n−1)
(c+
c−

)k
nk .

The isoperimetric inequality (2.20), R2(n) ≤ χ2(n)n
− 1
d and the definition of k-large

volume contour imply

β‖�2‖ ≥ βχ2(V (�
2))V (�2)

d−1
d ≥ θ̂βR2(V (�

2))V (�2) ≥ k .

Let b := C9δ (see (2.32)); we may assume 9
10 − b ≥ 4

5 by taking β large enough. Then

ck+
ck−

∑

n≥2

nk−1e−(n−1)(1−b)k ≤ ck+
ck−

∑

n≥2

e− 1
10 (n−1)ke−k

[
( 9

10 −b)(n−1)−ln n
]

≤ ck+
ck−

∑

n≥2

e− 1
10 (n−1)ke−k

[
4
5 (n−1)−ln n

]

≤
(c+
c−

e− 1
10

)k ∑

n≥1

e− 1
10nk .

We choose A so small that c+(A)c−(A)−1 e− 1
10 ≤ 1. ��
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B. The second case is when

θ̂βV (�2)R1(V (�
2)) ≤ k ≤ θ̂βV (�2)R2(V (�

2)) .

Since the contours are also thin,

β‖�2‖ ≤ η−1θ̂−1χ1(1)
−1βθ̂χ1(1)V (�

2)
d−1
d

≤ η−1θ̂−1χ1(1)
−1βθ̂V (�2)R1(V (�

2))

≤ η−1θ̂−1χ1(1)
−1k ≡ λk .

We choose R = β−1R2(V (�
2)) in Lemma 2.3. The integration in (2.25) is decom-

posed into two parts (see Fig. 2.1). We show that the contribution from the integration
over ∂Dgrk,n is negligible for large enough β. Since k ≥ K(A, η, β) and the contours

satisfy V (�2)
d−1
d > η‖�2‖, we have

nβ‖�2‖rk,n ≤ k

(1 − A)ηV (�2)
1
d

≤ k

(1 − A0)ηV (�2)
1
d

.

By definition of K(A, η, β) (see (2.39))

nβ‖�2‖ρ−1C1rk,n ≤ k

10
.

From (2.28) with r = rk,n we obtain that the contribution to |[u
(�q)](k)µ∗ | is at most

(1 + A)k
(
βV (�2)

)k exp
( k

10

) k!

kk

∑

n≥1

nke−nβ‖�2‖(1−C6δ) .

As in the proof of Lemma 2.4, we choose β large enough so that we can assume that
9

10 − C6δ ≥ 4
5 . Then

∑

n≥1

nke−nβ‖�2‖(1−C6δ) ≤ e−β‖�2‖(1−C6δ)
(

1 +
∑

n≥2

e− 1
10 (n−1)ke−k

[
4
5 (n−1)−ln n

])

≤ e−β‖�2‖(1−C6δ)
(

1 +
∑

n≥1

e− 1
10nk
)

= e−β‖�2‖(1−C6δ)
(
1 +D(k)

)
.

Since β‖�2‖ ≤ λk, by choosing A small enough and β large enough, so that δ is small
enough, we have

(1 −D(k))ck−eke−β‖�2‖C9δ ≥ (1 −D(k))ck−eke−kλC9δ > e
2k
3

and

(1 +D(k))(1 + A)ke
k

10 eβ‖�2‖C6δ ≤ (1 +D(k))(1 + A)ke
k

10 eλkC6δ < e
k
3 .

If these inequalities are satisfied, then the contribution to −[u
(�q)]
(k)
µ∗ coming from the

integrations over ∂Dgrk,n is negligible with respect to that coming from the integrations
over ∂Ddrk,n . Taking into account (2.34) we get Lemma 2.5.
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Lemma 2.5. There exists 0 < A′ ≤ A0 so that for all β sufficiently large, the following
holds. If k ≥ K(A′, η, β) and �2 is a k-large and thin contour, then

−[u
(�
2)](k)µ∗ ≥ 1

20
(1 −D(k))

(
βV (�2)

)k
ck− φ

∗

(�

2) .

Proposition 2.4. There exists β ′ so that for all β > β ′, the following holds. There exists
an increasing diverging sequence {kn} such that for each kn there exists
(Ln) such that
for all 
 ⊃ 
(Ln),

−[f 2

](kn)µ∗ ≥ C

kn
14 kn!

d
d−1 knβ− kn

d−1 χ ′
2
− dkn
d−1 .

C14 > 0 is a constant independent of β, kn and 
.

Proof. We compare the contribution of the small and fat contours with that of the large
and thin contours for k ≥ K(A′, η, β). The contribution of the small contours to |[f 2


](k)µ∗ |
is at most

C10
k β− k

d−1 (θ̂χ ′
2)

− kd
d−1 k! k

k
d−1 ≤ C10

k β− k
d−1

( e
1
d

θ̂χ ′
2

)k d
d−1
k!

d
d−1 .

The contribution of the fat contours is much smaller by our choice of η (see (2.41)). The
contribution to −[f 2


](k)µ∗ of each large and thin contour is nonnegative. By assumption

(2.37) and the definition of the isoperimetric constant χ2, there exists a sequence �2
n,

n ≥ 1, such that

lim
n→∞ ‖�2

n‖ → ∞ and V (�2
n)

d−1
d ≥ ‖�2

n‖
(1 + ε′)χ ′

2
.

Since xk
d
d−1 e−x has its maximum at x = k d

d−1 , we set

kn :=
⌊
d − 1

d
β‖�2

n‖
⌋
.

For any n, �2
n is a thin and kn-large volume contour, since by (2.38)

β (1 − 2
√
A′)V (�2)R2(V (�

2)) ≥ β (1 − 2
√
A′)V (�2)

d−1
d χ ′

2

≥ (1 − 2
√
A′)

1 + ε′
β‖�2

n‖ ≥ kn .

If 
 ⊃ �2
n, then

−[u
(�
2
n)]

(kn)
µ∗ ≥ 1 −D(k)

20

[
βc−V (�2

n)
]kn φ∗


(�
2
n)

≥ 1 −D(k)

20
knβ− kn

d−1

( d c
d−1
d−

(d − 1)(1 + ε′)χ ′
2

) dkn
d−1
k
knd
d−1
n φ∗


(�
2
n)
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and (see (2.32))

k
knd
d−1
n φ∗


(�
2
n) ≥ k

knd
d−1
n exp

[− (kn d

d − 1
+ 1
)
(1 + C9δ)

]

∼ kn!
d
d−1 e−C9δ

d
d−1 kn

e−1−C9δ

(2πkn)
d

2(d−1)

.

By the choice (2.38) of the parameters θ and ε′, if δ is small enough, i.e. β large enough,
then

e
1
d

θ(1 − 2
√
A′)

<
d

d − 1

c
d−1
d−

1 + ε′
e−C9δ .

Hence the contributions of the small and fat contours are negligible for large kn (see
(2.40) and (2.41)). Let 
(Ln) be a box which contains at least |
(Ln)|/4 translates
of �2

n. For any 
 ⊃ 
(Ln), if kn and β are large enough, then there exists a constant
C14 > 0, independent of β, kn and 
 ⊃ 
(Ln), such that

−[f 2

](kn)µ∗ ≥ C

kn
14 kn!

d
d−1 knβ− kn

d−1 χ ′
2
− dkn
d−1 . ��

2.5. Lower bounds of the derivatives of the free energy at infinite volume. We show that
it is possible to interchange the thermodynamical limit and the operation of taking the
derivatives, and that the Taylor series, which exists, has a radius of convergence equal
to 0. These statements are the consequence of Lemmas 2.6 and 2.7.

Lemma 2.6. If β is sufficiently large, and ε > 0 sufficiently small, then for any k ∈ N

there exists Mk = Mk(β) < ∞, such that for all t ∈ (µ∗ − ε, µ∗] and for all finite 
,

∣∣[f 2

](k)t

∣∣ ≤ Mk .

Proof. For sufficiently large contours, ω(�2) is analytic and τ1(β, θ
′)-stable on a disc

of radius θ−1R2(V (�
2)). From the Cauchy formula

∣∣[u
(�2)](k)t
∣∣ ≤ k!Ck15|�2| k

d−1 e−βκ|�2| ,

for some constants C15 and κ > 0. Therefore, for sufficiently large contours,

∑

�2⊂


∣∣[u
(�2)](k)t
∣∣ ≤ k!Ck15

∑

�2⊂

|�2| k

d−1 e−βκ|�2| ≡ |
|βM ′
k < ∞ .

This implies the existence of Mk such that
∣∣[f 2


](k)t
∣∣ ≤ Mk . ��

Lemma 2.7.

lim
L→∞

[f 2

(L)]

(k)
µ∗ = lim

t↑µ∗[f ](k)t .
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Proof. We compute the first derivative at the origin. Let η > 0,

A(η) : = f (µ∗)− f (µ∗ − η)

η

= lim
L→∞

f 2

(L)(µ

∗)− f 2

(L)(µ

∗ − η)

η

= lim
L→∞

[f 2

(L)]

(1)
µ∗ η + 1

2! [f 2

(L)]

(2)
µ∗−xL(η) η

2

η

= lim
L→∞

(
[f 2

(L)]

(1)
µ∗ + 1

2!
[f 2

(L)]

(2)
µ∗−xL(η) η

)
.

By Lemma 2.6, |[f 2

(L)]

(2)
µ∗−xL(η)| ≤ M2. Therefore {A(η)}η is a Cauchy sequence.

Hence the following limits exist,

[f ](1)µ∗ = lim
η↓0

f (µ∗)− f (µ∗ − η)

η
= lim
t↑µ∗[f ](1)t = lim

L→∞
[f 2

(L)]

(1)
µ∗ .

The proof is the same for the derivatives of any order. ��
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