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Abstract Conformal alpha shapes
are a new filtration of the Delaunay
triangulation of a finite set of points
in Rd . In contrast to (ordinary)
alpha shapes the new filtration
is parameterized by a local scale
parameter instead of the global scale
parameter in alpha shapes. The local
scale parameter conforms to the local
geometry and is motivated from
applications and previous algorithms
in surface reconstruction. We show
how conformal alpha shapes can be
used for surface reconstruction of
non-uniformly sampled surfaces,
which is not possible with alpha
shapes.

Keywords Alpha shapes · Compu-
tational topology · Computational
geometry · Surface reconstruction

1 Introduction

The method of alpha shapes was originally motivated for
the study of points in the plane [9]. This method was
later generalized to higher dimensional points [10]. Alpha
shapes define a family of simplicial complexes parame-
terized by α ∈ R. These α-complexes have vertices in the
point set and simplices from the points’ Delaunay triangu-
lation. Consequently, alpha complexes are efficiently com-
putable. Later the definition of alpha shapes was modified
slightly and extended also to weighted points [5]. With
the modified definition, the family of alpha shapes im-
plies a filtration, a partial ordering of the simplices of the
Delaunay triangulation, that may be used for multi-scale

∗This research was partially supported by the Swiss National Science
Foundation under the project “Non-linear manifold learning” and by
DARPA under grant 32905.

topological analysis of the point cloud. It is this rich struc-
ture that makes alpha shapes popular in many applications
ranging from bio-geometric modeling [8], where atoms
are modeled as weighted points, to surface reconstruction,
where the surface of some solid is sampled.

Alpha shapes have influenced the development of
provable surface reconstruction algorithms in computa-
tional geometry. By “provable”, we mean geometric and
topological guarantees that are based on assumptions on
the sampling. We distinguish two major lines of Delaunay-
based surface reconstruction algorithms. The first line
considers filtering the Delaunay triangulation of a point
cloud. Alpha shapes is one such filter as each α-complex
specifies a subset of the simplices. Beginning with the
seminal work of Amenta and Bern, there have been pro-
posed a flurry of such algorithms, the most significant of
which are the Crust and the Cocone algorithms [1, 2]. The
second line of research takes the fundamentally differ-
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ent approach of examining the critical points of a discrete
or continuous flow based on the sample points [7, 11].
These critical points are related to the critical α-complex
simplices: the simplices at which the complex undergoes
a topological change.

Although alpha shapes have inspired fruitful research
on surface reconstruction, the method’s utility is limited.
First, alpha shapes define a family of complexes, but it is
not clear which α-complex is suitable for reconstruction.
Second, the chosen α fixes a global scale, so the method
can be successful only for uniform sampling. The algo-
rithms that have been successful in practice all use local
filters to cope with non-uniform sampling.

In this paper, we discuss conformal alpha shapes,
which use a local scale parameter α̂ instead of the global
scale parameter α. We show that conformal alpha shapes
share many properties with ordinary alpha shapes, but
have additional properties that are useful for surface re-
construction. In the rest of the paper, we study the ge-
ometric and topological consequences of localizing the
scale parameter within the framework of surface recon-
struction. We begin by defining conformal alpha shapes
in Sect. 2. In Sect. 3 we consider topological repercus-
sions when moving from global to a conformal scale as
done with conformal alpha shapes. In Sect. 4, we discuss
how conformal alpha shapes can be utilized for surface
reconstruction. We prove that conformal alpha shapes at
a well defined scale are essentially equivalent to the Crust
and Cocone surface reconstruction algorithms. Finally, we
demonstrate the difference between ordinary and confor-
mal alpha shapes with some example that we obtained
from our implementation of the conformal alpha shape fil-
tration.

A preliminary version of this paper appeared in [3].

2 Definitions

In this section, we begin by briefly describing the back-
ground necessary for our work, including the definition of
alpha complexes as a family of sub-complexes of the De-
launay triangulation. We then introduce conformal alpha
shapes and prove that they also provide a family of sub-
complexes as the prior method.

2.1 Preliminaries

A point set P ⊂ Rd is in general position, if there are
no k ≤ d +1 points on a common (k −2)-flat or k ≤ d +
2 points on a common (k −3)-sphere. In the following,
we always assume the general position as this assumption
simplifies the exposition and is justified in practice [6].
A k-simplex σ is the convex hull of k +1 points S ⊆ P.
A simplex τ defined by T ⊆ S is a face of σ and σ is
a co-face of τ . A simplicial complex K is a finite set of

simplices that meet along faces, all of which are in K .
A filtration of a complex K is a nested subsequence of
complexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K .

The Voronoï diagram V(P) of P is a cell decompos-
ition of Rd into convex polyhedra. Every Voronoï cell Vp
corresponds to exactly one sample point p ∈ P and con-
tains all points of Rd closest to p. That is,

Vp = {x ∈Rd | ‖x − p‖ ≤ ‖x −q‖, ∀q ∈ P}.
Closed facets shared by d − k +1 Voronoï cells are called
Voronoï k-facets.

The Delaunay triangulation D(P) of P is the dual of
the Voronoï diagram. Whenever a collection Vp1, . . . , Vpk
of Voronoï cells have a non-empty intersection, the sim-
plex defined on the corresponding points p1, . . . , pk is in
D(P). The Delaunay triangulation is a simplicial complex
that decomposes the convex hull of the points in P. In the
rest of the paper, all simplices will be Delaunay. At times,
we will restate this to remind the reader.

2.2 Alpha shapes

For a given value of α ∈ [0, ∞), alpha balls are balls of
radius α around the points in P. The corresponding alpha
complex of P is the Delaunay triangulation of P restricted
to the alpha balls. A simplex belongs to the alpha complex,
if the Voronoï cells of its vertices have a common non-
empty intersection with the set of alpha balls. Note that at
α = 0, the alpha complex consists just of the set P, and for
sufficiently large α, the alpha complex is the Delaunay tri-
angulation D(P) of P. For any simplex σ ∈ D(P), let α(σ)
be the α value at which σ appears for the first time in the
alpha complex. The alpha shape filtration is the sequence
of alpha complexes obtained from growing α from zero to
infinity. We show a few complexes from the alpha shape
filtration for a small set of points in Fig. 6.

2.3 Conformal alpha shapes

For p ∈ P, let Dp ⊆ D(P) denote the simplices incident
on p. The alpha values determine a partial ordering on
Dp, one which we make into a total ordering by sorting
according to dimension and breaking the remaining ties
arbitrarily. We may then view Dp as a sequence of sim-
plices with non-decreasing alpha values α1

p ≤ · · · ≤ αn
p.

Note that α1
p = 0 since the first simplex in Dp is the point

p which appears at α = 0. Let α−
p < α+

p be two α values in
{αi

p}i . We will specify how to choose these values later in
the paper. We now re-scale αi

p using these local values:

α̂i
p = αi

p −α−
p

α+
p

.
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We call α̂i
p the internal alpha scale. This scale is invariant

to Euclidean transformations and scaling, so it is confor-
mal.

As in alpha shapes, we consider a restricted Delaunay
triangulation for each value α̂ ∈ (−∞, ∞). However, the
restriction is not to the set of alpha balls, but to a new set
of balls whose radii are determined from their internal al-
pha scales. We put a ball of radius αp at each point p ∈ P,
where

αp(α̂) = α+
p α̂+α−

p ,

and a ball of negative radius is defined to be empty. Let
Cα̂

p be the intersection of the Voronoï cell Vp and the ball
at p and let Cα̂ be the interior of ∪p∈PCα̂

p . The conformal
alpha shape (complex) is the Delaunay triangulation of P
restricted to Cα̂.

As in the definition of α(σ), let α̂(σ) be the α̂ value at
which σ appears for the first time in the conformal alpha
shape. We may compute the α̂(σ) from the value of α(σ).
Let p1, . . . , pk ∈ P be the vertices of σ . Then,

α̂(σ) = max
1≤i≤k

inf{α̂ | αpi (α̂) ≥ α(σ)}. (1)

Lemma 1. The sequence of conformal alpha shapes ob-
tained by growing α̂ from zero to infinity is a filtration of
the Delaunay triangulation D(P) of P.

Proof. We need to show the following: (1) If α̂ < α̂′, the
simplices in the conformal α̂-shape are also in the confor-
mal α̂′-shape. (2) For sufficiently large α̂, the conformal
α̂-shape is D(P). (3) A simplex σ ∈ D(P) is earlier than all
its co-faces τ in the filtration, that is, α̂(σ) ≤ α̂(τ).

Property (1) holds as Cα̂ ⊂ Cα̂′
for α̂ < α̂′. Property (2)

holds as Cα̂ coversRd in the limit as α̂ approaches infinity.
For property (3), let S = {pi}i be the vertices of σ . The co-
face τ also has S as vertices, along with some additional
vertices. There exists a point pi ∈ S such that

αpi

(
α̂(σ)) = α(σ) ≤ α(τ) ≤ αpi (α̂(τ)),

which implies α̂(σ) ≤ α̂(τ) as αpi is a monotonically in-
creasing function.

3 Topology

In this section, we study both the ordinary and the confor-
mal alpha shape filtrations. A filtration allows us to track
topological changes at different scales. Here, the scale pa-
rameter is either α or α̂. The topology of the respective
alpha shapes changes only at a finite number of critical α
values as both have a finite number of simplices. We char-
acterize these values and uncover the relationship between

the critical values of conformal alpha shapes and those of
the ordinary alpha shapes.

A simplex σ is α-late, if α(ρ) < α(σ) for all faces ρ,
and α-early, if α(σ) < α(τ) for all co-faces τ . If σ is both
α-late and α-early, it is α-critical. We similarly have α̂-
late, α̂-early, and α̂-critical. We define every vertex to be
α- and α̂-late and every d-dimensional simplex to be α-
and α̂-early. Note that by the filtration property we always
have α(ρ) ≤ α(σ) ≤ α(τ) and α̂(ρ) ≤ α̂(σ) ≤ α̂(τ) for faces
ρ and co-faces τ of simplex σ .

The α-critical simplices have a simple characteriza-
tion.

Lemma 2 ([7, 11]).The α-critical Delaunay simplices are
exactly those that have a non-empty intersection with their
dual Voronoï cells. This intersection is a unique point,
namely the center of the smallest enclosing ball of the sim-
plex.

A similar characterization does not exist for α̂-critical
simplices but the following is true for both filtrations.

Lemma 3. The homotopy type of the alpha shape (ordi-
nary or conformal) of a finite point set in general position
changes only when a critical simplex enters the shape.

Proof. Clearly, the homotopy type of an alpha shape (or-
dinary or conformal) changes when a critical simplex ap-
pears. If a k-dimensional critical simplex appears, either
the (k −1)-th Betti number of the alpha shape decreases
by 1, or the kth Betti number increases by 1 in simplicial
homology. At the appearance of 0-dimensional simplices
(vertices), the 0-th Betti number always increases, and
at the appearance of critical d-dimensional simplices, the
(d −1)-th Betti number always decreases.

In the following, we restrict our exposition to α̂(·), but
all arguments also hold for α(·). We need to show that
the homotopy type of the alpha shape does not change
for non-critical simplices. If a k-dimensional simplex σ is
non-critical, then either σ has a (k−1)-dimensional face ρ
with α̂(ρ) = α̂(σ) or σ is the face of a (k +1)-dimensional
simplex with α̂(σ) = α̂(τ). Note that if α̂(ρ) = α̂(σ), then
ρ is non-critical and if α̂(σ) = α̂(τ), then τ is non-critical.

Let σ be the highest dimensional simplex involved in
a non-critical alpha event, that is, the highest-dimensional
simplex among those that appear at the same α̂ value. The
dimension k of σ is at least two as a non-critical event may
not involve just vertices and edges: if an edge is early, it
has to be critical as by definition it is always late. By our
assumption, σ cannot be early, so it must have at least one
(k −1)-dimensional face ρ with α̂(ρ) = α̂(σ). If we can
show that there is exactly one such face ρ, then we are
done as there is a straightforward deformation retraction
of σ to ∂σ \ρ and the homotopy type of the alpha shape
does not change.

We need to show that there is only one (k − 1)-
dimensional face ρ of σ with α̂(ρ) = α̂(σ). Let p1, . . . ,
pk+1 ∈ P be the vertices of σ . The (k −1)-dimensional



534 F. Cazals et al.

faces ρi of σ are the convex hull of the vertex sets
{p1, . . . , pk+1} \ {pi} for 1 ≤ i ≤ k. Let V be the Voronoï
facet dual to σ and Vi be the Voronoï facet dual to ρi . As
σ is not α̂-late, there is a Vi with

min{α̂ | Cα̂ ∩ Vi �= ∅} = min{α̂ | Cα̂ ∩ V �= ∅},
as α̂(ρi) = α̂(σ). Now assume that there is another face
ρj �= ρi with the same property

min{α̂ | Cα̂ ∩ Vj �= ∅} = min{α̂ | Cα̂ ∩ V �= ∅}.
Then, we have

Cα̂(σ) ∩ Vi = Cα̂(σ) ∩ Vj = Cα̂(σ) ∩ V.

The intersection Cα̂(σ) ∩ V must be a single point since
α̂(σ) is the smallest α̂ such that Cα̂ ∩ V �= ∅. Let x be the
intersection point. Since α̂(ρi) = α̂(σ), there must exist
a vertex q ∈ ρi with argminy∈Vi

‖q − y‖= x. But any point
y ∈ Vi has the same distance to all vertices of ρi . So, for all
vertices q ∈ ρi ,

argmin
y∈Vi

‖q − y‖ = x.

Similarly, for all vertices r ∈ ρj ,

argmin
y∈Vj

‖r − y‖ = x.

Since σ is at least two-dimensional, i.e., k ≥ 2, ρi and ρj
must have at least one vertex p ∈ P in common. For this
vertex p,

argmin
y∈Vi

‖p− y‖ = argmin
y∈Vj

‖p− y‖ = x,

and x is the center of the circumcircle of the triangle
pi pj p:

‖pi − x‖ = ‖pj − x‖ = ‖p− x‖.
By construction, the line through p and pj is orthogonal to
the affine hull of Vi as the line segment ppj is an edge of
ρi . Similarly, the line through p and pi is orthogonal to the
affine hull of Vj . But this is impossible since the Voronoï
cell Vp is convex and we assumed the point set P is in
general position, as shown in Fig. 1.

Therefore pi = pj , arriving at a contradiction. This
completes the proof.

The following lemma implies that we get two permu-
tations of the α-critical simplices according to the α and α̂
values, respectively. The difference of these permutations
is a measure for the non-uniformity present in the point
set P.
Lemma 4. Every α-critical Delaunay simplex σ is also α̂-
critical.

Fig. 1. The only position
of pi and pj is degener-
ate, taking the convexity
of Vp into account

Proof. Let p1, . . . , pk ∈ P be the vertices of σ . We begin
by showing that if σ is α-late, then it is also α̂-late. If σ
is α-late, α(ρi) < α(σ) for all its (k−2)-dimensional faces
ρi , 1 ≤ i ≤ k. So,

α̂(ρi) = max
1≤ j≤k

j �=i

inf{α̂ | αpj (α̂) ≥ α(ρj)}

< max
1≤ j≤k

j �=i

inf{α̂ | αpj (α̂) ≥ α(σ)}

≤ max
1≤ j≤k

inf{α̂ | αpj (α̂) ≥ α(σ)}
= α̂(σ),

for 1 ≤ i ≤ k. That is, σ is also α̂-late. We now show the
reverse statement: if σ is α-early, then it is also α̂-early. Let
τ be any k-dimensional co-face of σ and let pk+1 be be the
additional vertex of τ . Since σ is α-early, α(σ) < α(τ). We
have

α̂(σ) = max
1≤ j≤k

inf{α̂ | αpj (α̂) ≥ α(σ)}
< max

1≤ j≤k
inf{α̂ | αpj (α̂) ≥ α(τ)}

≤ max
1≤ j≤k+1

inf{α̂ | αpj (α̂) ≥ α(τ)}
= α̂(τ).

Therefore, σ is also α̂-early. Since it was α̂-late from be-
fore, σ is α̂-critical.

Note that the reverse of Lemma 4 is not true in gen-
eral. There can be more α̂-critical simplices then there are
α-critical ones, as demonstrated in Fig. 2.

4 Surface reconstruction

We wish to use conformal alpha shapes to reconstruct
a smooth surface S in R3 from a finite sampling P. In this
section, we describe a geometrical approach very much
in line with the philosophy behind the Crust and Cocone
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Fig. 2. The reverse of Lemma 4 is not always true. Triangle pqr is
α̂-critical but not α-critical, if we assume that the poles p∗ and r∗
are somewhere below (not shown in the figure) and the pole q∗ is
the circumcenter c of the triangle pqr

algorithms. We begin with the common geometric defini-
tions and then examine the geometry of the reconstruction.

4.1 Preliminaries

Suppose we are given a smooth surface S embedded in
R3. An open ball is empty, if it does not contain any point
from S. An empty ball is maximal, if it is not contained in
a larger empty ball. The medial axis M(S) of S is the union
of the centers of all maximal open balls. The distance of
a point x ∈ S to the medial axis M(S) is its local feature
size. We define f : S →R,

f(x) = inf
y∈M(S)

‖x − y‖,

to be the function that assigns the local feature size to
a point.

An ε-sample of S is a subset P ⊆ S such that every
point x ∈ S has a point p ∈ P at distance at most ε f(x).
An ε-sampling is uniform, if every point has a point in
P at distance at most infx∈S f(x). Although the sampling
density may vary non-uniformly across S, the density is
bounded below by the smallest feature size. For suffi-
ciently small ε, every ε-sample is uniform but it depends
on S what sufficiently small means.

Let Vp be the Voronoï cell of a sample point p ∈ P.
If Vp is bounded, we let �u be the vector from p to the
Voronoï vertex in Vp that has the largest distance to p.
Otherwise, Vp is unbounded and we let �u be a vector in
the average direction of all unbounded Voronoï edges in-
cident to Vp. The second pole of Vp is the Voronoï vertex
p∗ in Vp with the largest distance to p such that the vector

�u and the vector from p to p∗ make an angle larger than
π/2 [1]. For brevity we want to refer to the second pole in
the following simply as pole.

4.2 Theoretical guarantees

We begin by specifying the internal alpha scale parameters
α−

p and α+
p for a sample point p ∈ P. Let α−

p = α1
p = 0. Let

α+
p be the α value at which the simplex dual to the pole

p∗ appears in the ordinary alpha shape, that is, α+
p = ‖p−

p∗‖. Note that with these values for the parameters, the
points in P all appear at α̂ = 0. This implies that all the
simplices appear at non-negative α̂ values.

The restricted Voronoï diagram VS(P) is the Voronoï
diagram V(P) intersected with the surface S. The re-
stricted Delaunay triangulation DS(P) is its dual and is
necessarily a subset of the Delaunay triangulation. In the
rest of the section, we use η = ε/(1 − ε) for notational
brevity. We begin with the following result.
Lemma 5. Let P be an ε-sample of a smooth surface
S. Then, all conformal alpha shapes for α̂ ≥ η contain
DS(P).

Proof. For p ∈ P, let αi
p be the largest α value at which

a simplex from DS(P) incident to p appears in the ordi-
nary alpha shape. By Lemma 6 we have that

αi
p ≤ η f(p).

We also have α+
p ≥ f(p) by our choice of α+

p . Therefore,

α̂i
p = αi

p

α+
p

≤ η f(p)

α+
p

≤ η.

This implies the statement of the lemma.

Essentially, Lemma 5 asserts that the alpha shape for
a large enough α̂ contains certain simplices, i.e., the re-
stricted ones, of the Delaunay triangulation of a surface
sampling. In the following we want to show that the con-
formal alpha shape does not contain certain simplices,
namely, simplices that are too large. For the proof we need
an auxiliary lemma.
Lemma 6. Let P be an ε-sample of a smooth surface S
and let p ∈ P be a sample point. Then,

(1) For any point x in the cell Vp in VS(P), ‖p − x‖ ≤
η f(p).

(2) For any point x in the intersection of Vp with the hy-
perplane containing p and orthogonal to p∗ − p,

‖x − p‖ ≤ η f(p)

sin
(

π
2 −3 arcsin η

) .

Proof. By the ε-sample condition we have

‖p− x‖ ≤ ε f(x)
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since p is the closest sample point to x. The 1-Lipschitz
continuity of the local feature size, see [1], implies that
f(p) ≤ f(x)/(1 − ε). Putting both inequalities together
proves claim (1).

In [1] it is shown that for any point y ∈ Vp with ‖y −
p‖ > µ f(p) the angle between the vector y − p and the
normal of S at p is upper bounded by

arcsin(η/µ)+ arcsin η.

Since p∗ ∈ Vp and ‖p∗ − p‖ > f(p) we have that the
angle between the vector p∗ − p and the normal of S at
p is upper bounded by 2 arcsin η and thus the angle be-
tween the vector x − p and the normal of S at p is lower
bounded by π

2 −2 arcsin η. Comparing the latter bound to
arcsin(η/µ)+ arcsin η and solving for µ gives

µ = η

sin
(

π
2 −3 arcsin η

) ,

which proves claim (2).

The idea behind the next lemma is that the Voronoï
cells of the sample points are long and thin and directed
almost along the normals at the sample points. Therefore,
edges that are almost tangential to the surface will appear
early in the conformal alpha shape. We say that p, q ∈ P
are neighbors in a (conformal) alpha shape, if pq is a De-
launay edge that is contained in the alpha shape.
Lemma 7. Let P be an ε-sample of a smooth surface S.
The neighbors of p ∈ P in a conformal alpha shape for
small values of α̂ are at distance at most
(

1+ α̂

1− α̂

)(
2η

sin
(

π
2 −3 arcsin η

)

)

f(p).

Proof. Let l be the vector p∗ − p as in Fig. 3 to the left.
We first want to bound the width of the smallest cylin-

der with axis l that contains the intersection of the Voronoï
cell Vp of p with the ball of radius αp centered at p.
Let x be any point in the intersection of the boundary
of Vp and the hyperplane containing p and orthogonal
to l. Any hyperplane H supporting Vp at x must have
p and p∗ on the same side. In the limiting case, p∗ is
contained in H and so we consider this case. Then H con-
tains a line l′ through p∗ and x. Let β be the acute angle
made by l and l′ at p∗, shown in Fig. 3 to the left. By
Lemma 6,

tan β = ‖x − p‖
‖p− p∗‖ ≤ η f(p)

α+
p sin

(
π
2 −3 arcsin η

) .

The line l′ intersects the boundary of the ball of radius
αp(α̂) centered at p in at most two points, as shown in
Fig. 3 to the right. Let y be the intersection point furthest
from p∗. Since we have chosen p∗ and H to be the limit-
ing case, the distance of y to l is an upper bound for the

Fig. 3. Bounding tan β and the width w of the cylinder

width w of the cylinder we are looking for. Let y′ be the
projection of y onto l. Then,

w ≤ ‖y′ − p∗‖ tan β

= (‖p− p∗‖+‖y′ − p‖) tan β

≤ (α+
p +αp(α̂)) tanβ.

Now let F be the affine hull of a Voronoï facet in Vp that
is intersected by Cα̂

p . Again, p∗ must be on the same side
of F as p. The line l intersects F in a unique point. Let γ
be the minimum angle between l and F at this intersection
point, as shown in Fig. 4 to the right.

Then, we have

tan γ ≤ w

‖p− p∗‖−αp(α̂)
= w

α+
p −αp(α̂)

.

Fig. 4. Bounding tan γ and the distance d to a neighbor in the con-
formal alpha shape
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The length d of the Delaunay edge dual to the Voronoï
facet corresponding to F may be bounded by:

d ≤ 2‖p− p∗‖ sin γ

= 2α+
p sin γ

≤ 2α+
p tan γ

≤ 2wα+
p

α+
p −αp(α̂)

=
(

α+
p +αp(α̂)

α+
p −αp(α̂)

)

2‖p− p∗‖ tan β

≤
(

α+
p +αp(α̂)

α+
p −αp(α̂)

)(
2η

sin
(

π
2 −3 arcsin η

)

)

f(p).

This implies that all neighbors of p in a conformal alpha
shape are at distance at most
(

α+
p +α+

p α̂

α+
p −α+

p α̂

)(
2η

sin
(

π
2 −3 arcsin η

)

)

f(p)

=
(

1+ α̂

1− α̂

)(
2η

sin
(

π
2 −3 arcsin η

)

)

f(p).

This completes the proof.

Basically, Lemma 7 states that the conformal alpha
shape is contained in a thickening of the surface S where
the thickening factor with respect to the feature size de-
pends on α̂ and η via

(
1+ α̂

1− α̂

)(
2η

sin
(

π
2 −3 arcsin η

)

)

.

Note that the thickening factor has two terms: a first part
that only depends on the scale parameter α̂, and a second
part that only depends on the sampling density ε. If α̂ = η
and ε < 0.1, then η < 0.112 and this factor is less than 1.
That is, the conformal alpha shape of an ε-sample with
ε < 0.1 does not contain any point from the medial axis of
the surface. This is true regardless of what the surface is,
provided it is smooth. This contrasts with ordinary alpha
shapes where for any ε > 0, we can give a surface such that
the alpha shape contains a point of the medial axis.

Lemma 7 provides also further insight regarding the
two permutations of the α-critical simplices according to
the α and α̂ values, respectively. Suppose P is an ε-sample
of a smooth surface S with ε < 0.1. Recently, it was shown
that the intersection points of an α-critical simplex with
its dual Voronoï cell is either very close to the surface S
or very close to the medial axis M(S), see [4]. Therefore,
we can classify an α-critical simplex as either surface- or
medial-axis-critical. By Lemma 7, we know that in the
α̂-permutation of α-critical simplices, the surface-critical

ones all appear before the medial-axis-critical. Therefore,
conformal alpha shapes incorporate a local filtering that
will allow surface reconstruction based on critical sim-
plices.

The Crust and Cocone algorithms for surface recon-
struction begin by filtering a set of candidate triangles
from the Delaunay triangulation. An edge is sharp, if it
has either a single incident triangle, or if any two con-
secutive triangles incident to it form an angle more than
3π/2. In the second step, the algorithms remove all trian-
gles incident on sharp edges. Finally, the algorithms com-
pute a reconstruction by “walking” on either the inside or
outside of the remaining set of candidate triangles. The re-
sulting surface is homeomorphic to the original surface S,
if P is a sufficiently dense ε-sample. The homeomorphism
proof needs two properties of the set of candidate trian-
gles. First, it has to contain all triangles of the restricted
Delaunay triangulation DS(P). Second, all edges and tri-
angles need to have a small circumradius compared to the
feature size at their vertices.

We now show that a conformal alpha shape for a suit-
able value of α̂ may be used as the source of the candidate
triangles, still giving us the topological guarantees after
pruning and walking. Suppose we are given an ε-sample
P of a smooth closed surface S with ε < 0.1. To show the
homeomorphism property, we need to satisfy the two re-
quirements discussed above. By Lemma 5, we know that
the conformal alpha shape for α̂ = η = ε/(1−ε) contains
the restricted Delaunay triangulation DS(P). It remains to
show that all triangles in this conformal alpha shape have
a small circumradius.
Lemma 8. Let P be an ε-sample of a smooth surface S.
All edges and triangles incident to p ∈ P in a conformal
alpha shape for α̂ < 1 have circumradius at most
(

1+ α̂

1− α̂

)(
η

sin
(

π
2 −3 arcsin η

)

)

f(p).

Proof. For edges the statement is implied by Lemma 7.
The circumradius of a Delaunay triangle is the distance d
of any of its vertices to the line through its dual Voronoï
edge. For a vertex p of a Delaunay triangle contained
in the conformal alpha shape twice this distance can be
bounded exactly same way as in the proof Lemma 7,
where we bounded the length of the longest Delaunay
edge incident to p and contained in the conformal alpha
shape.

Therefore, we may compute a homeomorphic recon-
struction of S from the conformal alpha shape of P with
α̂ = η.

4.3 Experimental results

We implemented the conformal alpha shape filtration
using the C++ library CGAL. Fig. 5 illustrates the fun-
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damental difference between α-shapes and conformal
α-shapes. The point set shown in (a) contains a scaled
version of a subset of itself. The globally uniform scale
parameter of α-shapes, shown in (b) and (c) for two differ-
ent α values, cannot recover the structure of the underlying
manifold for any setting of α. Instead, a globally uniform
and hence very dense sampling would be required, as
shown in (d). In contrast, conformal α shapes can cor-
rectly reconstruct the correct curve (e) since the dual set
of balls conforms to the local geometry of the point cloud.
A 3D example is shown in bottom row of Fig. 5, where (f)
shows the input point set, (g) the α-complex, and (h) the
conformal α complex.

Fig. 6 shows a more difficult example. This data set
is the result of curvature-adaptive surface simplification
and is clearly not an ε-sampling with ε < 0.1. Thus
both uniform and conformal α shapes fail to reconstruct
the surface. Since the data set is highly non-uniform,
α shapes perform poorly as expected. No single value
of α provides a suitable complex for surface reconstruc-
tion. Conformal α-shapes behave more gracefully and
provide a much better input for surface filtering as used
in the final stage of the Crust and Cocone algorithms.
Note that the latter algorithms would also fail on this data
set. Both algorithms would provide a candidate triangle
set similar to the one obtained for α̂ = 2.0. Obviously,
some regions of the shape are not captured adequately
by the candidate triangles. For example, the mesh-based
simplification algorithm created very few samples on

Fig. 5. Adapting the growth of the balls at the sample points as it is done for conformal α-shapes illustrates the superiority of conformal
α-shapes (e) over uniform α-shapes (b,c) for curve and surface reconstruction from non-uniform samples (a). Uniform α-shapes would
need uniform sampling as in (d). In (f) two scaled versions of a uniform sub-samples of the Stanford Bunny are shown in one scene to
illustrate non-uniform sampling on a global scale. An α-shape for this sample is shown in (g) and a conformal α-shape is shown in (h)

the side of the nose, since this is a relatively flat re-
gion in the shape. However, the local feature size is very
small, as the opposing parts of the nose come close to-
gether. As a result, the local conformal alpha ball is too
small to introduce the required simplices, resulting in
holes.

Although neither ordinary nor conformal alpha shapes
succeed to reconstruct the surface it is still instructive to
see the behavior of the complexes. In the α-filtration, trian-
gles at more densely sampled features like the ears appear
much earlier than triangles in other regions. For larger al-
pha values details at the ear get lost since already too many
many triangles have appeared there, but at the same time
sparsely sampled features like the back of the head have
not been covered by triangles at all. This is in contrast
to the α̂-filtration where for all values of α̂ all features
of the shape are covered almost uniformly with triangles
(of varying size) independent of how densely the features
are sampled. For example the ears are not covered by
large Delaunay triangles even for α̂ = 2.0 whereas they
small details of the ears are no longer visible already for
α = 1.0.

5 Conclusion

In this paper, we discuss conformal alpha shapes, a vari-
ation of the method of alpha shapes, that utilizes a local
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Fig. 6. Alpha shapes (upper half) vs. conformal alpha shapes (lower half). The top row shows the α- resp. α̂ balls and corresponding
relative values of α and α̂. The bottom row shows the corresponding complex, where red color denotes singular 2-simplices and green
shows faces of 3-simplices. Vertices and edges have been omitted for visual clarity

scale parameter α̂ that is invariant to scaling and Eu-
clidean transformations. The local parameter reorders the
simplices of the alpha shapes filtration into a new fil-
tration. We show that this filtration has complexes that
contain the restricted Delaunay simplices. As such, con-

formal alpha shapes can be utilized for provable surface
reconstruction algorithms that compute candidate sets by
filtering. Within the α̂-filtration, the critical simplices of
the alpha shapes filtration remain critical. Moreover, the
new ordering separates the critical simplices that are near
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the surface from those near the medial axis. Therefore,
conformal alpha shapes may also be used by the sec-
ond type of surface reconstruction algorithms that ex-
amine critical simplices. Conformal alpha shapes shed
new light on the relationship between the two main ap-

proaches in Delaunay-based surface reconstruction algo-
rithms.
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