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Abstract According to life-history theory age-dependent investments into reproduction

are thought to co-vary with survival and growth of animals. In polygynous species, in

which size is an important determinant of reproductive success, male reproduction via

alternative mating tactics at young age are consequently expected to be the less frequent in

species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a

highly sexually dimorphic mountain ungulate whose males have been reported to exhibit

extremely high adult survival rates. Using data from two offspring cohorts in a population

in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of

paternity were inferred within a Bayesian framework. In accordance with our hypothesis,

reproductive success in male Alpine ibex was heavily biased towards older, dominant

males that monopolized access to receptive females by adopting the ‘tending’ tactic, while

success among young, subordinate males via the sneaking tactic ‘coursing’ was in general

low and rare. In addition, we detected a high reproductive skew in male Alpine ibex,

suggesting a large opportunity for selection. Compared with other ungulates with higher

mortality rates, reproduction among young male Alpine ibex was much lower and more

sporadic. Consistent with that, further examinations on the species level indicated that in

polygynous ungulates the significance of early reproduction appears to decrease with
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increasing survival. Overall, this study supports the theory that survival prospects of males

modulate the investments into reproduction via alternative mating tactics early in life. In

the case of male Alpine ibex, the results indicate that their life-history strategy targets for

long life, slow and prolonged growth and late reproduction.

Keywords Growth � Life-history � Polygynous ungulate � Reproduction � Survival

Introduction

Because energy is a limited resource that has set important constraints under which life has

evolved, all organisms have to adopt strategies to acquire, store and allocate the energy

disposable to them (Kozlowski 1992). Iteroparous animals are faced during each breeding

season with the trade-off of how much energy they should invest into current and how

much into future reproduction (Williams 1966; Stearns 1976). Investments into repro-

duction are costly and reduce future reproductive success (Bell 1980; Stevenson and

Bancroft 1995). The residual reproductive value of individuals will consequently decline

once they have started to breed (Pianka and Parker 1975; Clutton-Brock 1984).

In animals, in which size is an important determinant of reproductive success, indi-

viduals are principally assumed to first direct their investments into growth and survival

before starting with reproduction. On the other hand, life-history theory also suggests that

animals modulate the timing of reproduction with regard to their chances to reach full adult

body size (Stearns 1992). Consistent with this, meta-analyses of female life-history traits in

a variety of vertebrate species revealed that growth and survival both co-varied with

reproduction in female animals: long life was associated with slow growth, delayed age of

maturity, and late onset and low rates of reproduction, whereas short life was found to be

associated with fast growth, early maturity and start of reproduction (Harvey and Zammuto

1985; Promislow and Harvey 1990; Dobson and Oli 2007). Thus, life-history strategies are

distributed along a ‘fast-slow’ continuum (Stearns 1983).

Although equivalent studies for male vertebrates are still missing (presumably because

reliable, molecular data on male reproductive success is not yet available for many ver-

tebrate species), the interplay between growth, survival and reproduction, as predicted by

life-history theory (Stearns 1992), should also apply to males. However, among male

polygynous ungulates a rather distinct relationship between the different life-history traits

might be expected because (1) direct male-male competition leads to strongly size-

dependent access to female mating partners and thus reproductive success in these species

(Isvaran 2005), and (2) mating activities are often associated with increased risks of injury

or death (e.g. Clutton-Brock et al. 1982; Preston et al. 2001). Hence, male ungulates have

to carefully trade their investments into current reproduction (given the risks involved)

against investments into growth and survival in order not to jeopardize their future

reproductive success.

In this study, we investigated age-dependent reproduction in male Alpine ibex (Capra
ibex)—a highly sexually dimorphic and polygynous male mountain ungulate. Male Alpine

ibex are supposed to pursue a rather slow life-history strategy, with prolonged growth, not

reaching asymptotic body size until the age of 8 years (Lüps et al. 2007), and with a very

high annual adult survival that exceeds survival of other ungulate species by 5–20% (Toı̈go

et al. 2007). Life-history theory predicts that reproductive success among male Alpine ibex

should therefore be heavily skewed towards older individuals, with young males having

little success. Although older males are also expected to have increased access to females
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in ungulates with faster life-histories (Isvaran 2005) we expected male reproductive suc-

cess to be more heavily biased towards older individuals in Alpine ibex than in these other

species. Male Alpine ibex can adopt two different mating tactics during the rut (Willisch

and Neuhaus 2009), but only dominant (typically older and fully grown; see also Bergeron

et al. 2010) males are able to monopolize access to receptive females by the use of a so-

called ‘tending’ tactic. Subordinate individuals have to make use of an alternative mating

tactic termed ‘coursing’ to obtain transient mating access to females (Willisch and Neu-

haus 2009, 2010). Consequently, we expected reproductive success in male Alpine ibex to

be strongly biased toward dominant individuals making use of the tending tactic while

subordinates using the coursing tactic were expected to be much less successful. To test

these predictions we performed paternity analyses using DNA samples from two offspring

cohorts and their mothers and potential fathers in an Alpine ibex population in the Swiss

Alps, and estimated the effects of age, dominance, and mating tactics on reproductive

success using a Bayesian framework. In addition, we compared our results with equivalent

data from other polygynous ungulates.

Materials and methods

Study animals

The study was carried out between 2005 and 2008 in the Alpine ibex population ‘Cape au

Moine’ north of Les Diablerets (VD), Switzerland. For details on this population of up to

270 animals (Table 1); see Willisch and Neuhaus 2009). During the study, up to 68 males

([2 years old) and 18 females ([2 years old) could be individually recognized based on

unique characteristics of their horns and their coat coloration. Another 30 animals (20

males, and 10 females) were individually marked using colored and numbered ear tags

(Willisch and Neuhaus 2009). The age of males was determined by counting the con-

spicuous horn annuli (Ratti and Habermehl 1977) either when captured or by inspection of

photographs taken in the field (Willisch and Neuhaus 2009).

Alpine ibex are highly sexually dimorphic animals (average weight of fully grown

males and females: 95 and 45 kg, respectively; Loison et al. 1999). In males, asymptotic

body size is normally not reached until the age of 8 years (Lüps et al. 2007). Average

annual survival of males in an unharvested population was extremely high, exceeding 98%

in animals aged 2–8 years, and 85 and 97%, respectively, in animals aged 8–13 years

depending on ecological conditions (Toı̈go et al. 2007). As mentioned above, male Alpine

ibex adopt two alternative mating tactics during the rut: a primary tactic termed ‘tending’,

which is used by dominant and mainly older males in the population to monopolize access

to receptive females, and a sneaking tactic termed ‘coursing’, which is typically adopted by

subordinate, younger males to obtain temporary mating opportunities with tended females

(Willisch and Neuhaus 2009, 2010).

Behavioural observations during the rut

Between November and January in 2005–2006 and 2006–2007 behavioural observations

on individually identifiable male Alpine ibex were carried out in order to obtain (1) data on

their dominance status, and (2) data on mating tactics.

To establish dominance hierarchies among males during the rut we constructed dyadic

winner-loser matrices using the so called ‘I & SI’ method (De Vries 1998). Only animals
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which interacted with at least 5 other individuals were included in the data sets

(2005–2006: 23 males; 2006–2007: 47 males). In male-male dyads individuals were the

designated winners of agonistic encounters when they displaced or mounted their oppo-

nents, or when they were seen following their opponents after a fight. In addition, we also

used the winner-loser information derived from situations in which males were competing

for access to receptive females, as they were previously shown to reflect reliably the

dominance relationships among males (Willisch and Neuhaus 2010). Linearity tests were

conducted to test for deviations from linear hierarchies using Matman 1.1 (Noldus; De

Vries et al. 1993). Afterwards, individuals were reordered to fit a linear hierarchy and

assigned standardized ranks that varied between 0 (lowest ranking male) and 1 (highest

ranking male; see Coté 2000).

The use of mating tactics was quantified using tactic indices calculated for each indi-

vidual in each rutting period, using the formula Ti/(Ti ? Ci), where Ti is the total number of

times a specific male i had been observed to adopt the tending tactic, and Ci the total

number of times the same male i had been observed to adopt the coursing tactic. The tactic

index could range from 0 (male adopted exclusively the coursing tactic) to 1 (male adopted

exclusively the tending tactic). For each male only the first observation per defended

female and day was considered in order to avoid pseudo-replication.

Census data

Between 2005 and 2008 daily censuses were carried out between November and January to

obtain information on the size and the sex-age structure of the population and the presence

of individual males during the rut.

Genetic data

Between 2005 and 2008 we collected DNA samples of kids born in 2006 and 2007, and

samples of their mothers and potential fathers. 651 DNA samples were gathered by col-

lecting fresh faeces of individually recognizable animals. Since faecal samples vary in

DNA quality, we sampled animals multiple times. An additional 43 blood and 54 tissue

samples were obtained from animals by biopsy-darting (Biebach and Keller 2009), or from

animals that were captured, killed by hunters, or found dead. Tissue samples were stored in

100% ethanol and blood samples in APS buffer at -20�C. Faecal samples were stored in a

freezer at -20�C.

Extraction of DNA from blood and tissue samples was performed as described in

Biebach and Keller (2009). To extract DNA from faecal samples, the outermost layers of

C3 pellets per sample were scraped off to obtain 180–220 mg of faecal material (We-

hausen et al. 2004). The material was then further processed using commercial kits (Qiagen

Stoolkit, Biosprint). DNA extractions were carried out in a separate pre-PCR laboratory to

avoid contamination with PCR products. All DNA samples were genotyped at 32 micro-

satellite loci (Appendix) in a separate post-PCR laboratory. Each 96-well plate contained

one negative control to monitor contamination. We used PCR conditions and multiplex

reactions as described in Biebach and Keller (2009) with the following two modifications

for the faecal samples: 1) We used always 36 amplification cycles and 2) five loci that

showed good amplification success in DNA samples of low quality (JMP29, McM73,

OarFCB20, SR-CRSP23, TGLA126) were pooled in a new multiplex reaction with an

annealing temperature of 57�C. Allele sizes and genotypes were determined using the LIZ

size standard and the software GENEMAPPER 3.7 (Applied Biosystems) followed by
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manual proofreading (Biebach and Keller 2009). All faecal samples were genotyped C3

times to account for increased genotyping error rates due to the low quality and quantity of

DNA (Taberlet et al. 1999; Wehausen et al. 2004). The software package GIMLET (Va-

liere 2002) was used to build consensus genotypes when at least two of the three replicates

produced consistent results. Samples not generating genotypes were repeated at least once.

If replications failed to produce positive results, another sample of the same individual, if

available, was analysed. We estimated locus-specific error rates in faecal samples using

GIMLET (Appendix). Locus-specific error rates for blood and tissue samples had already

been calculated by Biebach and Keller (2009) with the software PEDANT (Johnson and

Haydon 2007).

Identity analyses were performed using CERVUS 3.0 (Kalinowski et al. 2007) and

photographs of sampled individuals were used to ensure that multiple samples of single

individuals were not mistakenly assigned to different individuals. To increase the quality of

the paternity assignments we removed samples of kids without successfully genotyped

mothers, and samples that were genotyped at \18 loci. Note that the probability of not

being able to distinguish full sibs is\0.001 in the studied population when using samples

with C18 loci (data not shown). Furthermore, we also excluded males which had never

been observed in the study area during the two rutting periods.

Paternity and parameter estimation using MasterBayes

Pedigree reconstruction and the estimation of the parameters of interest were performed

simultaneously (i.e. in a so-called full-probability model) in a Bayesian framework using

the R package MasterBayes (Version 2.42; Hadfield et al. 2006). MasterBayes provided

significant advantages in our case compared to other programs used to infer paternity.

First, MasterBayes was able to integrate multiple genotypes of single individuals. Sec-

ond, it could cope with locus-specific error rates. Third, there was no need to pre-

determine the proportion of the male population for which genotypes could be obtained.

Fourth, the joint estimation of paternity and population-level parameters by MasterBayes

was shown to increase the power of paternity assignment, to reduce the bias in parameter

estimation, and to evaluate accurately uncertainty in both (for details see Hadfield et al.

2006).

We fitted four different models to estimate the effects of age (model 1 and 2),

dominance rank (model 3) and mating tactics (model 4) on the likelihood of paternity

(Table 2). Because data on dominance rank and tactic index were not available for all

males, we accounted for these missing data by replacing them with 0 (zero) and fitting a

secondary binary variable (missing vs. not missing) as interactions with the variable age

(J.D. Hadfield, pers. comm.). Markov chains were run for 1.1 million iterations, with a

burn-in of 100,000 iterations and a thinning interval of 1,000. In models 3 and 4, priors

were set for the number of unknown sires, as well as for the different parameter esti-

mates. The priors for the unknown sires were log-normal distributed and weakly infor-

mative, with a mean of log(15) and a sigma of 0.75. For the remaining parameter

estimates we used priors with means of zero (i.e. no effect) and variances of pi (which is

the closest normal-inverse-logit transformation to a uniform prior on the probability

scale) for categorical variables and of 0.02 and 1,000 for continuous or mixed variables

(J.D. Hadfield, pers. comm.). The parameters of interest were estimated from the 1,000

MCMC samples from the posterior distribution of the pedigree, and summarised by the

median and the range between the quantiles 2.5 and 97.5 (referred to as the 95% credible

interval or 95% CI).
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Variation in male reproductive success and opportunity for selection

Mean individual male reproductive success, and the mean standardized variance in

reproductive success Im (variance/mean2) as a measure for the variation in reproductive

success and the opportunity for selection (Shuster and Wade 2003), were both calculated

from the 1,000 MCMC samples from the posterior distribution of the pedigree.

Results

Sex-age structure in 2005–2006 and 2006–2007

Census data revealed that the restricted study area during the first rut in 2005–2006 was

inhabited by B78 animals, with a mean sex ratio of 0.62 males per female (Table 1).

During the rut in 2006–2007, when the whole study population was monitored, B221

animals were observed, with a mean sex ratio of 0.76. The number of observed males per

age class varied during both years, and showed a general trend to decline with increasing

age (Fig. 1).

Fig. 1 Maximum number of observed males (open circles and dashed lines) during daily censuses in the
rutting periods of 2005–2006 (a) and 2006–2007 (b), respectively, and corresponding numbers of males that
have been successfully sampled and genotyped (filled circles and solid lines)
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Dominance and mating tactics

During both rutting periods linear dominance hierarchies became apparent (2005–2006:

146 of 253 possible dyads observed, h0 = 0.49, P \ 0.0001; 2006–2007: 275 of possible

1,081 dyads observed, h0 = 0.15, P = 0.0002). Individual dominance ranks of males were

strongly age-dependent (REML, n = 64, df = 61, t = 9.93, P \ 0.0001; effect size of

age: 0.11 ± 0.01, mean ± SE), with males aged 10–11 years being the most dominant

individuals, and the youngest males being the most subordinate ones (Fig. 2). Individual

tactic indices were also positively age-dependent (REML, n = 57, df = 54, t = 8.85,

P \ 0.0001; effect size of age: 0.20 ± 0.02, mean ± SE) with males older than 6–7 years

predominately adopting the tending tactic to attain access to receptive females, while

younger males of B5 year of age mainly used the coursing tactic (Fig. 2). Strong positive

correlations between dominance ranks and tactic indices existed in both years (2005–2006:

n = 21, r = 0.79, P \ 0.0001; 2006–2007: n = 36, r = 0.89, P \ 0.0001). Tending was

the tactic most often used by males with a dominance rank of [0.6, whereas males with

lower dominance ranks adopted primarily the coursing tactic.

Fig. 2 Relationship between age and dominance rank (a) and age and tactic index (b) of individual males
during the pre-rut and rutting seasons in 2005–2006 (open circles) and 2006–2007 (closed triangles)
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Number of genotyped samples and individuals

In total, 449 DNA samples (369 faecal, 42 blood and 38 tissue samples; 217 samples of

males, 103 of females, and 129 of juveniles) were successfully genotyped at an average of

23.3 ± 7.5 (mean ± SD) loci. The mean number of alleles detected per locus was

2.88 ± 1.07 (Appendix). For faecal samples, locus-specific rates for allelic dropouts and

false alleles per genotype were 5.2 ± 6.9 and 1.6 ± 1.5%, respectively. Because each

faecal sample was repeatedly genotyped for C3 times, actual error rates of the consensus

genotypes are, however, smaller: e.g. the probability of undetected allelic dropout is

reduced to 0.03 for the locus with the highest estimated dropout rate (OarHH35). The error

rates for blood and tissue samples were estimated by Biebach and Keller (2009) and varied

around 1.1 ± 2.2 and 0 ± 0.1%, respectively (Appendix).

After removal of samples that amplified at less than 18 loci and samples of known males

that were not observed during the rut, identity analyses demonstrated that in total 70 kids

(13 and 57 born in 2006 and 2007, respectively), 67 mothers and 100 males older than

1 year of age had been successfully genotyped. For the paternity tests, 62 and 84 males

were considered for the kids born in the 2 years, respectively. Comparisons of the genetic

data and observations during the rut showed that 27 of 31 (87.1%) and 51 of 61 (83.6%)

identifiable males which had been observed during the two rutting periods, had also been

successfully sampled and genotyped. Remaining DNA samples of males in the data set

originated from unidentifiable animals (aged 1–5 years) which had been sampled in the

study area. The number of males that were successfully genotyped corresponded overall

well with the number of observed males in the specific age classes (Fig. 1) providing

support of the notion that we achieved to sample most of the males present during the two

rutting periods. The 13 and 57 kids which entered the paternity analyses represented 68.4

and 90.4% of the maximally observed kids during the consecutive fall/winter censuses in

2006 and 2007, respectively (see Table 1).

Pedigree reconstruction

Despite differing parameterisation, the four models resulted overall in similar pedigrees.

All models made the same assignments to particular kids in 91.4% of all cases at a

confidence level of 80%, and in 81.4% at a confidence level of 95%. The cases in which the

four models did not match were entirely due to situations in which one or more models did

not assign paternities, whereas others did. Overall, the four models assigned likely fathers

to 70–71% of the sampled kids at the confidence level of 80%, and to 55–63% of the kids

at the 95% confidence level, respectively (Table 2). Hence, the different models performed

roughly equally well.

Factors affecting paternity

The two models 1 and 2 containing age and age2 as factors, demonstrated that the like-

lihood of siring offspring tended to rise initially with increasing age (Table 2). After the

age of 11 years, the likelihood of siring offspring decreased again (Fig. 3). The median

individual reproductive success did not increase before the age of 10 years, although

variation among 7 and 8 years old individuals was already remarkable.

Among males B6 years of age, 0–13% of the individuals per age class were assigned

C1 paternity compared to 27–100% in males aged 7–11 years (Table 3). None of the
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12–13 year old animals were assigned C1 paternity. However, these age categories con-

tained only 3 individuals in total.

The significant parameter estimates for dominance rank (model 3) and tactic index

(model 4) demonstrated that high dominance and the adoption of the tending tactic were

important determinants of male reproductive success (Table 2). Hence, the number of sired

Fig. 3 Box-plots of the mean number of offspring per individual male (offspring cohorts 2006 and 2007
pooled) in relation to the age (a), the dominance ranks (b) and tactic indices (c) of males during the
preceding ruts, based on the posterior distribution of the 1,000 MCMC sample pedigrees of model 1, 3 and 4,
respectively
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offspring increased considerably in animals that held dominance ranks above 0.60 and

tactic indices above 0.80 (Fig. 3). Lower-ranking males and males adopting less often the

tending tactic only occasionally managed to sire offspring. Medians close to zero indicate

that the majority of them had no paternities at all.

Further analyses revealed that paternities assigned to males of C8 years of age (when

they are expected to be fully grown) were mainly due to individuals adopting chiefly the

tending tactic (average tactic index: median = 0.92; 95% CI = 0.90–0.95), while assigned

paternities among males B7 years of age were mainly due to individuals adopting chiefly

the coursing tactic (average tactic index: median = 0.14; 95% CI = 0.10–0.25; based on

model 3).

Variation in individual reproductive success and opportunity for selection

The average number of paternities assigned to individual males of the offspring cohort in

2007, when a large portion of kids in the whole study population was sampled, varied

around 0.63–0.64 kids per male depending on the chosen model, with variances of 2.0–2.2.

Estimates of Im ranged accordingly between 4.8 and 5.6 (Table 2). When Im was calculated

based on the paternities assigned at the confidence level of 80% it even took on values

between 7.1 and 8.0. Figure 4 shows that about 60 males produced no offspring during the

rut in 2006–2007; about 15 males sired one offspring, and about 10 males sired 2 or more

offspring.

Comparisons with other ungulates

Positive effects of age and dominance rank on male reproductive success were also found

in other ungulate species with differing survival rates (Table 4). Frequent reproduction via

sneaking tactics at an early age was evident in male bighorn sheep (Ovis candensis; Hogg

and Forbes 1997), and is likely to occur among male Soay sheep (Ovis aries, Stevenson

et al. 2004; Coltman et al. 1999a). In bighorn sheep males from 2 to 3 years of age onwards

reproduce frequently via the coursing tactic (Coltman et al. 2002; Hogg and Forbes 1997),

Table 3 Number and proportion
of males per age class that were
assigned on average C1 paternity
(offspring cohorts 2006 and 2007
pooled)

Age class Number of males
per age class

Number of
males C1
paternity

Proportion of
males C1
paternity

1 24 0 0.00

2 20 1 0.05

3 21 1 0.05

4 15 2 0.13

5 11 0 0.00

6 12 0 0.00

7 11 3 0.27

8 7 2 0.29

9 5 1 0.20

10 12 6 0.50

11 5 5 1.00

12 2 0 0.00

13 1 0 0.00
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and they were responsible for an average of 44% of all assigned paternities in two pop-

ulations (Hogg and Forbes 1997). In Soay sheep, the ungulate species with the lowest

reported adult survival (Table 4), frequent reproduction was even observed among juvenile

males (Coltman et al. 1999a, b), and comparisons of paternity analyses with observations

during the rut furthermore suggest that potentially [70% of offspring might have been

sired by males adopting a sneaking tactic in this species (Coltman et al. 1999a). In contrast,

and similar to Alpine ibex, early reproduction via sneaking appeared to be less important in

red deer (Cervus elaphus; Pemberton et al. 1992) and wood bison (Bison bison; Wilson

et al. 2002), two polygynous ungulates with comparatively high adult survival. In these two

species, males did seemingly not start to sire a significant number of offspring until the age

of 6–7 years (Wilson et al. 2002; Clutton-Brock et al. 1988a; Pemberton et al. 1992).

Overall, reproductive skew in male ungulates showed considerable variation. Apart

from Alpine ibex, high values of Im were also found in fallow deer, bighorn sheep and Soay

sheep; moderate values in red deer, roe deer and withe-tailed deer, and low values in wood

bison (Table 4).

Discussion

Reproductive pattern of male Alpine ibex

As expected from life-history theory, reproductive success in Alpine ibex was heavily

skewed towards older, tending males, while younger males made predominately use of the

coursing tactic and sired only few offspring. Age, tactic index and dominance rank,

strongly affected the likelihood of individual males siring offspring. On average, highest

reproductive success was achieved among (1) males aged 10–11 years, (2) males holding

Fig. 4 Observed distribution of assigned paternities (open circles; mean ± SD) of the offspring cohort in
2007 among 84 males that were present during the preceding rut and expected distribution of paternities
under random assignment (black dots), based on the 1,000 MCMC samples of the posterior distribution of
the pedigree of model 1
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dominance ranks above 0.8, and (3) males adopting the tending tactic in more than 80% of

observations. The only exception in this regard was a 7 year old male that was ascribed[8

paternities in the 2006–2007 offspring cohort, which is the highest reproductive success

recorded in our study for a single individual. This male was highly dominant and made

extensive use of the tending tactic (Figs. 2, 3), suggesting that it was a high quality male

above age-specific average (see also Bergeron et al. 2010). Overall, the age of males

appears to be only of secondary importance for individual reproductive success, while the

factors ultimately determining individual success are a high dominance rank and the

adoption of the tending tactic.

Nevertheless, consistent with behavioural observations (Willisch and Neuhaus 2009,

2010) and findings in male bighorn sheep (Hogg and Forbes 1997), the dominance of an

individual relative to its competitors was only important among older, fully grown males

who gain paternities via the tending tactic, whereas it appeared to provide no immediate

advantages to younger, coursing males. This notion is supported by the finding that the

2–4 year old males appeared to be slightly more successful than the distinctly bigger and

higher-ranking males of 5–6 years of age (Table 3). In coursing males, agility and running

speed rather than dominance are probably the crucial determinants (Willisch and Neuhaus

2009; Hogg and Forbes 1997), since only males that are able to outrun their competitors

and catch up with females will have a chance to mate with receptive females during or

following a coursing chase.

Although our data do not allow us to infer with certainty the proportional success of the

coursing tactic, our data suggest that only about 11% of the offspring have been sired by

males adopting this tactic, whereas the remaining 89% appear to be the result of the

tending tactic. The minor success of coursing male Alpine ibex stands in sharp contrast

with the higher reproductive success of coursing, young, aggressively competing male

bighorn sheep (Hogg and Forbes 1997) and Soay sheep (Coltman et al. 1999a, b; Preston

et al. 2001). Compared to bighorn sheep and Soay sheep, in which coursing appears to be a

high cost—high gain tactic (Hogg and Forbes 1997; Pelletier 2005; Preston et al. 2001),

coursing in male Alpine ibex seems to be a rather opportunistic low cost—low gain tactic

(Willisch and Neuhaus 2009). This impression is further corroborated by the fact that

coursing male Alpine ibex did evidently not make use of overt aggression against the

tending male during the rut in order to obtain transient mating access to receptive females

(Willisch and Neuhaus 2009, 2010). Considering that the rut of Alpine ibex takes place in

very steep and exposed terrain, the risks associated with intra-male aggression and

coursing chases might, however, also be much higher than in many other ungulates,

contributing to the less aggressive behaviour of Alpine ibex.

Reproductive pattern and survival in other ungulates

Positive effects of age and dominance on reproductive success are not restricted to male

Alpine ibex; they can be found in a variety of other polygynous ungulates as well (see e.g.

Coltman et al. 1999b, 2002; Nussey et al. 2009). However, in no other species has such a

strong age-related reproductive skew towards males of older ages been documented as in

the Alpine ibex in our study. This finding is in accordance with the extremely high survival

of male Alpine ibex (Toı̈go et al. 2007).

Among polygynous ungulates in general, reproduction at an early age appears to be

comparably frequent among species with poor to moderate survival prospects, whereas its

significance seems to be relatively low in species exhibiting high annual survival rates.

Thus, in bighorn sheep, white-tailed deer (Odocoileus virginianus), reindeer (Rangifer
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tarandus), and roe deer (Capreolus capreolus)—all species with annual survival rates

varying between 74 and 87% on average (Bonenfant et al. 2009; Toigo and Gaillard 2003;

Ricca et al. 2002)—successful reproduction is taking place already among 1–4 year old

individuals (Sorin 2004; Coltman et al. 2002; Roed et al. 2005; Vanpe et al. 2009). In Soay

sheep, a polygynous ungulate whose average annual survival may be as low as 68% (Toigo

and Gaillard 2003; Clutton-Brock et al. 1992), frequent reproduction was even observed

among juvenile individuals (Coltman et al. 1999a, b). On the other hand, in red deer

(Nussey et al. 2009) and wood bison (Wilson et al. 2002)—i.e. two species exhibiting

relatively high survival rates of on average 94–95% (Toigo and Gaillard 2003)—repro-

ductive success is largely restricted to males older than 5–7 years.

Data on the distribution of male reproductive success are so far only available for few

ungulate species. These data show that male reproductive behaviour in polygynous species

is highly plastic (Oliveira et al. 2008; Isvaran 2005). Furthermore, the above compilation of

survival and reproduction patterns illustrates that, similar to female mammals (e.g. Dobson

and Oli 2007), male ungulates also exhibit a close link between age-dependent repro-

ductive patterns and overall prospects of reaching full adult body size. Thus, as expected

from life-history theory, high survival rates coincide with a delayed start of reproduction

among polygynous male ungulates, whereas poor survival prospects are associated with

early reproduction.

Reproductive skew

Our finding that reproductive success in male Alpine ibex was largely restricted to few

older, high ranking males engaging primarily in the tending tactic, led to a marked

reproductive skew among males in the population. The values of Im we found were among

the highest reported for polygynous ungulates. Still, contrary to expectations, the level of

reproductive skew in the different species was not associated with age-related reproductive

patterns of males Table 4). For example, Soay sheep exhibit frequent early reproduction

and Im values nearly as high as Alpine ibex, while wood bison exhibit a delayed onset of

reproduction like Alpine ibex but low Im values. Thus, even in species in which early

reproduction is very frequent, the distribution of paternities may still be noticeably

restricted to few, but very successful individuals; the opposite may be the case in species

with delayed reproduction.

Conclusions

In accordance with existing studies on growth (Lüps et al. 2007) and survival (Toı̈go et al.

2007), our study confirmed the prediction that male Alpine ibex are exhibiting a repro-

ductive pattern that is strongly biased towards older males. Therefore, not just with regard

to survival but also with regard to reproduction, male Alpine ibex live a rather slow life

when compared with other polygynous ungulates. Slow life-histories as described here for

male Alpine ibex are thought to evolve only in environments allowing for persistently high

yearly survival rates. That male adult Alpine ibex exhibit consistently high adult survival

rates on average appears to be a consequence of their excellent ability to buffer the climate-

induced environmental variability typical of their harsh alpine habitat (Grotan et al. 2008).

Nevertheless, should their survival decrease significantly, male Alpine ibex are expected to

experience selection for faster life-history, as evidenced for Tasmanian devils (Sarcophilus
harrisii) which responded to the occurrence of a deadly disease by becoming increasingly

precocious (Jones et al. 2008). To which extent the human-induced hunting pressure in the
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history of Alpine ibex (Biebach and Keller 2009) has already led to shifts in the life-history

strategy of this species, especially the age-dependent reproductive pattern, remains

unknown. Given the large reproductive skew, Im, and the correspondingly high ‘oppor-

tunity for selection’ (Shuster and Wade 2003), this aspect would doubtlessly merit further

analyses, since high values of Im are indicating that heritable traits in males can react

quickly to selection (see also Coltman et al. 2003; Conover and Munch 2002; Harris et al.

2002).
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Appendix

See Table 5.

Table 5 Expected heterozygosity (He) and locus-specific error rates (per genotype) for faecal and blood/
tissue samples

Locus Number of
alleles

Faecal samples Blood and tissue samplesa He

Dropout rate False allele
rate

Dropout rate False allele
rate

BM1258 5 0.009 0 0 0 0.29

BM1818 2 0.113 0.012 0.026 0 0.50

BM302 4 0.014 0.006 0 0 0.69

BM415 2 0.035 0.031 0 0 0.44

BM4208 4 0.007 0.018 0.009 0 0.74

BM4505 2 0.203 0.033 0.074 0 0.46

CSSM47 3 0.016 0.005 0.071 0 0.53

ETH10b 2 0.058 0.002 0.019 0 0.12

HAUT27 3 0.122 0.029 0.02 0 0.46

ILSTS029 2 0.054 0.061 0 0.005 0.50

INRABERN175 2 0.064 0.038 0.01 0 0.48

JMP29 3 0.01 0.006 0.025 0 0.60

Maf209 3 0 0 0 0 0.10

MAF36 3 0.014 0.01 0 0 0.10

MAF70 2 0.041 0.004 0 0 0.08

McM152 4 0.003 0.004 0 0 0.65

McM73 4 0.011 0.025 0 0 0.69

MILSTS076 5 0.028 0.021 0 0 0.45

OarAE54 2 0.065 0.008 0.071 0 0.23

OARFCB193 6 0.017 0.012 0 0 0.55
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