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Abstract Motivated by the observation that the diurnal evolution of sensible and latent
heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of
the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model.
Neglecting the early morning transition, the potential temperature and specific humidity of
the mixed layer are found to be linearly related to the ABL height. Similar behaviour is
followed by the inversion strengths of temperature and humidity at the top of the ABL.
The potential temperature of the mixed layer depends on the entrainment parameter and
the free-atmosphere temperature lapse rate, while the specific humidity also depends on the
free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only
implicitly in the evolution of the height of the boundary layer, which in turn depends on the
time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio
for very low and very large values of net available energy, we also show how the tendency to
maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the
atmospheric conditions for large values of net available energy. The analytical expression for
the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides
a benchmark for the results of more complex models.

Keywords Atmospheric boundary layer · Bowen ratio · Evaporation · Mixed layer ·
Slab model

1 Introduction

Mixed-layer or slab models of the atmospheric boundary layer (ABL) have long been used
to capture the essential coupling of the land-atmosphere water and energy balances, and the
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228 A. Porporato

partitioning of incoming solar energy into sensible and latent heat fluxes. This coupling arises
because such fluxes depend on the state of the ABL, namely temperature and humidity, which
in turn are controlled by the surface fluxes.

The mixed-layer models have been pioneered by Betts (1973), Tennekes (1973) and
Carson (1973), and further developed by Tennekes and Driedonks (1981), Driedonks and
Tennekes (1984) and many others, to analyze the growth of the ABL and the dynamics of the
inversion at its top. These models were then coupled to the evaporation and ABL moisture
balance equations to elucidate the role of vegetation and surface conditions on the lower
atmosphere and the related feedbacks, as well as used as interfaces between land and atmo-
sphere in climate and biogeochemistry models (de Bruin 1983; McNaughton and Spriggs
1986; Brutsaert 1987; Raupach 1991, 2000; Ek and Mahrt 1994; Lhomme et al. 1998; Daly
et al. 2004; Ek and Holtslag 2004; Juang et al. 2007; Siqueira et al. 2009).

After the popularity of slab models in 1980s and 1990s, research has progressively moved
towards more complex approaches (Raupach 1998), aimed at more refined descriptions of
turbulence, radiation, cloud and surface conditions. However, while such a direction is cer-
tainly important to improve predictions and better understand the numerous land-atmosphere
feedbacks, simple models should not be dismissed too easily especially when physical inter-
pretation, more than precise forecasting, is the main goal. No matter how refined, in fact,
complex models will always miss some high-dimensional components (which instead could
be approximated by suitable stochastic components coupled to simple deterministic models),
while the essential physics may be obscured by the complexity of the equations and lack of
generality of their numerical solutions.

With this in mind, in this paper we take the opposite direction and follow the line of
McNaughton and Spriggs (1986) and Raupach (1991) among others, working analytically
when possible, and making simplifying approximations to focus on the main processes and
key interactions of the problem. Our main line of attack is suggested by field observations
whereby sensible and latent heat fluxes tend to follow the diurnal trend of available energy
(Brutsaert 2005), giving rise to a roughly constant value of the Bowen ratio, at least during
midday hours. While this general tendency is present in both simple and complex models, its
physical and mathematical consequences only become apparent when the model is reduced
to its essentials. As will be seen, when this approximation is embedded in the dynamical
system of the mixed layer, the coupled nonlinear ordinary differential equations become
quite simple (linear, in fact), once the effects of the initial conditions (the so-called morning
transition; Tennekes 1973) become negligible.

2 Basic Equations

The main equations of the mixed layer models are discussed in detail in, e.g., Tennekes
(1973), Tennekes and Driedonks (1981), McNaughton and Spriggs (1986), Garratt (1992),
and Raupach (2000). These typically consider idealized conditions, neglecting cloud, con-
densation, radiation and subsidence effects. Here we also assume fixed surface conditions
(apart from temperature) during the day, and neglect the effects of the early morning transi-
tion, when the nighttime residual layer is dissipated and the ABL grows mostly by mechan-
ical turbulence. As discussed in Tennekes (1973) during the warm season this morning
transition is usually less than one hour. All these approximations are quite standard in the
literature.

At the surface, the available solar energy is partitioned into latent (evapotranspiration) and
sensible heat flux according to
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ABL with Constant Bowen Ratio 229

Q = λE + H, (1)

where Q is the net radiation, E is the evaporative flux, λ is the latent heat of vaporization, H is
the sensible heat flux. Net radiation is simply assumed to be a function of time t , independent
of ABL conditions, i.e., Q(t). The previous equation is often written using the Bowen ratio
(Bowen 1926; Brutsaert 2005)

Q = λE + H = λE(1 + Bo), (2)

where

Bo = H

λE
. (3)

Evapotranspiration is, as usual,

E = geρ(q∗
s − q), (4)

where ge is the conductance to water vapour (typically the series of stomatal, canopy and
atmospheric conductances), ρ is the air density, q∗

s is the saturated specific humidity at the
evaporating surface, and q is the specific humidity of the mixed layer. The saturated specific
humidity is a function of the potential temperature ϑs , according to the Clausis-Clapeyron
equation. The sensible heat flux is

H = ghρcp(ϑs − ϑ), (5)

where gh is the conductance to sensible heat transfer (the series of canopy and atmospheric
conductances), cp is the constant-pressure specific heat of air, and ϑ is the potential temper-
ature of the mixed layer.

The previous relationships define the fluxes through the surface layer and into the
well-mixed layer, where the specific humidity and potential temperature are constant. The
mixed layer grows by turbulent entrainment into the free atmosphere, where the variables are
indicated with an ‘ f ’ subscript. In the mixed layer, temperature and humidity are governed
by the budget equations for enthalpy and moisture. For potential temperature, the first law of
thermodynamics (or enthalpy equation for the conservation of potential temperature) gives

ρcph
dϑ

dt
= H + ρcp(ϑ f − ϑ)

dh

dt
, (6)

where γϑ is the potential temperature lapse rate of the free atmosphere, h is the height of the
ABL (Fig. 1), and ϑ f is the potential temperature of the free atmosphere at height z = h.
The inversion layer at the top of the ABL is assumed to be of negligible depth, as usual in
the zeroth-order slab models (Garratt 1992).

The water balance equation in the mixed layer is

ρh
dq

dt
= E + ρ(q f − q)

dh

dt
, (7)

where q f is the specific humidity of the free atmosphere at height z = h. Potential tempera-
ture and specific humidity in the free atmosphere are assumed to have linear profiles,

ϑ f = ϑ f0 + γϑ h, (8)

and

q f = q f0 + γq h. (9)
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230 A. Porporato

Fig. 1 Schematic representation of the vertical profiles of potential temperature and specific humidity for the
mixed-layer ABL model

The ABL grows because of turbulence entrainment at the expense of the mixed-layer
turbulent energy (Tennekes 1973; Garratt 1992). A simplified equation for the rate of growth
of h can be obtained, as described in the Appendix, as

dh

dt
= (1 + 2β)H

ρcpγϑ h
, (10)

where the virtual temperature flux, which more precisely should be used to include the effect
of water vapour in the buoyancy generation of turbulence (e.g., McNaughton and Spriggs
1986), is approximated by the sensible heat flux, Hv ≈ H . This approximation is quite
acceptable, and is comparable to the other approximations made in constructing the mixed-
layer models. With β = 0 the equation becomes equivalent to the simple growth model used
in McNaughton and Spriggs (1986).

The previous equations form a closed system once Q(t), the surface conditions, through
gh and ge, and the free atmosphere profiles, (8) and (9), are given.

3 Analytical Developments

3.1 Temperature–Height Relation

Substituting (10) into (6),

ρcph
dϑ

dt
= H

[
1 + (1 + 2β)(ϑ f − ϑ)

γϑ h

]
, (11)

and using the free atmosphere temperature profile (8) with the notation ϑ̃ = ϑ − ϑ f0 yields

ρcph
dϑ̃

dt
= H

[
2(1 + β) − (1 + 2β)

γϑ

ϑ̃

h

]
. (12)
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ABL with Constant Bowen Ratio 231

Fig. 2 Types of potential temperature profiles for three different values of the entrainment parameter β

Dividing then (12) by (10), a single equation can be obtained where time only appears
implicitly as a parameter,

dϑ̃

dh
= 2γϑ

1 + β

1 + 2β
− ϑ̃

h
. (13)

The solution of (13) is

ϑ̃ = γϑ

1 + β

1 + 2β
h + C1

h
, (14)

where the integration constant C1 can be set equal to zero in order to have ϑ̃ = 0 for h = 0
(consistently with neglecting the morning transient). This results in a linear relationship
between the height and the potential temperature of the mixed layer,

ϑ̃ = γϑ

1 + β

1 + 2β
h, (15)

previously obtained also by Driedonks (1982), and in agreement with observations, at least
before clouds and subsidence become important (Brutsaert, personal communication, 2008).

For β = 0, which corresponds to the case of McNaughton and Spriggs (1986), ϑ in
the ABL follows the linear profile of the overlying free atmosphere, and no temperature
inversion is present. This is the case of pure encroachment, without turbulence entrainment
(Garratt 1992). With the more realistic value of β = 0.2, ϑ ≈ 0.86γϑh, a visible inversion
appears, while the ABL grows faster because turbulence entrains air with higher potential
temperature from above. Finally, when there is no sensible heat flux at the surface, H = 0
(which corresponds to β → ∞), ϑ = 1/2γϑ h and the ABL simply mixes up the enthalpy
entrained mechanically from above (Tennekes and Driedonks 1981; Garratt 1992). Figure 2
shows schematically the various cases. As will be seen later, a similar situation holds for the
approximate solution of the humidity profiles.

For later use, we also note that introducing (15) into (12) yields

ρcph
dϑ̃

dt
= H(1 + β). (16)
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3.2 Specific Humidity–Temperature Relation

A similar procedure can be followed to obtain a relation between specific humidity and
temperature. Using the definition of the Bowen ratio (3) and the linear humidity profile (9),
and substituting (10) into (7), one obtains

ρh
dq

dt
= H

[
1

λBo
+ 1 + 2β

cp

γq

γϑ

+ (1 + 2β)(q f0 − q)

cpγϑ h

]
. (17)

Introducing the notation q̃ = q − q f0 and the temperature-height relation (15) yields

ρh
dq̃

dt
= H

[
1

λBo
+ 1 + 2β

cp

γq

γϑ

− 1 + β

cp

q̃

ϑ̃

]
. (18)

Using (4) and (5), the Bowen ratio can be written as

Bo = ghcp(ϑs − ϑ)

geλ(q∗
s − q)

= ghcp(ϑ̃s − ϑ̃)

geλ(q̃∗
s − q̃)

, (19)

so that

cpρh
dq̃

dt
= H

[
ge(q̃∗

s − q̃)

gh(θ̃s − θ̃ )
+ (1 + 2β)

γq

γϑ

− (1 + β)
q̃

ϑ̃

]
. (20)

Finally, dividing (20) by (16), the sensible heat flux can be eliminated along with the explicit
temporal dependence to obtain

dq̃

dϑ̃
= ge/gh(q̃∗

s − q̃)

(1 + β)(ϑ̃s − ϑ̃)
+ (1 + 2β)γq

(1 + β)γϑ

− q̃

ϑ̃
. (21)

Since q̃∗
s = q̃∗

s (ϑ̃s), and because ϑ̃s is a function of ϑ̃ , q̃ and Q(t) (due to (1), (4) and (5)), it
follows that there is a unique relation between q̃ and ϑ̃ of the mixed layer. The point of the
solution of (21) that is selected on this curve is determined by the diurnal development of the
ABL through its height h. The ratio ge/gh strongly depends on surface conditions (conduc-
tance) and, as we discuss later, it is zero in the dry-surface limit (Bo → ∞). It should also
be noted that the application of (21) may become problematic when stratification becomes
weak.

4 Solution with Constant Bowen Ratio

Although we have reduced the problem of relating ϑ̃ and q̃ to a single first-order ordinary
differential equation, the problem remains rather involved due to the nonlinear dependence
of both ϑ̃s and q̃s on ϑ̃ and q̃ through the surface flux equations (4) and (5), and the nonlinear
solution of the Clausius-Clapeyron equation for the saturated vapour pressure (and thus the
saturated specific humidity) as a function of temperature. Due to these nonlinearities and
interdependencies, only a numerical solution and, perhaps, some asymptotic analyses of the
full problem seem to be possible. Thus, in what follows we will analyse the problem by
making some suitable simplifications.

A drastic but revealing simplification is suggested by the fact that the Bowen ratio tends
to remain constant, at least in the central part of the day and for well-watered conditions
(i.e., potential evapotranspiration), e.g., Brutsaert and Sugita (1992) and Brutsaert and Chen
(1996) [see also Stewart and Thom (1973) and Brutsaert (2005, pp. 139–141)]. For example,
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ABL with Constant Bowen Ratio 233

Table 1 Typical values of the
parameters used in computations ρ 1.29 kg m−3

λ 2.45×106 J kg−1

cp 1,005 J kg−1 K−1

gh 0.01 m s−1

ge 0.01 m s−1

β 0.2 –
γϑ 4.78×10−3 K m−1

γq −0.00145×10−3 kg kg−1 m−1

ϑ f0 288 K
q f0 0.00785 kg kg−1

t0 6 hours
Qm 400 W m−2

data from Davies and Allen (1973) show Bowen ratios typically between 0.3 and 0.1, for
temperatures increasing from ≈15◦C to ≈25◦C. Since also λ is almost constant at those
temperatures, it means that (21) can be approximated as

dq̃

d θ̃
= ϕ − q̃

θ̃
, (22)

where ϕ is a constant equal to

ϕ = cp

λ(1 + β)Bo
+ (1 + 2β)γq

(1 + β)γϑ

. (23)

Note that the first term of the right-hand side of (23) is typically positive, while the second
term tends to be negative due to the fact that γq is typically small but lower than zero (in the
computations we use a typical value of −0.00145 × 10−3 kg kg−1 m−1 as in Lhomme et al.
(1998), see Table 1).

The solution of (22) is now easily found as,

q̃ = ϕ

2
ϑ̃ + C2

ϑ̃
, (24)

where, as usual, we neglect the morning transition and set C2 = 0. As a result, we obtain
a linear relation of the mixed-layer specific humidity with temperature analogous to (15).
Because of (8), a linear relationship also links specific humidity and height as

q̃ = γ ′
q h, (25)

where we have introduced a ‘lapse rate’ for the humidity at the top of the mixed layer.
Using (23), (24) and (8), the latter results in a linear combination of the lapse rates of the
free-atmosphere profiles,

γ ′
q = 1

2

[
γϑ

cp

λ(1 + 2β)Bo
+ γq

]
, (26)

where the first term is the contribution due to surface evaporation and the second term results
from the entrainment from the free atmosphere.

It is interesting to analyze the sign and value of the coefficient ϕ (which is also the same
as that of γ ′

q ) as a function of the Bowen ratio for a typical value of γq (Table 1). As seen
in Fig. 3 (left panel), for well-watered conditions (e.g., Bo ≈ 0.1 − 0.3) ϕ is positive, which
implies that the specific humidity of the mixed layer increases during the day. However, as
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Fig. 3 Left Behaviour of the constant ϕ as a function of the Bowen ratio. Continuous line refers to
γq =−0.00145×10−3 kg kg−1 m−1, while dashed line is for γq = 0 (see Table 1 for other parameter
values). Right Behaviour of the Bowen ratio Bo0 that maintains constant mixed-layer specific humidity as a
function of the mixed-layer specific humidity ‘lapse rate’

Fig. 4 Types of specific humidity profiles for three different values of the Bowen ratio

the Bowen ratio increases the input of moisture is reduced along with the values of ϕ and γ ′
q ,

until they become zero when

Bo0 = − cpγϑ

λ(1 + 2β)γq
. (27)

Using typical values of the parameters (see Table 1), this happens for Bo0 ≈ 1 (Fig. 3, left
panel). Note that the above expression is valid only for γq < 0, while for γq ≥ 0 the specific
humidity always increases as both ϕ and γ ′

q are always positive (Fig. 3, right panel shows
the Bowen ratios Bo0 that ensure constant specific humidity as a function of γq ).

For the limiting case of Bo → ∞, which takes place for a dry surface (e.g., E → 0 or
ge/gh = 0), the lapse rate becomes one half that of the free atmosphere, γ ′

q = 1/2γq (note
that this is typically a negative value). The reason for this is that the boundary layer does not
receive any moisture from the surface, while it entrains drier air from the free atmosphere
above. The growth of the discontinuity, schematically depicted in Fig. 4, is such to maintain
the two shaded areas equal and thus ensure moisture conservation. This is similar to the
temperature growth in conditions of zero sensible heat flow at the surface (see Fig. 2 for
β → ∞).

Although approximated, the assumption of constant Bowen ratio gives simple relations
among the mixed layer variables. Section 6 presents the temporal evolution of the ABL
following this assumption.
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5 Limiting Behaviours of the Bowen Ratio

The reason for the Bowen ratio to remain almost constant during mid-day hours is explained
by the limiting behaviour of the Bowen ratio as a function of the net available energy Q.
We begin by re-writing (4), and separating the contributions due to temperature differences
between the surface and the atmosphere from that due to the saturation deficit of the air, as
typically done in the Penman-Monteith or combination approach (Raupach 2001; Brutsaert
2005),

E = geρ(q∗
s − q∗ + q∗ − q) = geρ[εr (ϑs − ϑ) + (q∗ − q)], (28)

where εr is the slope of the saturated specific humidity curve computed at a suitable ref-
erence temperature (comprised between the surface and the atmospheric temperature). As
noted in Raupach (2001), this is simply an algebraic manipulation that does not entail any
approximation. Dividing (28) by geρ(ϑs − ϑ) it follows that

q∗
s − q

ϑs − ϑ
= εr + q∗ − q

ϑs − ϑ
. (29)

Moreover, combining (28) and (5) and substituting into (1) it is possible to solve for

ϑs = ϑ + Q/ρ − λge(q∗ − q)

λgeεr + ghcp
, (30)

from which

q∗
s − q

ϑs − ϑ
= εr + (λgeεr + ghcp)(q∗ − q)

Q/ρ − λge(q∗ − q)
. (31)

The latter can be introduced into (19) to obtain a relationship between the Bowen ratio and
the net available energy.

Two limiting behaviours can be readily analysed: one valid early in the morning and
evening, when Q is very small, which gives

q̃∗
s − q̃

ϑ̃s − ϑ̃

∣∣∣∣
Q→0

= − ghcp

geλ
, (32)

and the other, when Q is very large, whereby

q̃∗
s − q̃

ϑ̃s − ϑ̃

∣∣∣∣
Q→∞

= εr . (33)

The corresponding Bowen ratios are, respectively,

BoQ→0 = −1 (34)

and

BoQ→∞ = ghcp

geλεr
. (35)

The first case for Q → 0 is easily understood in terms of the energy balance (1) with no net
energy input, where the evaporation that cools the surface is balanced by an opposite sensi-
ble heat flux. This of course stems from the simplified form of (1) that assumes steady-state
conditions (i.e., no heat storage) of the surface energy balance. More interesting is the behav-
iour when Q is very large, which shows that the Bowen ratio is simply given in terms of
the conductance ratio and thermodynamic quantities linked to the saturated vapour pressure
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Fig. 5 Left Bowen ratio as a function of the net available energy for different values of the vapour saturation
deficit (from top to bottom, lines refer to q∗ − q = 0.001, 0.006, 0.011, 0.016, respectively) for a reference
temperature of 25◦C. Right Limiting value of the Bowen ratio for very large net available energy as a function
of the reference temperature introduced in (28) (see Table 1 for other parameter values)

curve. It is also noteworthy that the limiting value is the same as that obtained in conditions
of potential evaporation, i.e., when q̃∗ − q̃ = 0, independently of the value of Q.

In either limiting case, the Bowen ratio becomes almost independent of the atmospheric
conditions. As shown in Fig. 5 (left panel) the lower the pressure deficit of the atmosphere,
the faster (in terms of Q) this decoupling from the atmospheric conditions is achieved. For
high enough Q the range of variation of the Bowen ratio is rather limited, thus explaining the
almost-constant values observed during midday hours. In contrast, for low and intermediate
values of Q and unsaturated conditions, the Bowen ratio is more sensitive to the feedback
from the atmosphere. It is also interesting to note that for large Q the limiting value of the
Bowen ratio does not vary strongly with temperature (see Fig. 5, right panel), but remains
dependent on the ratio of the surface conductances (e.g., water stress).

6 Diurnal Evolution

The approximate solutions assuming constant Bowen ratio and neglecting the morning tran-
sition are extremely simple and can be used to obtain analytically the diurnal evolution of
the main ABL variables. Using a simple parabolic behaviour of the available energy

Q(t) = Qm[1 − (t/t0 − 1)2], (36)

with 0 < t < 2t0, and H = QBo/(1 + Bo), equation (10) can be integrated to give the
diurnal evolution of the ABL height,

h =
[

2

3

(1 + 2β)Bo(3t0 − t)t2

ρcpγϑ(1 + Bo)t2
0

] 1
2

. (37)

Figures 6 and 7 show the ensuing diurnal evolutions of the main ABL variables, obtained
using (37), (15) and (25), while Fig. 8 gives the final values of the ABL height and relative
humidity at sunset (t = 2t0) as a function of the values of the Bowen ratio. Note how the
behaviour of the relative humidity is more complex (Ek and Mahrt 1994) than the other
variables and quite sensitive to the values of the Bowen ratio and the atmospheric conditions
during the early morning hours when Q is still low. This behaviour of the diurnal evolution is
expected to be quite realistic because the constant Bowen ratio approximation is acceptable
during the central part of the day when the available energy is higher (Fig. 5, left panel),
while early and late in the day, the energy fluxes are small and thus the errors due to the
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Fig. 6 Diurnal trends of the main ABL variables obtained assuming constant Bowen ratio and parabolic
behaviour of available energy (see Table 1 for parameter values). Dashed line is surface temperature
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Fig. 7 Diurnal trend of relative humidity for different values of the Bowen ratio. From top to bottom the
curves refer to Bo = 0.1, 0.2, 0.3, 0.4 (see Table 1 for parameter values)

approximation should not play too important a role. Future work will analyze in detail the
entity of these errors and the role of the initial conditions during the morning transition.

7 Conclusions

The dynamics of the ABL are described by the coupled nonlinear ordinary differential
equations (6), (7) and (10), and the algebraic equations (1), (4) and (5). After a relatively com-
plex initial transition (Tennekes 1973), the ABL evolves, driven by high levels of available
energy, along a relatively simple trajectory characterized by an almost-constant value of the

123



238 A. Porporato

0.2 0.4 0.6 0.8 1 1.2 1.4
Bo

500

1000

1500

hfin(m)

0.2 0.4 0.6 0.8 1 1.2 1.4
Bo

0.6

0.7

0.8

RHfin

Fig. 8 Height of the ABL and relative humidity at sunset as a function of the Bowen ratio (see Table 1 for
parameter values)

Bowen ratio. In these midday conditions the values of the Bowen ratio tend to be close to the
Q → ∞ limit, which coincides with the potential evaporation limit (e.g., Raupach 2000,
2001; Brutsaert 2005) and depends only on the relative value of the conductances to latent
and sensible heat fluxes and on thermodynamic quantities. At both very low and very high
energy levels the Bowen ratio tends to become independent of the atmospheric conditions,
apart from a relatively weak dependence on temperature for the very large Q limit.

In the approximation of constant Bowen ratio, the relationships among the main ABL
variables and the jumps in temperature and specific humidity at the inversion layer atop the
ABL, are linear. The analytical solutions of the time evolution of the ABL obtained under
constant Bowen ratio from the linear relations (15) and (25) are simple enough and may be
useful as benchmarks for more complex models.

8 Appendix: Justification of Equation (10)

Equation (10) can be justified using arguments due to Tennekes (1973), Betts (1973), and
Garratt (1992), who noticed that the potential temperature inversion, ϑ f − ϑ = δ, tends to
grow linearly with the height of the ABL. We present here the steps for completeness and to
point out the fact that the approximations leading to (10) require neglecting the effect of the
initial conditions (i.e., the morning transition).

The surface sensible heat flux is Brutsaert (2005)

H = ρcp(ϑ ′w′)s, (38)

where primes denote turbulence fluctuations around the mean. At the top of the mixed layer,
the turbulent flux is linked to the entrainment of potential temperature. As the ABL grows,
thus

δ
dh

dt
= −(ϑ ′w′)h, (39)

coupled to the kinetic equation for the inversion strength (Tennekes 1973)

dδ

dt
= γϑ

dh

dt
− dϑ

dt
. (40)

The energy equation for the well-mixed layer is

h
dϑ

dt
= (ϑ ′w′)s − (ϑ ′w′)h, (41)

which, with the substitutions of (38) and (39), becomes Eq. (6).
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The turbulent flux at the top of the ABL can be approximated using the turbulence energy
balance equation at the inversion. Following Tennekes (1973) a good approximation is given
by the interpolation relation

− (ϑ ′w′)h = A
T0u3∗
gh

+ β(ϑ ′w′)s, (42)

where the first term on the right-hand side is the flux due to growth of the ABL by mechani-
cal turbulence while the second is due to the buoyancy-generated turbulence. In the previous
equation, g/T0 is the buoyancy parameter, u∗ is the surface friction velocity and A and β

are parameters. A is typically 2.5 and β lies between 0.1 and 0.4 with a typical value of
0.2. Since this second term is dominant after the early morning transition (Tennekes and
Driedonks 1981; Driedonks and Tennekes 1984), we further approximate, as is customary,

(ϑ ′w′)h = −β(ϑ ′w′)s . (43)

The previous equations describe the growth of the ABL height (h) and the inversion depth
(δ), once the surface flux (H or (ϑ ′w′)s) is known either from measurements or from solving
the surface energy balance and computing the sensible heat flux from (1), (4) and (5).

Further simplifications are possible if one neglects the effect of the initial conditions during
the morning transition. Substitution (39) and (41) into (40) gives

d

dt
(δh) = γϑ h

dh

dt
− (ϑ ′w′)s (44)

which, combined with (43), provides a differential equation for δ and h implicit in time
(Tennekes 1973)

h
dδ

dh
+

(
1

β
+ 1

)
δ − γϑ h = 0, (45)

the solution of which is

δ = γϑβ

2 + β
h + C3h

β+1
β . (46)

With δ = 0 for h = 0 (no morning transition), the previous relation becomes

δ = γϑβ

2 + β
h (47)

which is a more general form of Eq. 29 of Tennekes (1973). Substituting now (47) in (44)
allows us to write

γϑ h
dh

dt
− γϑ

β

1 + 2β
2h

dh

dt
= −(ϑ ′w′)s . (48)

Using (38), this readily gives (10), which is also Eq. 6.18 of Garratt (1992).
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