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Abstract Microalgae of numerous heterotrophic genera
(obligate or facultative) exhibit considerable metabolic
versatility and flexibility but are currently underexploited
in the biotechnological manufacturing of known plant-
derived compounds, novel high-value biomolecules or
enriched biomass. Highly efficient production of microalgal
biomass without the need for light is now feasible in
inexpensive, well-defined mineral medium, typically supple-
mented with glucose. Cell densities of more than 100 gl−1

cell dry weight have been achieved with Chlorella,
Crypthecodinium and Galdieria species while controlling
the addition of organic sources of carbon and energy in
fedbatch mode. The ability of microalgae to adapt their
metabolism to varying culture conditions provides oppor-
tunities to modify, control and thereby maximise the
formation of targeted compounds with non-recombinant
microalgae. This review outlines the critical aspects of
cultivation technology and current best practices in the
heterotrophic high-cell-density cultivation of microalgae.
The primary topics include (1) the characteristics of
microalgae that make them suitable for heterotrophic
cultivation, (2) the appropriate chemical composition of
mineral growth media, (3) the different strategies for

fedbatch cultivations and (4) the principles behind the
customisation of biomass composition. The review con-
firms that, although fundamental knowledge is now
available, the development of efficient, economically
feasible large-scale bioprocesses remains an obstacle to
the commercialisation of this promising technology.

Keywords Microalgae . Heterotrophic growth . High-cell-
density culture . Fedbatch process . Substrate limitation .

Stirred tank bioreactor

Introduction

Microalgae, a large and heterogeneous group of micro-
scopic algae, are an almost untapped pool of metabolic
versatility. As many of the species occurring in nature have
not yet been identified and/or physiologically characterised,
their potential awaits exploitation in the biotechnological
manufacturing of high-value biomolecules or deliberately
enriched biomass (Guedes et al. 2011; Raja et al. 2008;
Rosenberg et al. 2008; Wijffels 2008). The term ‘micro-
algae’ is typically used in its narrowest sense as a synonym
for photoautotrophic, unicellular algae utilising CO2 and
gaining energy from light. Although certain species are
obligate photoautotrophs, numerous microorganisms current-
ly classified as microalgae are in fact obligate heterotrophs
(Droop 1974; Gladue and Maxey 1994), and others are
capable of both heterotrophic and photoautotrophic metabo-
lism either sequentially or simultaneously (Chojnacka and
Marquez-Rocha 2004; Droop 1974; Gladue and Maxey
1994; Lee 2001).

Heterotrophic cultivation without light and with the
controlled addition of an organic source of carbon and
energy is similar to procedures established with bacteria or
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yeasts in multipurpose stirred closed tanks sterilised by
heat. To date, only a small number of microalgal species
have been cultured heterotrophically in conventional bio-
reactors (Chen 1996; Perez-Garcia et al. 2011). The few
commercialised processes in which microalgae are grown
under heterotrophic conditions are focussed on the manu-
facture of polyunsaturated fatty acids (PUFA) in 100-m3

scale (Behrens 2005). These biotechnological processes
represent a sustainable alternative to the extraction of PUFA
from fish oil (Apt and Behrens 1999; Barclay et al. 1994;
Barclay 1992; Kyle and Gladue 1991; Kyle et al. 1991;
Mendes et al. 2009; Wynn et al. 2005). Several other
heterotrophic processes that utilise microalgae have been
established at laboratory scale to deliberately enrich the
biomass with compounds such as pigments and antiox-
idants (Pulz and Gross 2004; Raja et al. 2008; Spolaore et
al. 2006). L-Ascorbic acid (Running et al. 1994) and
polysaccharides (Ramus 1972) are examples of commer-
cially valuable extracellular products obtained from micro-
algae. Classes of compounds that are found in microalgae
and that exhibit desirable properties for treating inflamma-
tion, tumours and viral or microbial infections are attracting
new interest (Guedes et al. 2011). Moreover, research in the
rapidly expanding field of biofuels (Wijffels and Barbosa
2010) provides a valuable source of fundamental informa-
tion on the physiology and biochemistry of microalgae,
producing high-value compounds (e.g. Brányiková et al.
2010; Xiong et al. 2010b). The growing interest in
microalgae, either non-recombinant or with appropriate
genetic modification (Potvin and Zhang 2010; Specht et al.
2010), suggests that heterotrophic microalgal processes
offer significant commercial opportunities (Rosenberg et
al. 2008).

In contrast to plants or seaweeds, in which biomass is
fairly compact, the harvesting of unicellular microalgae
dispersed in natural habitats of microbial consortia is not as
straightforward. Low cell densities of several grams per
litre are an important cost factor for established production
processes with photoautotrophic microalgae in convention-
al open ponds or photobioreactors (Molina Grima et al.
2003). However, cell densities of more than 100 gl−1 cell
dry weight, achieved with Chlorella, Crypthecodinium and
Galdieria species, highlight the potential of heterotrophic
microalgal processes (de Swaaf et al. 2003c; Doucha and
Lívanský 2011; Graverholt and Eriksen 2007; Wu and Shi
2007). Moreover, systematic screening for new compounds
is only feasible provided that sufficient quantities of
concentrated biomass from axenic (pure) cultures are
attainable (Olaizola 2003; Wijffels 2008).

From taxonomic studies, it is acknowledged that micro-
algae exhibit considerable metabolic plasticity (Trainor
2009). In response to their surroundings, particular species
can occur in alternative phenotypes, and these can result in

the altered formation of metabolites and/or products. Thus,
the composition of biomass (or intracellular products) or the
production of desired extracellular products is typically
affected by culture conditions (Hu 2004; Illman et al. 2000;
Jakobsen et al. 2008; Lv et al. 2010; Shi et al. 2006; Xiong
et al. 2010b; Yongmanitchai and Ward 1991). In turn, this
large environmental adaptability provides opportunities to
modify the production of targeted natural compounds and
to control their formation at high titres, yields, productiv-
ities and the required quality (purity). However, screening
the various (natural) phenotypes under different conditions
is a complex, time-consuming task involving a large
number of culture variables. The basic principles of
systematic screening were established during studies of
the species suitable for use in aquaculture hatcheries
(Gladue and Maxey 1994).

Although the opportunities for heterotrophic processes
with microalgae have been considered in several review
papers (Apt and Behrens 1999; Borowitzka 1999; Lee 2001
as well as more recently by Eriksen 2008b and Perez-
Garcia et al. 2011), few cover aspects of cultivation
technology in depth (e.g. Chen 1996; Chen and Chen
2006). In an attempt to address the outstanding issues, this
review paper outlines the current best practices in the
heterotrophic high-cell-density cultivation of microalgae for
the production of biomass or specific products for health
and nutraceutical applications. The main topics dealt with
include (1) the characteristics of microalgae suitable for
heterotrophic cultivation, (2) the appropriate chemical
composition of mineral growth media, (3) strategies for
high-cell-density cultivation and (4) the principles of
customising biomass composition. Thus, the potential and
limitations of fedbatch technology are outlined. The generic
process strategies described are based on experimental data
collected for non-recombinant microalgae and are, in
principle, also applicable to emerging strains improved by
genetic engineering.

Cultivation of microalgae in conventional stirred
bioreactors

The microalgal species which are currently attracting
commercial interest grow under heterotrophic conditions
and perform efficiently in conventional bioreactors in a
similar manner to bacteria or yeast (Riesenberg and Guthke
1999). Such sophisticated, safe and controllable bioreactor
systems are used to produce novel high-value compounds
with microalgae. In contrast, established microalgal prod-
ucts are mostly manufactured by traditional outdoor
photoautotrophic technologies (Lee 1997). If a product is
unique or is not obtainable in the desired quality or quantity
by other means (such as extraction from animal or plant
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material or chemical synthesis), the superior heterotrophic
growth characteristics become less critical. Performance
losses may also be acceptable in cases where patent
infringements need to be prevented. Nevertheless, using
microalgae instead of bacteria or yeasts provides the
opportunity to establish a new intellectual property claim
in the manufacture of competitive products (Borowitzka
1992).

General prerequisites and constraints

In order to be optimally suited for cultivation in conven-
tional stainless steel stirred bioreactors, a particular micro-
algal species should meet a number of desirable criteria
(Table 1). The primary prerequisite is the ability to grow
heterotrophically in an inexpensive, well-defined mineral
medium with a high degree of resistance to mechanical and
chemical stress.

Need for axenic cultures

An additional crucial prerequisite is the requirement for a
monoculture in a long-term bioreactor operation. To date,
this is still hampered by the dearth of axenic (pure) cultures
of species isolated from the environment. In heterotrophic
cultures, the advantage of preventing the growth of

contaminants through selective photoautotrophic conditions
is not a possibility. Thus, any (minor) contamination
introduced with the inoculum could easily outgrow the
desired microalgal species.

The particular obstacle can largely be overcome by
modern methods of flow cytometry. For example,
fluorescence-activated cell sorting permits the efficient
differentiation and subsequent isolation of single cells
based upon their morphology (size) and variation in
autofluorescence (Cellamare et al. 2010; Sensen et al.
1993; Surek and Melkonian 2004). The rate of success for
the isolation of axenic microalgal cultures collected from
natural habitats was reported to be considerably higher than
with a classical approach (Surek and Melkonian 2004).
Furthermore, for selectivity reasons and the resulting ease
of handling, microalgae such as Galdieria sulpuraria,
which perform well at 42 °C and at a pH of 2, are desirable.

Restrictions due to high salinity

Should growth in the presence of sea salt (and thus at a very
high salinity of about 35 g kg−1 of Na/KCl and high
osmolarity) be essential for good performance of a
particular species, additional investments in vessels coated
with special materials like polyether ether ketone are
necessary. However, high salinity has not always been

Table 1 Prerequisites, benefits and constraints of heterotrophic cultivation in conventional stirred bioreactors

Prerequisites/benefits Constraints

Bioreactor
cultivation

Performance independent of climate High oxygen demand

Reduced downstream costs Sophisticated substrate feed control

Enhanced productivity and/or titre Rheological limitations (at high viscosity)

Control of substrate concentrations Critical/toxic levels of metabolites

Scalable process strategies High costs for (new) equipment

Use of multi-purpose bioreactors

Low land requirement

Indoor and cGMP operation

Culture media Energy of light not required Enhanced risk of contamination (organic carbon
substrate, temperature, pH)

Defined (mineral) and inexpensive Corrosion (high salinity, critical pH)

Easy to sterilise Expensive ingredients (vitamins, amino acids)

Non-corrosive (low salinity, acidity) Non-defined composition (e.g. yeast extract)

Contamination protection (due to high salinity, extreme pH levels, high
temperature>40 °C)

Species Available as axenic culture Surface adhesion

Reasonable specific growth rate Aggregate formation

Mechanical resistance Secretion of viscous metabolites

Temperature achievable with conventional cooling (25–40 °C) Osmotic stress (at substrate over-dosing)

Robust and resistant (to long periods of refrigeration, freezing, repeated
cultivation, sudden condition changes)

Intracellular product harvest (hampered by rigid
cell walls)

Compiled from: Borowitzka 1992; Chen 1996; Doucha and Lívanský 2008 and 2011; Doucha et al. 2009; Gladue and Maxey 1994; Perez-Garcia
et al. 2011; Schmidt et al. 2005; Wu and Shi 2008
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linked to increased corrosion of metallic materials (Schmidt
et al. 2005). The requirement of marine species for high salt
concentrations is sometimes unwittingly overestimated and
the salt concentration may be significantly reduced without
productivity loss (Kiy et al. 2008). On the other hand, high
salt conditions have been found to significantly enhance
lipid formation. Upon changing the sodium chloride
concentration from 10 to 20 gl−1 in a culture of N. laevis,
the synthesis of total lipids, the production of eicosapen-
taenoic acid (EPA) and the accumulation of polar lipids
increased while the synthesis of neutral lipids decreased
(Chen et al. 2008).

Species used in heterotrophic processes

The ability of a number of microalgal species to grow with
organic carbon substrates has been demonstrated previously
(Droop 1974; Gladue and Maxey 1994). However, the
number of current commercially important microalgae that
are capable of growth on organic carbon substrates in the
dark, and where experience of fedbatch cultivation has been
gained, is very limited.

Growth characteristics

Both the (growth) kinetic and stoichiometric characteristics
of these microalgae, along with values for other microalgal
species obtained from batch cultures, are summarised in
Table 2. This table encompasses fast-growing species with
a specific growth rate higher than 0.09 h−1 (e.g. Chlorella,
Crypthecodinium, Nitzia, Prototheca spp.) and species that
grow at about half the rate, but where a lot of cultivation
experience is available (e.g. Galdieria, Haematococcus,
Nannochloropsis or Schizochytrium spp.). These specific
growth rates correspond to doubling times of between 7 and
15 h. Interestingly, the Chlorella genus exhibits a wide
range of growth rates with glucose, which vary with species
and growth conditions, such as temperature, pH or
dissolved oxygen concentrations (Shi et al. 2006). The
latter condition, in particular, can be controlled in high-cell-
density (heterotrophic) cultures as the specific growth rate
can be deliberately reduced to assure sufficient oxygen
supply (Doucha and Lívanský 2011). Furthermore, hetero-
trophic growth of Dunaliella sp. and Nannochloropsis sp. is
possible but is not practicable due to its very slow growth
(Gladue and Maxey 1994).

The specific microalgae’s tolerance to certain extracel-
lular substrate concentrations of several grams per litre, as
outlined in Table 2, is a feature that also allows particular
species to be readily grown to high cell densities in batch
culture. Galdieria sulphuraria reached the highest specific
growth rates at glucose concentrations of between 2 and
166 gl−1, while a glucose concentration of 200 gl−1 was

regarded as inhibiting its growth (Schmidt et al. 2005).
Other highly tolerant species are Schizochytrium and
Thraustochytrium, both known to accumulate large quan-
tities of lipids within their biomass (Jain et al. 2007; Kiy et
al. 2008). Although Chlorella sp. principally grow at
glucose concentrations of more than 60 gl−1 (Ip and Chen
2005b), residual concentrations as low as 10 gl−1 signifi-
cantly inhibit their growth (Sansawa and Endo 2004; Wu
and Shi 2007; Xiong et al. 2008).

Instigating the photosynthetic apparatus in the dark

Most of the ‘classic’ microalgal species are recognised
primarily as photoautotrophs. Studies on the effect of
repeated (and long-term) propagation in the absence of
light and using an organic carbon/energy source for the
production of substances involved in the photosynthetic
apparatus of microalgae are not yet conclusive (Graverholt
and Eriksen 2007; Sansawa and Endo 2004; Shen et al.
2010; Xiong et al. 2010a). Some of these substances
continue to be synthesised in the dark, for example, the
light-harvesting pigment phycocyanin from G. sulphuraria
(Eriksen 2008a).

Nevertheless, the inability of obligate photoautotrophs to
grow and divide without photosynthetically derived energy
is often the main obstacle preventing the efficient hetero-
trophic production of microalgal metabolites. This can be
overcome through appropriate genetic engineering, for
example, the introduction of a gene encoding a glucose
transporter as demonstrated by Zaslavskaia et al. (2001).
Another technically driven means involves exploiting
mixotrophic cultures, where microalgal cultures are simul-
taneously exposed to an organic carbon source and light
(Liang et al. 2009; Liu et al. 2009; Chen et al. 2006; Sloth
et al. 2006; Feng et al. 2005; Garcia et al. 2005; Ma and
Chen 2001). These do, however, require specially con-
structed illuminated bioreactors. It has also been suggested
that light-dependent production can be deliberately induced
by ‘oxidative stress’, triggered by substances other than
light (e.g. H2O2 or Fe

2+; Ip and Chen 2005a; Kobayashi et
al. 1993).

Composition of culture media and microalgal biomass

Most of the culture media for growing microalgae in vitro
have been developed using, as a base, the stoichiometric
composition of the microbial biomass grown under regular
physiological conditions (Egli 2000; Egli and Fiechter 1981).
Information on the composition of microbial biomass in
relation to the formation of a particular product is very
limited and may vary depending on species and culture
conditions. For natural phytoplankton (representing a hete-
rogeneous consortium of microalgae), the proportions of the
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elements are typically derived from the ‘Redfield ratio’ dating
back to 1934, suggesting amolar ratio of C106N16P1 as described
in Falkowski (2000). This has recently been further extended to
include other important elements (Ho et al. 2003; Quigg et al.
2003). The stoichiometric composition of phytoplankton is
comprehensively reviewed by Klausmeier et al. (2008). For
heterotrophic cultures of Chlorella vulgaris, a molar stoichiom-
etry of C3.96H7.9O1.875N0.685P0.0539K0.036Mg0.012 was deter-
mined (Sansawa and Endo 2004), and this has been reflected
in optimised media compositions for biomass production
in high-cell-density fedbatch processes (e.g. Doucha and
Lívanský 2011; Xiong et al. 2008). All of the major
molecules in microalgae (i.e. proteins, carbohydrates,
lipids) contain carbon as the principal element, with
oxygen, hydrogen and nitrogen at lower, or even zero,
concentrations (Fig. 1). Typically, in media for heterotro-
phic cultures that support optimal growth, all of the
constituents are supplied in stoichiometric excess to the
organic carbon source. Applying stoichiometric principles
to an established medium for photoautotrophic cultures of
Chlorella spp. (Vonshak 1986), the medium was shown to
be deficient in iron, magnesium, sulphur and nitrogen.
When optimised, a fivefold increase in biomass concen-
tration was achieved (Mandalam and Palsson 1998).

For most of the microalgal species capable of heterotro-
phic growth, glucose or acetate is an adequate source of
energy and carbon (Table 2; Lee 2004; Lee 2001; Perez-
Garcia et al. 2011). In addition, low-cost media formula-
tions with molasses or carob pulp syrup, or the waste
streams from sugar or milk processing industries, have been

successfully used as alternatives to glucose (Mendes et al.
2007; Schmidt et al. 2005). Although microalgae grow with
various carbonaceous compounds, glucose is the preferred
carbon source because of its ease of handling, accessibility
and safety (Lee 2004; Perez-Garcia et al. 2011; Sun et al.
2008). In particular, glucose is used for the production of
high-value compounds where the processes need to be
reproducible for prospective regulatory approval for phar-
maceutical manufacture. Acetate and ethanol are possible
alternatives but, because of their respective corrosive effects
or high flammability, are only used when an exceptional
productivity enhancement is achieved (de Swaaf et al.
2003b; de Swaaf et al. 2003c; Ogbonna et al. 1998).
Although the cost of (pure) glucose for microalgal
production of high-value compounds is less critical than
in the biofuel field, opportunities for valorisation of the
biomass after isolation of the target compound are
desirable. Examples of such valorisation include the
subsequent production of animal and fish feed or its use
as an energy-rich biomass for the production of biofuels
(Brennan and Owende 2010; Chisti 2007).

Nitrate, ammonia and/or urea are the preferred nitrogen
sources at a bioreactor scale (Grobbelaar 2004). Tryptone,
glycine and yeast extract have also been evaluated for their
potential to enhance growth or product formation (Shen et
al. 2010). Moreover, growth data suggest that nitrogen
source preference might vary between the species (Shen et
al. 2010; Xiong et al. 2008). Yeast extract, a complex
component with a high carbon content, is not defined at the
single-element level but is frequently used as a source of
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Fig. 1 Compositional variation in Chlorella sp. biomass. Left,
molecular composition, lower and upper limits determined at low
and high nitrogen availability in heterotrophic cultures of C.

protothecoides (adapted from Xiong et al. 2010b). Right, proportions
of macro and micro elements (adapted from Oh-Hama and Miyachi
1988)
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nitrogen, amino acids, vitamins and trace elements (Grant
and Pramer 1962). As its composition varies from lot to lot,
supplementation with yeast extract makes precise stoichio-
metric process control impossible. Moreover, the depletion
of some of the components of yeast extract has been shown
to result in a linear growth pattern. For example, in a
heterotrophic culture with C. cohnii, a non-specific nutri-
tional limitation was detected, which coincided with a
change from exponential to linear growth while continu-
ously feeding glucose to maintain a residual concentration
of between 5 and 20 gl−1 (de Swaaf et al. 2003c). It was
concluded that nitrogen, solely derived from the yeast
extract, was most probably depleted, resulting in the onset
of the linear phase, a cessation of cell division and the
diversion of added glucose into the accumulation of lipids
within the cell.

Furthermore, several microalgae that are grown in pure
culture with mineral medium require supplementation with
the vitamins cobalamin and/or thiamine (Carvalho et al.
2006; Croft et al. 2005; Droop 2007). In turn, species
capable of endogenously synthesising cobalamin need
traces of cobalt (Grobbelaar 2004).

High-productivity processes

The development of appropriate strategies for enhancing
biomass and/or product formation is based on understand-
ing (Carvalho et al. 2006; Grobbelaar 2004; Hu 2004) and
exploitation of the flexibility (adaptability) of biomass
composition within its upper and lower limits as defined
by different culture conditions and/or the altered supply of
chemical elements in the culture medium. Achieving the
desired (optimum) process performance, however, is far
from straightforward, as some objectives are by their very
nature contradictory (e.g. the highest product titre vs. the
shortest process duration, the highest product purity vs. the
highest biomass or product formation rates and yields).

High cell densities achieved

In the scientific literature concerning the mass cultivation of
microalgae, the term ‘high-cell-density culture’ (HCD) is ill
defined but is generally applied to those values of biomass
concentration that fall within the range of the highest values
published for photoautotrophic or heterotrophic processes.
For a photoautotrophic system, the highest biomass
concentration achieved to date is 40 gl−1 of cell dry weight
(CDW) with thin-layer cultures (Doucha and Lívanský
2006). However, in heterotrophic fedbatch cultures of
Chlorella sp. concentrations ranging from approximately
100 gl−1 to greater than 150 gl−1 CDW are currently
achievable (Table 3; e.g. de Swaaf et al. 2003b; Doucha and

Lívanský 2011; Graverholt and Eriksen 2007; Schmidt et
al. 2005; Hauser, unpublished data). Typically, such high
cell densities are attainable in fedbatch operation where the
increasing biomass is retained and thus accumulates in the
bioreactor. A highly concentrated solution of the growth
substrate is added in a controlled mode, which in turn
determines the specific growth rate and limits the concen-
tration of the residual substrate in the culture broth (e.g.
glucose concentration in the feed solution ranging from 100
to 570 gl−1, where the highest concentration was used by de
Swaaf et al. (2003c)). As the actual data relating to the time
courses of the effective (working) culture volume are
generally not provided in the publications (Table 3), it is
not possible to calculate the amount of biomass produced
(in grams) and, thus, the specific growth rates.

Furthermore, biomass concentrations of more than
40 gl−1 CDW have been achieved in batch cultures with
the few microalgal genera that tolerate exceptionally high
substrate concentrations (Table 2; e.g. Galdieria, Schizo-
chytrium and Thraustochytrium in Schmidt et al. 2005;
Jain et al. 2007; Kiy et al. 2008, respectively). For
instance, high-cell-density batch cultures with the obli-
gate heterotrophic Prototheca sp. and Aurantiochytrium
sp. were described by Running et al. (2002) and Jakobsen
et al. (2008), respectively. In the latter, the cell dry weight
increased from 40 to 90 gl−1 during a post-exponential
growth phase while the lipid content of the biomass
increased between circa 10% and 60%. In this context, the
term ‘biomass growth’ needs to be differentiated as either
the cells’ proliferation due to cell division or an increase
in cell mass not directly linked to an increase in cell
number.

Do high-cell-density culture and rapid growth imply high
productivity?

Although microalgal biomass is the only target in some
processes (Becker 2007; Brown et al. 1997; Doucha et al.
2009; Duerr et al. 1998; Tokusoglu and Unal 2003), the
apparent prime focus on HCD cultures often obscures the
ultimate objective for any microalgal process, which is to
achieve the highest product concentration of the desired
quality in the shortest possible time. From the basic data
summarised in Table 3, the product to biomass yield (Yp/x, in
g g−1) and the volumetric productivities (rx or rp, in g l−1 h−1)
can be calculated. In principle, however, interpreting
productivities that have been computed on the basis of
average values for the whole process duration can be
misleading.

Maintaining growth at the maximum specific growth rate
(μ, in h−1) does not often correlate with the highest
attainable rate of specific product formation (qp, in g g−1

h−1). Generally, the kinetic models accepted of microbial
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growth association also apply for microalgae. For instance,
in continuous cultures, the maximum production of EPA by
photoautotrophically grown Nannochloropsis sp. was
achieved at dilution rates in the range of 0.004–0.013 h−1

while maximum biomass productivity was obtained at
higher dilution rates ranging between 0.011 and 0.017 h−1

(Zou et al. 2000). Similarly, the highest DHA content as
well as the highest degree of fatty acid unsaturation of
Crypthecodinium cohnii was measured at low glucose
concentrations (5 gl−1) and thus at a slow growth rate
(Jiang and Chen 2000). The formation of EPA by Nitschia
laevis in continuous heterotrophic culture was, on the
contrary, reported to occur at a higher dilution rate and
higher glucose concentration than maximum growth (Wen
and Chen 2003). A positive growth association was
however reported to apply to the biosynthesis of astaxan-
thin in Chlorella zofingiensis (Wang and Peng 2008). The
above information illustrates that product formation kinetics
can fall into either positive or non-/negative growth-
associated product formation or a combination of both.
Especially in those cases where product formation is not
correlated with maximal growth, it is advantageous to have
full control over the specific growth rate. In general, such
fine-tuning of growth is achieved by the controlled addition
of medium constituents in fedbatch cultivation.

Different carbon substrates lead to different biomass/
substrate yields and also affect the formation of the targeted
product. As a consequence, maximum product formation
does not always correlate with maximum biomass concen-
tration. For instance, in a culture of C. cohnii grown with
acetic acid, 77 gl−1 of biomass and 9.5 gl−1 of docosahex-
aenoic acid (DHA) were harvested after 210 h (de Swaaf et
al. 2003c). In an alternative process strategy using ethanol
as the carbon and energy source, less biomass (59 gl−1)
generated more DHA (10.4 gl−1) in a shorter period of time
(200 h; de Swaaf et al. 2003b). In another example,
Euglena gracilis grown with glucose reached 48 gl−1 of
biomass and 150 μg gCDW

−1 of α-tocopherol in 182 h
(Ogbonna et al. 1998). When fed with ethanol, the growth
slowed significantly; however, the product yield was
enhanced by a factor of approximately 10, reaching
1,200 μg gCDW

−1 and 39.5 gl−1 of biomass in 455 h.
As biomass growth slows, for instance, due to the effect

of temperature or restricted substrate availability, cell
division decelerates and the formation of storage products
typically increases simultaneously. PUFA synthesis in
certain species, such as eicosapentaenoic acid in Chlorella
minutissima, has been reported to occur preferentially at
temperatures lower than those required for optimal growth
(Yongmanitchai and Ward 1991). However, in the diatom
Phaeodactylum tricornutum, maximum product yield and
maximum biomass concentration were achieved at the same
cultivation temperature between 21.5 and 23 °C. In

contrast, the lutein yield (Yp/x) of heterotrophically grown
Chlorella protothecoides was increased from 4.25 to
4.59 mg g−1 by raising the cultivation temperature from
24 to 35 °C (Shi et al. 2006).

Strategies to enhance productivity in fedbatch cultures

Fedbatch cultivation is the most effective technique for
reaching high biomass concentrations in a short time and
controlled manner. Typically, this is achieved in cultures
grown heterotrophically through controlling the rate of
addition of the organic carbon and energy source (i.e. the
substrate feed). Varying feed strategies can lead to different
efficiencies of biomass and/or product formation.

In contrast to batch mode, osmotic or toxic effects due to
high substrate concentrations can be avoided in a fedbatch
culture. Moreover, perfusion technology (with cell retention
but exchange of culture medium) is appropriate when
inhibitory metabolites, which would otherwise affect
biomass growth or product formation, need to be
removed (Wen and Chen 2002). Auto-inhibition effects
have been described in the literature for the cultivation of
different species or desired products, such as fatty acids
(Bosma et al. 2008; Javanmardian and Palsson 1991; Zou
et al. 2000).

The microalgal high-cell-density processes described in
the literature (Table 3) employ several different strategies
for substrate addition, which are optimised with respect to
both the physiological requirements of the particular
species and the technical restrictions of the available
equipment. The majority of heterotrophic processes
employing fedbatch mode, and using microalgae to produce
high-value compounds that have been described systemat-
ically in recent publications, concentrate on some five to
ten species and can be categorised by their target product as
follows:

& Polyunsaturated fatty acids, like DHA (Chi et al. 2009; de
Swaaf et al. 2003c; Ganuza and Izquierdo 2007) and EPA
(Wen and Chen 2002; Wen et al. 2002), using C. cohnii,
Nitzschia laevis, Schizochytrium sp. or Ulkenia sp.

& Carotenoids, like astaxanthin (Sun et al. 2008) and
lutein (Shi et al. 2002), using Chlorella sp., and
tocopherols with E. gracilis (Ogbonna et al. 1998)

& Phycobiliproteins like phycocyanin using G. sulphuraria
(Graverholt and Eriksen 2007; Schmidt et al. 2005)

The principal differences of the fedbatch processes listed
in Table 2 are (1) the cells’ physiological state which is
both affected by unrestricted or controlled substrate
availability, (2) the limited (since controlled) availability
of an element other than carbon and (3) the control strategy,
which is either a predefined open-loop control or a
feedback control (closed loop).
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Pulsed addition of an organic carbon and energy source

The pulsed addition of a carbon source is frequently
employed in the high-cell-density cultivation of Chlorella
sp. (Doucha and Lívanský 2011; Sansawa and Endo 2004;
Shi et al. 2002; Sun et al. 2008; Xiong et al. 2008) and has
also been applied in processes with E. gracilis (Ogbonna et
al. 1998) and G. sulphuraria (Schmidt et al. 2005).
Following the depletion of the substrate during an initial
batch phase, the residual glucose concentration in the
bioreactor is typically maintained within pre-determined
upper and lower concentration limits. With C. zofingiensis
and C. protothecoides, the upper limits were set at
concentrations of approximately 24 or 30 gl−1, respectively.
Higher levels would have inhibited biomass growth
(Sansawa and Endo 2004; Shi et al. 2002; Sun et al.
2008; Xiong et al. 2008). The pulsed addition of a highly
concentrated substrate solution was repeatedly triggered
(about five to seven times during the entire process)
whenever the glucose concentration dropped below a

defined concentration of several grams per litre (Fig. 2).
As described in a later section on feedback control
strategies, overdosing with substrate can be prevented by
implementing an automated dosing strategy based on
monitoring the dissolved oxygen concentration.

Pulsed fedbatch strategies are therefore appropriate to
species where growth is inhibited by very high substrate
concentrations but where residual substrate concentrations
of several grams per litre can be tolerated. Biomass is
developed at the highest specific growth rates when growth
occurs in the continuous presence of an excess of substrate
and in a balanced medium. The values for a specific growth
rate achieved in such fedbatch processes are comparable to
those rates attained during unrestricted, exponential growth
in a batch culture (e.g. μmax>0.18 h−1 for C. vulgaris;
Doucha and Lívanský 2011). The pulsed fedbatch strategy
is applicable to systems required to produce compounds
where formation is tightly associated with fast biomass
growth. In addition, the combined production strategies can
be applied to systems where rapidly built biomass is

Maximal biomass productivity (when growth is unrestricted) due to pulsed substrate addition 
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Fig. 2 Principles of controlling growth and product formation
through different modes of substrate addition. The three pictograms
in each row show (from left to right) the time dependence of the
following variables within the fedbatch phase of a bioreactor
cultivation of C. vulgaris and their maximum (max), minimum
(min), optimum (opt) or residual (res) values as indicated by the
horizontal dashed lines: specific growth rate (μ), specific substrate
utilisation rate (qs) and specific product formation rate (qp); concen-
trations of biomass (x) and the growth-limiting substrate (s) in the
bioreactor, where the substrate concentration in the bioreactor was
either determined by pulsed addition at predefined limits (s>s1 and s<
s2) or reached a residual concentration (sres) below which the substrate
cannot be utilised at the particular specific growth rate; mode of

substrate addition. In the left-hand pictograms, growth-associated
kinetics of the product formation was applied accordingly to the
formula: qp=Yp/x ·μ, where Yp/x is a constant product yield per biomass
coefficient. A constant specific growth rate near to its maximum
(μmax) and correspondingly exponentially increasing biomass concen-
tration is achieved with pulsed substrate addition (first row, derived
from the data of Doucha and Lívanský 2011). With continuous
substrate addition and an exponentially increasing feed rate (second
row), a desired constant specific growth rate (μopt<μmax) is controlled
at the optimum for product formation. To reach near-optimum
conditions, the exponential addition can also be approximated by a
stepwise increasing feed rate (dashed step-like line)
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essential during the first process phase, prior to a
subsequent differently controlled phase that promotes
product formation (e.g. Ganuza et al. 2008; Hata et al.
2001).

Continuous addition of an organic carbon and energy
source

Potential strategies for continuous substrate addition are
usually categorised using mathematical functions that
describe the time dependence of the rate of substrate
addition (i.e. the feed profile). Such strategies encompass
substrate addition at constant or predefined rates. Prede-
fined rates can increase or decrease following linear or
exponential functions or by equivalent, stepwise approx-
imations (Fig. 2). However, the only feed profiles that are
currently used to grow microalgae are those with stepwise
increasing or decreasing feed rates (for example, Chlorella,
Crypthecodinium, Galdieria and Nitzschia by Wu and Shi
(2007), de Swaaf et al. (2003b), Graverholt and Eriksen
(2007) and Wen and Chen (2002), respectively).

The optimum feed profile for product formation can be
determined by using a rational approach provided that the
effect of appropriate control variables (including μ) on the
targeted productivity has been quantified and, preferably,
captured in a model (Wu and Shi 2007; Zhang et al. 1999a;
Zhang et al. 1999b; Zhang et al. 1999c). In addition,
models based on hybrid neural networks can be used to
predict optimum fedbatch strategies. A feed profile that
included an exponentially increasing glucose addition over
several steps, each at a constant feed rate, was successfully
applied to a Chlorella pyrenoidosa culture to attain a
biomass concentration of 116 gl−1 at an average produc-
tivity of 1.02 gl−1 h−1 (Wu and Shi 2007). Similarly, with a
culture of G. sulphuraria, the feed rate was increased up to
3.7 times in one step per day, achieving 27.8 gl−1 of
biomass and an average productivity of approximately
0.33 gl−1 h−1 (Graverholt and Eriksen 2007). Following an
initial batch culture, the substrate was continuously added
at a specific rate, which was lower than the specific glucose
utilisation rate required to support the biomass, i.e. a μmax

of 0.053 h−1. Residual glucose concentrations were main-
tained below 0.5 gl−1 and the specific growth rate was
controlled at 0.046 h−1 during the fedbatch phase.

Specific growth rate can be controlled at a particular
defined rate, lower than its maximum, by continuous
(preferably exponential) substrate addition. This allows
product formation to be enhanced when its optimum is
not linked to the fastest biomass growth (as illustrated in
the pictograms in Fig. 2). However, the strategy of
controlling the μ at a certain (optimum) value as demon-
strated with bacteria and yeast has not yet been described in
the literature on microalgae.

Substrate addition determined by feedback control

A feedback control strategy allows a continuous adap-
tation of the rate of substrate addition based on
physiological criteria, such as the production of acids
or bases (de Swaaf et al. 2003c), or oxygen utilisation
(de Swaaf et al. 2003b; Schmidt et al. 2005). The changes
in pH and pO2 values resulting from biomass growth (or
product formation) are countered up to a predefined
value.

In an auxostat-fedbatch system with Schizochyrium sp.,
the pH was continuously controlled at a value of 7 through
the addition of ammonium hydroxide solution (Ganuza et
al. 2008). In this manner, both pH and an excess of nitrogen
were controlled while the growth of the biomass reflected
the utilisation of the carbon substrate. The substantial
technical benefit of such a system is the potential to replace
the ammonium hydroxide solution used for pH control with
a potassium hydroxide solution. In this way, the desired
onset of the production of lipids (DHA) is readily triggered
through nitrogen deprivation (i.e. the nitrogen level
decreases to zero from the concentration accumulated
during the ammonium hydroxide addition phase). Effec-
tively, this process strategy is fedbatch with respect to the
nitrogen addition but is batch with respect to the (carbon)
growth substrate. In a fedbatch process producing DHA
with C. cohnii (de Swaaf et al. 2003b), the acetic acid used
as the carbon/energy substrate was added via a pH control
system to maintain a pH of 6.5. This resulted in the
continuous addition of acetic acid at a rate which followed
a time course determined by the metabolic requirements of
the biomass.

Feedback control based on the dissolved oxygen concen-
tration (pO2 or DO) is another process strategy that is
technically feasible to prevent overdosing of the substrate.
As determination of the residual concentration of the substrate
typically involves a time delay, monitoring the decrease/
increase in pO2 has the advantage such that the pulsed
addition of substrate can be appropriately timed (Schmidt et
al. 2005).

Strategies for customising biomass composition
by adapting the culture medium

The following strategies, potentially combined with fedbatch
culture, allow product formation or biomass composition to be
further controlled:

& Controlling the availability of components in the
growth medium other than carbon

& Replacing a medium component with an alternative
(e.g. using a different carbon or nitrogen source or
exchanging sulphur with selenium)
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& Adapting the culture conditions (for example, T, pO2,
pH) to conditions that would typically be outside of the
optimal range for biomass growth

Affecting the proportions of macromolecules
within the biomass

Biomass composition can be customised and/or product
formation can be enhanced through tailoring the composi-
tion of the culture medium. The latter is achieved by
controlling the consumption of a particular element through
ensuring that its supply and, thus, availability are limited.
An example of this principle is seen in the range of
biomass composition achievable with C. protothecoides
(Fig. 1).

Lipid content has been reported to increase under
nutrient-deprived conditions such as low concentrations of
nitrogen (Griffiths and Harrison 2009; Hsieh and Wu 2009;
Illman et al. 2000; Jakobsen et al. 2008; Lv et al. 2010;
Lynn et al. 2000; Rodolfi et al. 2009; Widjaja et al. 2009;
Yongmanitchai and Ward 1991), phosphorus (Lynn et al.
2000; Reitan et al. 1994; Rodolfi et al. 2009) and silicon
(Griffiths and Harrison 2009; Lynn et al. 2000). Low
nitrogen concentrations were also reported to increase the
cellular contents of lutein in C. protothecoides (Shi et al.
2002) and astaxanthin in C. zofingiensis (Ip and Chen
2005b).

N-deprivation regimes are most frequently expressed as
the molar carbon-to-nitrogen (C-to-N) ratio (Ip and Chen
2005b; Shi et al. 2002; Sloth et al. 2006; Wen et al. 2002).
Grown at a high C-to-N ratio, the cell dry mass of C.
protothecoides contained up to 53.8% lipids compared to
25.2% obtained in low C-to-N medium. This lipid increase
was accompanied by a drop in protein content from 25.8%
at low C-to-N to 10.5% at a high C-to-N ratio (Xiong et al.
2010b).

Biomass enrichment by replacing its constituents

The enrichment of the microalgal biomass with (readily
bio-available) selenium at extraordinarily high volumetric
productivities and final concentrations (> 0.4 mg Se per
gram of biomass) is governed by a different mechanism
than the enrichment by lipids. Microalgae, which are grown
in medium containing a lower-than-stoichiometrically-re-
quired concentration of sulphur, are exposed to inorganic
selenium in the form of selenite. Depending on the algae
species, the cells are capable of incorporating the
element at different levels, preferentially into intracellular
protein, e.g. C. vulgaris or Scenedesmus quadricauda in
Doucha et al. (2009) and Umysová et al. (2009),
respectively.

Conclusions and future trends

Recent advances in microalgal biotechnology have created
opportunities for the efficient production of high-value
(natural) compounds with the properties of plant-derived
products that provide unique benefits (e.g. plant-like
glycosylation) compared to their analogues resulting from
chemical synthesis or recombinant microorganisms. The
laboratory-scale bioreactor cultivations included within this
review provide a first insight into the feasibility of carrying
out heterotrophic processes with microalgae at an industrial
scale. These processes have, in part, already been commer-
cialised with the biotechnological production of PUFA. (To
date, the authors are not aware of any literature on the
heterotrophic large-scale fedbatch cultivation of micro-
algae, in contrast to literature on batch cultivation referred
to by Apt and Behrens 1999; Behrens 2005; Wynn et al.
2005). This review confirms that the development of
efficient, economically feasible large-scale bioprocesses
remains an obstacle to the commercialisation of the
promising microalgae technology.

The generic cultivation strategies outlined are based on
the experimental data of natural microalgae but, in principle,
could also be applied to emerging strains improved by
genetic engineering. Fundamental knowledge enabling strain
design may be derived from advanced metabolic flux
analyses (Xiong et al. 2010b). A promising new avenue for
transgenic microalgae is developing based on the knowledge
gained over the past two decades, which includes the
complete sequencing of the first microalgal genomes
(Leon-Banares et al. 2004; Parker et al. 2008; Rosenberg et
al. 2008; Walker et al. 2005a; Walker et al. 2005b).
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