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Abstract. We study the duration of “high-flow states” in freeway traffic, defined as the time periods for
which traffic flows exceed a given flow threshold. Our empirical data are surprisingly well represented by
a power law. Moreover, the power law exponent for a two-lane freeway seems to be independent of the
chosen flow threshold. In order to interpret this discovery, we investigate a simple theoretical model of
heterogeneous traffic with overtaking maneuvers, which is able to reproduce both, the empirical power law
and its exponent.

PACS. 89.40.Bb Land transportation – 89.75.Kd Patterns – 51.10.+y Kinetic and transport theory of
gases

1 Introduction

Efficient transport systems are needed to fulfil the re-
quirements of industrialized societies. However, studies of
traffic physicists have shown that the capacity of a free-
way is reduced by the breakdown of traffic flows [1–4], a
phenomenon which is widely known as “capacity drop”.
Moreover, when the vehicle density increases, the traffic
flow becomes metastable, i.e. a breakdown of traffic flow
can be triggered by perturbations, if they exceed a critical
perturbation threshold [1,3,5,6]. At even higher densities,
traffic flow becomes linearly unstable, and a breakdown
may be triggered by the slightest perturbation [3,7].

Due to the dependence of traffic breakdowns on per-
turbations of the traffic flow, it is essential to know the
characteristic properties of vehicle flows. While much at-
tention has been paid to the measurement and explanation
of the wide scattering of vehicle flows after the breakdown
of free traffic (see e.g. Refs. [8–11] and citations therein),
the features of flows before the breakdown have not found
the attention they deserve. For example, the time pe-
riod immediately before the breakdown is characterized
by “high-flow states” [12–15] (see Fig. 1). These high-flow
states are produced by small time gaps between subse-
quent vehicles, i.e. by vehicle clusters. Before we study
these states, let us therefore shortly discuss some previ-
ous literature on vehicle platoons (see Ref. [3]).

a e-mail: dhelbing@ethz.ch

The formation of platoons is typically a result of the
fact that vehicles do not behave identically. Driver-vehicle
behavior is rather heterogeneous, which is typically re-
flected by fluctuation terms and distributed model pa-
rameters. The simplest models of stochastic and het-
erogeneous transport are particle hopping models with
quenched disorder. For example, Evans [17], Krug and
Ferrari [18], Karimipour [19,20], as well as Seppäläinen
and Krug [21] study a simplified version of a model
by Benjamini et al. [22]. It corresponds to the one-
dimensional driven lattice gas known as TASEP, but with
particle-specific, constant jump rates qα. If overtaking is
not allowed, Krug and Ferrari [18] find a sharp phase tran-
sition between a low-density regime, where all particles are
queueing behind the slowest particle, and a high-density
regime, where the particles are equally distributed. Note
that the slow particles “feel free traffic” until the critical
density is reached, at which traffic flow becomes unstable
(cf. the truck curve in Fig. 2).

Close to the critical density, where the traffic flow be-
comes unstable, the growth of vehicle platoons is charac-
terized by a power-law coarsening. If particles move bal-
listically with individual velocities vα and form a platoon
when a faster particle reaches a slower one, the platoon
size npl(t) grows according to

npl(t) ∼ t(δ+1)/(δ+2), (1)

where the exponent δ characterizes the distribution
P0(v) ∼ (v − vmin)δ of free velocities in the neighborhood
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Fig. 1. Time-dependent traffic flows Q(x, t) measured at differ-
ent cross sections x of a the Dutch freeway A9 on October 14,
19941. Vehicles move from left to right. One can clearly see the
large variability of high flows. Complementary empirical analy-
ses show that the truck fraction on the freeway changes consid-
erably with time as well, between about 8 and 80% trucks [9].

of the minimal desired velocity vmin [24–30]. Beyond it,
the differences among fast and slow particles become ir-
relevant, because there is so little space that all particles
have to move slower than preferred.

Platoon formation and power-law coarsening
has also been found in microscopic models with
parallel update [24–27,29–32]. An example is the
Nagel-Schreckenberg model with vehicle-specific slow-
down probabilities [33,34].

An empirical measurement of platoon sizes has
been performed by Neubert et al., based on velocity
correlations between subsequent cars [35]. Our own ap-
proach will rather be focused on time periods with small
time gaps between vehicles. For a model for platoon size
distributions see Islam and Consul [36]. Furthermore, we
point to the nice analyses of vehicle clustering based on
master and Fokker-Planck equations [37–39], and to the
determination of gap distributions for free traffic with ve-
hicle platoons [40].

In the following, we will relate the distribution of pla-
toon sizes with their growth dynamics, and study the
importance of overtaking maneuvers for both. Before we
start our theoretical considerations, however, Section 2
will present data of “high-flow states” and discuss their
unexpected power-law statistics. Afterwards, Section 3
will present a theoretical explanation, based on platoon

1 For reasons of illustration, the figure displays five-minute
averages, so that the curves belonging to different cross sec-
tions of the freeway can be well enough resolved. (Two-minute
data would show a larger variability. The variability is expected
to be inversely proportional to the square root of the number
of vehicles averaged over, i.e. to the square root of the sam-
pling time.) For the analysis of the high-flow states, the sam-
pling time should be chosen large enough to smoothen over
statistical variations of the flow, but small enough to keep sys-
tematic features of the traffic dynamics. Two-minute averages,
which are analyzed in the following, have been determined as
an ideal compromise [41]. They also provide a sufficient number
of data points for the analysis of high-flow states.
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Fig. 2. (Color online) speed of vehicles as a function of the ve-
hicle density in (a) the left lane and (b) the right (fast) lane (af-
ter [23]). The curves have been determined from single vehicle
data of the Dutch freeway A9 close to Amsterdam. Note that
the average velocity of trucks stays constant up to the critical
density, where the speed of cars and trucks drops simultane-
ously. This incidates that trucks “feel” free traffic conditions
at all vehicle densities upto the occurence of the transition to
congested traffic.

formation due to overtaking maneuvers by slow vehicles,
specifically trucks. This does, of course, not exclude the
theoretical possibility of other explanations, e.g. based on
the vehicle dynamics in single lanes. This alternative ap-
proach is discussed in Section 3.1. A summary of this pa-
per is finally presented in Section 4.

2 Power law distribution of high-flow states

As high flows are unstable to medium-sized perturba-
tions [3,5], it is important to learn more about their statis-
tics. Here, we define “high-flow states” by exceeding a
given flow threshold Qthr (which may be chosen much
smaller than the maximum flow Qmax or the dynamic
capacity Qout, i.e. the outflow from seriously congested
traffic)2.

In the following, we study the duration of “high flow
states” by analyzing single-vehicle data of the Dutch free-
way A9 from Haarlem to Amsterdam in the Netherlands
(see Refs. [9,16,41] for details of the data). Specifically, we
aggregated the data to obtain 2-min averages Q(x, t) of
the flow as a function of time t at a certain location x
of the freeway. Afterwards, we determined the frequency
of time periods ΔT over which the flows Q(x, t) stayed
above a certain threshold Qthr (see Fig. 3). A representa-
tive example is shown in Figure 4.

Similar pictures as for Qthr = 1400 vehicles/h are
found for other threshold values Qthr, but the data tend
to be more noisy for large values of Qthr, as the typical
durations of high-flow states become shorter. Generally,

2 Qout is typically of the order of 1800 vehicles per kilometer
and lane. In contrast, Qmax in the left (fast) lane reaches values
upto Qmax = 3200 vehicles per hour. In the right (truck) lane,
the maximum flow does not exceed values of 2500 vehicles per
hour. These values are for averages over 50 vehicles [16]. For
further details about the studied data see references [9,16].
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Fig. 3. Illustration of how the duration ΔT of high-flow states
is determined. A given flow threshold Qthr cuts the time-
dependent curve Q(x, t) of measured flows several time. The
duration between two subsequent cutting points corresponds
to a measurement of ΔT , if the Q(x, t) ≥ Qthr holds during
this time period. These time periods are indicated by solid
horizontal lines, while a dotted line was used if Q(x, t) < Qthr.
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Fig. 4. Typical scaling law for the distribution of durations, for
which the vehicle flow Q(x, t) at the cross section x of a freeway
exceeds the threshold Qthr = 1400 vehicles/h. The distribution
follows a power law and has been determined from two-minute
averages of single vehicle data of the Dutch freeway A9 from
Rottepolderplein to Badheuvedorp close to Amsterdam.

however, the probability distribution P (ΔT ) of durations
of high-flow states can be surprisingly well approximated
by the power law

P (ΔT ) = FthrΔT−α , (2)

where Fthr is a proportionality factor and α the power law
exponent. As the distribution P (ΔT ) obviously depends
on the chosen threshold value Qthr, it would be natural
to assume that not only the proportionality factor Fthr,
but also the respective power law exponent α depends on
Qthr. However, Figure 5 suggests that we have α ≈ 2,
irrespective of the value of Qthr. Therefore, we need to
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Fig. 5. Exponents of the power law of high-flow states, see
equation (2), for different flow thresholds Qthr. One can see
that the exponents, fitted within the interval ΔT ∈ [6, 50] min,
are of the order of 2 in both lanes. The exponents have been
determined from two-minute averages of single vehicle data of
the Dutch freeway A9 close to Amsterdam (after [43]).

find an explanation for both, the occurence of the power
law and the value α ≈ 2 of its exponent. Note, however,
that the results of Figure 5 are for a two-lane freeway with
different speed limits for cars and trucks. In fact, for the
three-lane freeway A8 close to Munich, Germany, there
is empirical evidence of power laws, but the exponents
somewhat depend on the freeway lane [42]. This will be
relevant for the interpretation of the power law.

3 Interpretation of the power law

3.1 Explanation of 1/f fluctuations by single-lane
models

The empirical power law is quite intriguing, and its in-
terpretation appears to be far from obvious. As the flow
is basically given by the inverse time gaps, however, pe-
riods of high flow must be characterized by short time
gaps between vehicles. Therefore, rather than a homoge-
neous flow with uniform time gaps between vehicles, the
explanation of the above power law (2) must be related
to the occurence of vehicle clusters. Their statistics must
be characterized by largely varying sizes, to generate a
time-dependence of the flow which shares features with a
fractal curve [44,46].

It is conceivable that such a dynamics could be pro-
duced by single-lane traffic models implementing a com-
plex vehicle dynamics. In fact, previous publications have
revealed 1/fα fluctuations of the flow and other quan-
tities in empirical data [45] and various traffic models.
This includes cellular automata models [46–51], coupled
maps [52], and fluid-dynamics traffic models [45,53]. As
none of the publications has studied the frequency dis-
tribution of high-flow states we are focusing on in this
paper, it is hard to say whether it is reproduced by any
of these models. However, since the respective power law
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exponents depend on the choice of the model, it is con-
ceivable that equation (2) could be reproduced by suitable
specifications of one-lane models.

A comparison with the models discussed in Section 1
shows that, besides stochasticity, such a model would have
to contain non-linear vehicle interactions. Otherwise all
cars would finally queue up behind the slowest vehicle(s)
with identical time gaps, which does not reproduce the
empirical data. 1/f fluctuations of traffic flows can, for
example, be explained by turbulent behavior of the noisy
Burgers equation [45]. They can also be derived as result
of self-organized criticality, if the traffic state with the
largest throughput is critical and characterized by jams
of all sizes [46,47]. As the dynamics of the underlying
particle hopping models can be related to the stochastic
Burgers equation [54], both approaches are mutually con-
sistent. However, both of them are not so well compatible
with some empirically observed features of congested traf-
fic flows [55,56]. For this reason, the above traffic models
have been continuously refined.

In recent models, noise is much less dominating as
compared to the interactions between vehicles, and it is
therefore questionable whether these models show 1/f
fluctuations in the flow dynamics or the power-law (2) of
high-flow states. Furthermore, data for a three-lane free-
way show power laws, but their exponents depend on the
flow threshold Qthr and somewhat on the lane. In particu-
lar, they can be different from 2. Therefore, modeling the
high-flow power law based on longitudinal vehicle dynam-
ics may not be the best possible approach, as it cannot
explain the difference between a freeway with 2 or more
lanes. We rather think that one needs to take into ac-
count the interactions between lanes, i.e. the transversal
dynamics. The model suggested in the following is a first
modeling attempt in this direction.

While the above one-lane models basically assume one
vehicle type and find 1/f fluctuations primarily in the
congested regime, the following proposal assumes two dis-
tinctly different vehicle types (cars and trucks) and implies
a high-flow power law already before the traffic flow breaks
down (i.e. before traffic becomes unstable and a capacity
drop occurs).

3.2 Multi-lane model of high-flow states based
on vehicle bunching behind overtaking cars

While we do not exclude the possibility of other model-
ing approaches, we will now focus on an interpretation of
our empirical observations, assuming heterogeneous traf-
fic including overtaking maneuvers. As we will see, this
predicts a power law for high-flow states even for deter-
ministic models of longitudinal vehicle interactions. Our
analysis focuses on the case of a two-lane freeway, and it
contains several steps:

1. first we will give a qualitative analysis of lane changing
processes;

2. we will argue that they can cause the formation of
vehicle platoons, and that this process is dominated

by overtaking maneuvers at low speed, i.e. primarily
by overtaking maneuvers of trucks;

3. we will determine the statistics of the duration of over-
taking maneuvers by trucks from their speed distribu-
tion;

4. we will give reasons why they couple the dynamics on
both freeway lanes and why the platoons forming on
both lanes are expected to be comparable in size;

5. we will analyze the length of forming vehicle platoons
and the time period until they dissolve;

6. we will show that high-flow vehicle clusters persist for a
very long time, even after the dissolution of the vehicle
platoons;

7. we will discuss, what will be the result, if such vehicle
clusters are measured at a local cross section of the
freeway.

It will turn out that both, the lifetime of vehicle platoons
and the local measurement of vehicle clusters scale with
the duration of the overtaking maneuvers of trucks, and
that the power law of high-flow states results as a super-
position of power laws with the same exponent α = 2.

3.2.1 Qualitative analysis of overtaking maneuvers
on two-lane freeways

In the following, we will assume that the desired velocities
of vehicles are heterogeneous (see Fig. 6). This is typical
for many European countries including Germany and the
Netherlands, where the use of automatic cruise control is
not common. The heterogeneity of desired speeds typi-
cally implies relative velocities among neighboring cars.
The faster car will usually try to overtake a slower ve-
hicle in front. We can distinguish two situations: either
the traffic situation on the lane to the left will admit an
overtaking maneuver3, or the vehicle will be obstructed by
a slower vehicle and decelerate to its speed. During light
traffic conditions, we may assume unobstructed overtak-
ing most of the time, but already at moderate densities,
long before the breakdown of traffic flow, obstructions oc-
cur. These obstructions persist for a certain time period
Δt and lead to the formation of platoons of cars.

Besides the duration of the overtaking maneuver, the
size of the forming vehicle platoon depends primarily on
two factors: (1) the absolute speed difference between the
overtaking vehicle and the ones following it and (2) the
surrounding vehicle density ρfr. As our high flow power
law concerns time periods from 2 min to 2 h, we are par-
ticularly interested in large vehicle clusters and, therefore,
in the overtaking maneuvers of trucks. These are charac-
terized by particularly long durations Δt and by a large
absolute speed difference with respect to following cars,
so that a considerable number of vehicles can accumulate
behind the overtaking trucks.

On a two-lane freeway, the overtaking maneuver of
trucks will create a moving bottleneck [57] on both lanes,
while on a freeway with three or more lanes, passing of

3 In Great Britain or Japan, for example, it will be the lane
to the right.



D. Helbing and B. Tilch: A power law for the duration of high-flow states 581

Cars, left lane

Trucks, right lane

Cars, right lane

Velocity (km/h)

P
ro

b
a
b

il
it

y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

80 100 120 140 160 180

Fig. 6. Speed distributions of cars and trucks under free traffic
conditions. Normal distributions fit the data reasonably well,
in agreement with theoretical results. The distributions have
been determined from single vehicle data of the Dutch freeway
A9 close to Amsterdam. Note that the left lane is the fast lane
and that the speed limits for cars is 120 km/h on this freeway
stretch, while it is 80 km/h for trucks.

vehicles may still be possible4. The moving bottleneck
propagates at the speed of trucks, i.e. at Vtr ≈ 80 km/h.
Behind this moving bottleneck, more and more vehicles
will accumulate, which generates growing vehicle platoons
(see Fig. 7). Due to lane-changing maneuvers of impatient
drivers, the vehicle platoons on both lanes are expected
to grow approximately at the same speed. Such synchro-
nized behavior of neighboring lanes under obstructed flow
conditions is well-known [59]. However, our calculations
below would also work, if the platoon in one lane would
grow faster by a certain proportionality factor.

3.3 Duration of overtaking maneuvers of trucks

Figure 6 shows the speed distributions of cars and trucks
in free traffic of low vehicle density. It can be seen that the
speed of trucks varies around the applicable speed limit
for trucks of 80 km/h, and that the distribution is quite
narrow (i.e. speed differences are small). Furthermore, the
speed distributions of cars and trucks can be reasonably
well approximated by Gaussian distributions [61,62], in
agreement with theoretical predictions [63,64].

Note that there is no distribution of desired speeds
for trucks in the left lane, as they have to stay in the
right lane according to applicable traffic law (when they
do not overtake other vehicles). Overtaking maneuvers are
started whenever two trucks in closeby locations move at

4 How this can account for the different exponents observed
in reference [42] shall be studied in another paper.
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Fig. 7. Illustration of a traffic breakdown detected on the Ger-
man freeway A5 close to Frankfurt (after [56]). The measure-
ment of a peak in the truck fraction (see solid arrow) is fol-
lowed by a time period of lower speeds and higher flows (see
circles). The spatial extension of the high-flow area is growing
(symbolized by larger circles), while it propagates along the
freeway with about 75 km/h, i.e. at about the truck speed.
We interpret this as growing vehicle platoons behind overtak-
ing trucks. Approximately at kilometer 487, shortly upstream
of a freeway junction characterized by many disturbing lane
changes, the perturbation in the traffic flow starts to travel
upstream. While we had a growing spatial extension before,
we now find a growing perturbation amplitude (see dashed ar-
row). This eventually causes a breakdown of the traffic flow.

different speeds, no matter how small the relative velocity
is5. Trucks often enter the left lane relentlessly, without
waiting for a gap, i.e. vehicles in the left lane basically
have to break if a truck driver decides to move over to
the left lane. Moreover, during the overtaking maneuver,
the speed of the trucks usually stays the same6. There-
fore, the distribution of speed differences Δv between an
overtaking and an overtaken truck can be derived from
the distribution of desired truck speeds in the right lane.

5 Therefore, their frequency depends on the truck density.
6 Trucks, particularly when fully loaded, can hardly acceler-

ate and avoid decelerating.
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From statistics, it is well-known that the difference of
two identically, independently, Gaussian distributed vari-
ables is Gaussian distributed as well. That is, the relative
speeds Δv of trucks obey a Gaussian distribution

N(Δv) dΔv =
1√
2πθ

e−(Δv)2/(2θ) dΔv. (3)

This will be relevant for the derivation of the high-flow
power law later on.

We will now determine the distribution of the time
period Δt required for the overtaking maneuver of trucks.
If Δleff denotes the typical effective distance, over which
an overtaking maneuver takes place (e.g. Δleff = 20 m)
and Δv is the relative speed between an overtaking vehicle
and the slower one it overtakes, we find the proportionality
relation

Δt =
Δleff
Δv

. (4)

As a consequence, the distribution of Δt is given by the
distribution of 1/Δv.

We will now derive the distribution of the variable y =
1/Δv from equation (3) by an appropriate transformation.
Considering

dy

dΔv
= − 1

Δv2
= −y2, (5)

we find
N(Δv) dΔv = −N(Δv)

1
y2

dy, (6)

where the minus sign is compensated for by integration
from small to large values of y = 1/Δv rather than vice
versa. Therefore, we get the distribution

P (y) dy =
1√
2πθ

1
y2

e−1/(2θy2) dy. (7)

In the limit of small speed differences Δv, i.e. large values
of y, we finally obtain the power law

P (y) dy ∼ y−2 dy. (8)

Furthermore, as y = 1/Δv ∼ Δt, see equation (4), this
implies the power-law distribution

P (Δt) dΔt ∼ (Δt)−2 dΔt. (9)

As this power law results in the limit of small Δv, equa-
tion (9) is also found, if the distribution of speed differ-
ences of trucks is approximately Gaussian. With this, we
mean

N(Δv) dΔv = N e−p(Δv) dΔv (10)

with a normalization constant N and a Taylor expansion

p(Δv) = a2(Δv)2 + a3(Δv)3 + a4(Δv)4 + . . . (11)

Hence, our conclusions would stay the same, if the distri-
bution would be approximately Gaussian around Δv = 0.
This should be true under the assumptions made above,
namely that an overtaking truck does not change its speed.
According to the observations of the authors, this assump-
tion appears to be quite realistic.

We have now to study, how the distribution of time pe-
riods Δt translates into vehicle platoons behind the trucks
and into high-flow states measured at local cross sections
of the freeway. In particular, we have to explain why the
distribution of high-flow states extends up to 100 min,
while overtaking maneuvers of trucks only take a few min-
utes (in the worst case).

3.3.1 Platoon formation during overtaking maneuvers

As discussed above, it is natural that overtaking maneu-
vers of slow vehicles, particularly trucks, constitute mov-
ing bottlenecks for faster vehicles for some time. These
faster vehicles will be queued up behind the slow ones
(the trucks) and form a platoon. We will now determine
the growth of the platoon length. Intuitively, the number
of vehicles in the platoon grows proportionally with the
time Δt required for the overtaking maneuver of the slow
vehicles.

To quantify this, we may apply the well-known for-
mula for shock propagation (i.e. the propagation of fronts
between areas of different density) [65]. Let Ve(ρ) be the
equilibrium speed-density relation and ρfr the density per
lane upstream of the moving bottleneck and the forming
vehicle platoon. Moreover, let ρpl > ρfr be the density
per lane corresponding to the speed Vtr ≈ 80 km/h of
trucks, i.e.

Ve(ρpl) = Vtr. (12)

Finally, let
Qe(ρ) = ρVe(ρ) (13)

represent the equilibrium flow-density relation, which is
sometimes called the “fundamental diagram”7. Then, the
propagation speed of the upstream end of the vehicle pla-
toon forming behind the moving bottleneck is expected
to be

C(ρfr) =
Qe(ρpl) − Qe(ρfr)

ρpl − ρfr
=

ρplVtr − ρfrVe(ρfr)
ρpl − ρfr

. (14)

Relative to the truck speed Vtr, the propagation speed of
the upstream platoon front can be calculated as

c(ρfr) = C(ρfr) − Vtr = −Ve(ρfr) − Vtr

ρpl/ρfr − 1
< 0. (15)

The negative values imply that the platoon is growing
backwards, as expected. Therefore, the platoon length
lpl(t) grows linearly with the time t at the rate |c(ρfr)|.
After an obstructed time period of duration Δt, the pla-
toon is expected to have the length

lpl(Δt) = |c|Δt. (16)

Note that, in this paper, we assume that the vehicle den-
sity ρpl in the platoon is (meta)stable, i.e.

ρpl < ρc2, (17)
7 While the flow-density data scatter largely in the congested

area, here we require the flow-density relationship in the den-
sity regime before the capacity drop, which is well defined.
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see references [6,58]. This situation may be compared
with a “widening synchronized pattern” [58,60], but with
a moving rather than stationary downstream front. The
density ρc2 represents the threshold to linearly unstable
traffic.

If relationship (17) is given, traffic flow only desta-
bilizes and suffers a breakdown of capacity8, if there are
merging flows or strong local perturbations (see the exam-
ple in Fig. 7). Without such perturbations, the platoons
will expand in space without a breakdown of the flow.
Therefore, the outflow from the vehicle clusters, after the
trucks have finished their overtaking maneuver, is given
by the free flow capacity Qmax rather than the congested
flow capacity Qout [58].

3.3.2 Dissolution of vehicle platoons

After the overtaking maneuver is completed and the re-
lated obstruction of the vehicle flow has ended, the vehicle
platoon dissolves linearly in time. Let us denote the maxi-
mum flow by Qmax and the related density by ρmax, where
Qe(ρmax) = Qmax. According to the shock wave equation
for the propagation of discontinuous density changes [65],
the dissolution speed is then given by [58]

C∗ =
Qe(ρmax)/2 − Qe(ρpl)

ρmax − ρpl
=

ρmaxVe(ρmax)/2 − ρplVtr

ρmax − ρpl
,

(18)
where the factor 1/2 takes into account that only one of
the two lanes, namely the left lane is free to dissolve the
vehicle platoon, after the overtaking maneuver of trucks
is finished. Relative to the truck velocity Vtr, the propa-
gation speed is

c∗ = C∗ − Vtr = −Ve(ρmax)/2 − Vtr

ρpl/ρmax − 1
. (19)

The dissolution process takes a time period Δt∗. While
the vehicle platoon dissolves at the front, further vehicles
are joining it at its end. Therefore, we have the relation

lpl(Δt) + |c|Δt∗ = |c∗|Δt∗. (20)

This results in

Δt∗ =
|c|Δt

|c∗| − |c| =
Δt

|c∗|/|c| − 1
. (21)

Hence, the existence of a platoon is observed for an overall
time period of

ΔT∗ = Δt∗ + Δt =
Δt

1 − |c|/|c∗| ≥ Δt. (22)

The quotient in the denominator can be determined as

|c|
|c∗| =

ρfr

ρmax

∣
∣
∣
∣

Ve(ρfr) − Vtr

ρpl − ρfr

∣
∣
∣
∣

∣
∣
∣
∣

Ve(ρmax)/2 − Vtr

ρpl − ρmax

∣
∣
∣
∣

. (23)

8 Namely, from the maximum flow Qmax to the outflow Qout

from seriously congested traffic.
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Fig. 8. Illustration of the various densities and flows deter-
mining the formation and dissolution of vehicle platoons. We
have ρfr ≤ ρmax and assume ρmax < ρpl < ρc2, which supports
the (meta-)stability of vehicle platoons. Therefore, they may
persist over a considerable time period without a breakdown
of “high-flow states”.

Note the relationships

ρfr ≤ ρmax < ρpl (24)

and
Ve(ρfr) ≥ Ve(ρmax) > Ve(ρpl) (25)

(see Fig. 8). Therefore, equations (22) and (23) imply a
platoon to exist for a time period ΔT∗ = Δt, if ρfr → 0,
while it will exist for an extremely long time as Qe(ρfr) →
Qmax/2. Consequently, at low vehicle densities, most pla-
toons are expected to dissolve quickly. However, at mod-
erate densities, the lifetime ΔT∗ = Δt + Δt∗ can be quite
long and even diverge. This (and the persistence of high-
flow vehicle clusters after the dissolution of platoons, see
next subsection) is the reason, why overtaking maneuvers
on the scale of minutes can have effects on much longer
time scales.

3.3.3 Measurement of high-flow states

We will now have to relate the existence of vehicle platoons
to the local measurement of high-flow states. When a ve-
hicle platoon passes a cross section of the road, the traffic
flow is particularly high due to the small time gaps be-
tween its vehicles. In comparison with the situation before
the overtaking maneuver of trucks, the time gaps between
the freely flowing cars are considerably reduced. That is,
the flow is still higher than Qe(ρfr), the flow before pla-
toon formation, even after the vehicle platoon has dis-
solved. The related vehicle clusters are expected to exist
for a long time, much longer than the previous vehicle
platoon9. The corresponding flows in both lanes qualify
as high-flow states, if they are larger than Qthr.

9 There are basically two ways for them to disappear: 1) ve-
hicles leave the cluster via off-ramps of the freeway; 2) clusters
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Let us now estimate the flow in both lanes after the
overtaking maneuver of trucks is finished. Then, vehicles
will pass the truck in the right lane at the maximum flow
rate Qmax. This flow will be distributed over both free-
way lanes. A fraction β = β(ρfr) will switch to the right
lane, while a fraction (1 − β) will stay on the left lane. In
the right lane, in front of the overtaken truck, there will
be some additional truck traffic. If γ denotes the average
fraction of truck traffic on both freeway lanes, this corre-
sponds to an average truck traffic flow of Qtr ≈ γQe(ρfr).
Considering that most of these trucks are in the right lane,
the overall flow on the right lane after a completed over-
taking maneuver of trucks may be estimated as

Qright(ρfr, t) ≈ β(ρfr)Qmax + 2γ(t)Qe(ρfr). (26)

In the left lane, we approximately expect to find the flow

Qleft(ρfr, t) ≈ [1 − β(ρfr)]Qmax. (27)

While the flow Qleft is typically above 2000 vehicles per
hour (we estimate that β ≈ 0.35), the flow in the right lane
exceeds high flow thresholds Qthr as well, if the surround-
ing density ρfr and the truck fraction γ are large enough.
Therefore, after an overtaking maneuver of trucks, we ex-
pect to find high-flow states in both lanes10. We will now
have to determine the time period over which they are
measured.

Previously, we have studied vehicle clusters in a moving
coordinate system, specifically in a system moving at the
speed of trucks. Our empirical distribution of high-flow
states, however, has been measured at a local cross section
of a two-lane freeway. In order to see how this affects the
measurement, it is useful to consult Figure 9.

We see that the time period ΔT of high-flow clusters
is basically given by Δt∗, which is proportional to Δt, see
equation (21). The proportionality factor

A(ρfr) =
1

|c∗|/|c(ρfr)| − 1
(28)

depends on the surrounding vehicle density ρfr. But given
a certain density ρfr, we have the proportionality ΔT−2 ∼
Δt−2. Together with the power law distribution (9) for
Δt, this implies the power law distribution

P (ΔT, ρfr) ∼ (ΔT )−2 ∼ (Δt)−2. (29)

As only the proportionality factor, but not the exponent
α = 2 depends on the density ρfr, the superposition of
distributions for different values of ρfr is again a power
law with exponent α = 2:

P (ΔT ) ∼ (ΔT )−2 ∼ Δt−2. (30)

Therefore, we have shown that the measured duration ΔT
of vehicle platoons is distributed according to a power law

disperse due to a variation of the vehicle speeds, which can be
approximated by continuity equations for cars and trucks with
diffusion terms, see the appendix.
10 At least if Qleft, Qright > Qthr and Qmax + 2γQe(ρfr) >
2Qe(ρfr).

Fig. 9. Schematic illustration of vehicle trajectories on the
left lane before, during, and after an overtaking maneuver of
trucks. The triangular area represents the growth and disso-
lution of a vehicle cluster. When measuring the flow after the
dissolution of the platoon at some freeway cross section x, one
expects to detect the free flow Qe(ρfr), then a low-flow period
in front of the overtaking trucks, afterwards a high-flow period,
and finally again free flow. The measured duration ΔT of the
high-flow state, which is expected to persist for a long time, is
basically given by Δt∗.

P (ΔT ) ∼ (ΔT )−α with α = 2, in agreement with the
empirical measurement of high-flow states represented by
equation (2).

4 Summary and outlook

In this paper, we have revealed a power law for the dura-
tion of high-flow states, where “high flow” means higher
than some given threshold Qthr. Not only was it surpris-
ing to find that our empirical data could be approximated
by a power law, but also that the power law exponents α
for the lanes of a two-lane freeway were approximately 2,
irrespective of the flow threshold Qthr.

Therefore, it was natural to look for an explanation of
these surprising findings. As the dependence of the expo-
nents on the number of freeway lanes does not support
explanations based on the longitudinal vehicle dynamics,
we have studied a model based on the transversal vehicle
dynamics, i.e. lane changes11. Our hypothesis was that
high-flow states occured due to vehicle platoons, and that
these vehicle platoons would be caused by lasting over-
taking maneuvers of slow vehicles, particularly of trucks.
11 An alternative modeling approach, however, may be based
on modifications of the one-lane models for vehicle platoons
discussed in Section 1, if the exponent is (made) dependent on
the number of lanes.
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Based on an approximate Gaussian distribution of the
speed difference of trucks, we could, in fact, derive the
empirical power law and the exponent α = 2. For this, we
have studied the duration of overtaking maneuvers, the re-
sulting lifetime of forming vehicle platoons, and the mea-
surement process at a cross section of the freeway. The
lifetime ΔT∗ of a vehicle platoon and the measurement
ΔT of the related high-flow vehicle cluster are propor-
tional to the duration Δt of overtaking maneuvers. This
circumstance transfers the power law of the time periods
Δt to the periods of the high-flow states. The powerlaw
itself results from the approximate Gaussian distribution
of relative speeds Δv, the fact that the duration Δt of
overtaking maneuvers is inversely proportional to Δv, and
the domination of long-lasting overtaking maneuvers with
Δv ≈ 0.
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ysis, while D.H. developed the theoretical model.
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Appendix A: Dispersion of vehicle clusters

For each vehicle class a (i.e. cars and trucks), the disper-
sion of vehicle clusters is described by the traffic pressure
Pa(x, t) = ρa(x, t)θa(x, t), which is proportional to the
vehicle density ρa(x, t) of vehicle type a and its velocity
variance θa(x, t) as a function of location x and time t [66].
In the limit of small adaptation times τa for the velocity
relaxation, the average speed Va of vehicle class a may be
approximated by

Va(x, t) = V e
a

( ∑

b

ρb(x, t)
)

− τa

ρa

∂Pa(x, t)
∂x

, (A.1)

where V e
a (

∑

b ρb(x, t)) is the equilibrium relationship be-
tween speed Va and density ρ(x, t) =

∑

b ρb(x, t). Inserting
equation (A.1) into the continuity equation for each vehi-
cle class, the dispersion of vehicle clusters due to different
speeds can be reflected by diffusion terms Dab∂

2ρb/∂x2

(for details of the derivation see Ref. [67]):

∂ρa(x, t)
∂t

+ V e
a

( ∑

b

ρb(x, t)
)∂ρa

∂x
≈

∑

b

∂

∂x

(

Dab
∂ρb

∂x

)

.

(A.2)
Herein, the diffusion parameters Dab are given by

Dab(ρa, ρb) = τa
∂Pa(ρa, ρb)

∂ρb
. (A.3)

The diffusion terms on the right-hand side of equa-
tion (A.2) imply a spatial dispersion of clusters in the
course of time.
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