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Abstract We prove a fixed point theorem for a family of Banach spaces in-
cluding notably L1 and its non-commutative analogues. Several applications
are given, e.g. the optimal solution to the “derivation problem” studied since
the 1960s.

1 Introduction

Andrés Navas asked us if there is a fixed point theorem for all isometries
of L1 that preserve a given bounded set. Unlike many known cases where
a geometric argument applies, there is a fundamental obstruction in L1: any
infinite group G admits a fixed-point-free isometric action on a bounded con-
vex subset of L1. Example: the G-action on the affine subspace of summable
functions of sum one on G. This action is fixed-point-free and preserves the
closed convex bounded set of non-negative functions. The obvious (and only)
fixed point, zero, is outside the space.

Thus, we have to search for fixed points possibly outside the convex set,
indeed outside the affine subspace it spans. We shall do this more generally
for any L-embedded Banach space V , that is, a space whose bidual can be
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decomposed as V ∗∗ = V ⊕1 V0 for some V0 ⊆ V ∗∗ (and ⊕1 indicates that the
norm is the sum of the norms on V and V0). Recall that L1 is L-embedded by
the Yosida–Hewitt decomposition [17] and that this holds more generally for
the predual of any von Neumann algebra [15, III.2.14]; in particular, for the
dual of any C*-algebra.

Theorem A Let A be a non-empty bounded subset of an L-embedded Ba-
nach space V .

Then there is a point in V fixed by every isometry of V preserving A.
Moreover, one can choose a fixed point which minimises supa∈A ‖v − a‖ over
all v ∈ V .

We recall that an isometric action of a group G on a Banach space V is
given by a linear part and a cocycle b : G → V . The cocycle is the orbital map
of 0 ∈ V and a fixed point v corresponds to a trivialisation b(g) = v − g.v,
where g.v is the linear action. The above norm statement implies that one can
arrange ‖v‖ ≤ supg ‖b(g)‖ by considering A = b(G) 	 0.

As a special case (the “commutative” case), we recover the main theorem
of [11] due to Losert, but with an improved (indeed optimal) norm estimate:

Corollary B (cf. [11]) Let G be a group acting by homeomorphisms on a lo-
cally compact space X. Then any bounded cocycle b : G → M(X) to the
space of (finite Radon) measures on X is trivial. More precisely, there is
a measure μ with ‖μ‖ ≤ supg∈G ‖b(g)‖ such that b(g) = μ − g.μ for all
g ∈ G.

Indeed, M(X) is the dual of the (commutative) C*-algebra C0(X) and
hence the predual of a von Neumann algebra.

Numerous consequences of Corollary B are listed in [11]; let us only re-
call that it settles the so-called derivation problem whose history began in the
1960s: If G is a locally compact group, then any derivation from the con-
volution algebra L1(G) to M(G) is inner. This is often phrased in terms of
derivations “of L1(G)” since any derivation L1(G) → M(G) must range in
L1(G) by Paul Cohen’s factorisation theorem [3]. It also follows that any
derivation of M(G) is inner. Our norm estimate is stronger and in fact opti-
mal by Remark 7.2(a) in [11].

As observed by Uffe Haagerup, Theorem A also yields a new proof that
all C*-algebras are weakly amenable, which was proved in [7] using the
Grothendieck–Haagerup–Pisier inequality. (Finding such a new proof was
Problem 19 in [14].) In fact, our theorem immediately implies that any con-
tinuous derivation from any normed algebra A to a predual M∗ of a von Neu-
mann algebra is inner as soon as A is spanned by the elements represented
as invertible isometries of M∗ (see the proof of the corollary below). In the
particular case of C*-algebras, we obtain the following general statement.
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Corollary C Let A be a unital C*-algebra. Let M∗ be the predual of a von
Neumann algebra. Assume M∗ is a Banach bimodule over A. Then any arbi-
trary derivation D : A → M∗ is inner.

Moreover, we can choose v ∈ M∗ with D(a) = v.a − a.v such that
‖v‖ ≤ ‖D‖.

Haagerup’s weak amenability of A is given by the special case M∗ = A∗.
Our definition of Banach bimodule demands ‖a.v.b‖ ≤ ‖a‖ · ‖v‖ · ‖b‖
(a, b ∈ A, v ∈ M∗).

Proof of Corollary C By Theorem 2 in [13], D is continuous; thus it is
bounded (by ‖D‖ < ∞) on the group G of unitaries of A. The map G → M∗
given by g �→ D(g).g−1 is a cocycle for the Banach G-module structure de-
fined by the rule v �→ g.v.g−1. Theorem A thus yields v, with norm bounded
by ‖D‖, such that D(g) = v.g − g.v for all g ∈ G. The statement follows
since any element of A is a combination of four unitaries (in fact, three [8]). �

Finally, returning to the case V = L1 of Theorem A, we consider actions
without a priori boundedness of the orbits and obtain a new characterisation
of Kazhdan groups:

Corollary D Let � by any measure space. Then any isometric action of a
Kazhdan group on L1(�) has a fixed point.

Moreover, this fixed point property characterises Kazhdan groups amongst
all countable (or locally compact σ -compact) groups.

By the Kakutani representation theorem [9], this corollary applies un-
changed to abstract L1 spaces, for instance to M(X) for any locally compact
space X.

Proof of Corollary D Recall that any isometric action of a Kazhdan group on
an L1 space has bounded orbits because of a Fock space argument (see e.g. [1,
1.3(2)]). Therefore, Theorem A implies the first part of the statement. Con-
versely, let G be a locally compact σ -compact group with this fixed point
property. A standard argument shows that G has the L1-version (TL1) of
property (T ), see [1, 1.3(1)] (this argument holds in the σ -compact gener-
ality). Theorem A in [1] shows that (TL1) implies (T ); although it is claimed
there for Lp with 1 < p < ∞, the proof applies unchanged to L1, using the
Connes–Weiss construction [4] (exposed also in Theorem 6.3.4 of [2]). �
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2 Proof of the theorem

We first recall the concept of Chebyshev centre. Let A be a non-empty
bounded subset of a metric space V . The circumradius of A in V is

�V (A) = inf
{
r ≥ 0 : ∃x ∈ V with A ⊆ B(x, r)

}
,

where B(x, r) denotes the closed r-ball around x. The Chebyshev centre of
A in V is the (possibly empty) set

CV (A) = {
c ∈ V : A ⊆ B(c,�V (A))

}
.

Notice that CV (A) can be written as an intersection of closed balls as follows:

CV (A) =
⋂

r>�V (A)

Cr
V (A) where Cr

V (A) =
⋂

a∈A

B(a, r).

Thus, when V is a normed space, CV (A) is a bounded closed convex set.
More importantly, when V is a dual Banach space, we deduce from Alaoğlu’s
theorem that CV (A) is weak-* compact and that it is non-empty because
the non-empty sets Cr

V (A) are monotone in r . (For general Banach spaces,
CV (A) is very often empty, even when A consists of just three points
[10, 16].)

Proposition Let A be a non-empty bounded subset of an L-embedded Banach
space V . Then the convex set CV (A) is weakly compact and non-empty.

Proof Consider A as a subset of V ∗∗ under the canonical embedding
V ⊆ V ∗∗. In view of the above discussion, CV ∗∗(A) is a non-empty weak-*
compact convex set. We claim that it lies in V and coincides with CV (A);
the proposition then follows. Let thus c ∈ CV ∗∗(A) and write c = cV + cV0

according to the decomposition V ∗∗ = V ⊕1 V0. Then, for any a ∈ A, we
have

‖a − c‖ = ‖a − cV ‖ + ‖cV0‖
since A ⊆ V . Therefore,

�V ∗∗(A) = sup
a∈A

‖a − c‖ = sup
a∈A

‖a − cV ‖ + ‖cV0‖ ≥ �V (A) + ‖cV0‖.

Since �V ∗∗(A) ≤ �V (A) anyway, we deduce cV0 = 0 and �V ∗∗(A) = �V (A),
whence the claim. �

Proof of Theorem A Since the definition of CV (A) is metric, it is preserved
by any isometry preserving A. By the proposition, we can apply the Ryll-
Nardzewski theorem and deduce that there is a point of CV (A) fixed by all
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isometries preserving A. The norm condition follows from the definition of
centres. �

We remind the reader that in the present context the Ryll-Nardzewski the-
orem has a particularly short geometric proof relying on the dentability of
weakly compact sets [12].

3 Comments

a. In marked contrast to classical fixed point theorems, there is no hope to
find a fixed point inside a general bounded closed convex subset of L1,
as pointed out in the opening. As a case in point, the weak compactness
of the Ryll-Nardzewski theorem is a strong restriction in L1 since it im-
poses equi-integrability, and yet it seems almost unavoidable in light of
[6, Theorem 4.2] if one insists on the classical statement.

b. For the proposition, a canonical norm one projection V ∗∗ → V is not
enough. Indeed, any dual space is canonically 1-complemented in its own
bidual, but the fixed point property in all duals characterises amenability.
Specifically, any non-amenable group G has a fixed-point-free action with
bounded orbits in (�∞(G)/R)∗.

c. It would be interesting to find a purely geometric version of the proposi-
tion, since we prove compactness out of geometric assumptions. Notice
however that the compact set CV (A) might still be large. If for instance A

consists of just the two points 0[0,1],1[0,1] in V = L1([0,1]), then CV (A)

is the infinite-dimensional set of functions 0 ≤ f ≤ 1 with
∫

f = 1/2. It
would further be interesting to study the dynamics of the transformation
A �→ CV (A); for instance, it can have orbits of period 1 or 2, but no other
finite period.
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