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Abstract Soft tissue sarcomas (STS) with complex
genomic profiles (50% of all STS) are predominantly
composed of spindle cell/pleomorphic sarcomas, including
leiomyosarcoma, myxofibrosarcoma, pleomorphic liposar-
coma, pleomorphic rhabdomyosarcoma, malignant periph-
eral nerve sheath tumor, angiosarcoma, extraskeletal
osteosarcoma, and spindle cell/pleomorphic unclassified
sarcoma (previously called spindle cell/pleomorphic ma-
lignant fibrous histiocytoma). These neoplasms show,
characteristically, gains and losses of numerous chromo-
somes or chromosome regions, as well as amplifications.
Many of them share recurrent aberrations (e.g., gain of
5p13-p15) that seem to play a significant role in tumor
progression and/or metastatic dissemination. In this paper,
we review the cytogenetic, molecular genetic, and clini-
copathologic characteristics of the most common STS
displaying complex genomic profiles. Features of diag-
nostic or prognostic relevance will be discussed when
needed.
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Introduction

Soft tissue sarcoma (STS) is a heterogenous group of
mesenchymal neoplasms showing high variations in their
clinical presentation, morphology, immunoprofile, genetics,
and behavior. Roughly, STS can divided into several
categories, namely those bearing reciprocal translocations
accounting for 15–20% of cases (e.g., synovial sarcoma,
Ewing sarcoma), those with specific mutations (e.g.,
gastrointestinal stromal tumor (GIST)) or deletions (e.g.,
rhabdoid tumor), those with amplifications (e.g., well-
differentiated liposarcoma), and those with complex ge-
nomic profiles (complex karyotypes). The latter category,
which accounts for about 50% of STS, is mainly composed
of spindle cell/pleomorphic tumors, including leiomyosar-
coma, myxofibrosarcoma, pleomorphic liposarcoma
(PLPS), pleomorphic rhabdomyosarcoma (PRMS), malig-
nant peripheral nerve sheath tumor (MPNST), angiosar-
coma, extraskeletal osteosarcoma, and spindle cell/
pleomorphic unclassified sarcoma (previously called spin-
dle cell/pleomorphic malignant fibrous histiocytoma
(MFH)). High-grade dedifferentiated liposarcoma which is
also characterized by complex karyotype shows, in addi-
tion, distinctive genomic abnormalities (giant chromo-
somes, supernumerary ring chromosomes, amplification of
12q13-q21), paralleling that observed in well-differentiated
liposarcoma (see chapter on well-differentiated and dedif-
ferentiated liposarcomas).

Leiomyosarcoma

Leiomyosarcoma (LMS) accounts for about 8–10% of adult
soft tissue sarcomas [1–3]. These malignant neoplasms
which show varying degree of smooth muscle differentia-
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tion can develop anywhere in the body, as well as in
visceral organs (prostate, urinary bladder, uterus, etc.).

Cytogenetics and molecular genetics

LMS usually show complex karyotypic alterations [4–6],
and karyotypes differ generally from one tumor to another.
Many LMS show chromosomal imbalances aberrations in
the form of gains (chromosomes 1, 5, 6, 8, 15, 16, 17, 19,
20, 22, X), losses (chromosomes 1p, 2, 3, 4, 6q, 8, 9, 10p,
11p, 12q, 11q, 13, 16, 17p, 18 19, 22q), and amplifications
(chromosomes 1, 5, 8, 12, 13, 17, 19, 20) [4, 6, 7].

Some gains and losses of chromosomal material,
however, are more frequently observed and tend to
correlate with poor outcome, large tumor size, and
metastatic dissemination: loss of 1p12-pter, loss of 2p, loss
of 13q14-q21 (targeting the Rb pathway) [8], loss of 10q
(targeting PTEN) [9], and loss of 16q and gains of 17p, 8q,
and 5p14 pter [8, 9]. LMS often show loss of RB1,
correlating with the high frequency of LMS observed in
hereditary retinoblastoma patients. The 5p13-p15 region is
often amplified in several pleomorphic STS including
LMS. Residing in this amplicon are three candidates genes
which are overexpressed: TRIO, NKD2, and IRX2, of
which TRIO seems to be particularly involved in tumor
progression of LMS [10]. Activation of the PI3K–AKT
pathway through different mechanisms (e.g., activation of
IGFR, inactivation of PTEN, a negative regulator of the
PI3K–AKT) also plays a crucial role in the development
and maintenance of LMS [11]. This activation leads to the
concomitant activation of downstream effectors such as
mTOR and its targets (ß-catenin, pS6, p4E-BP1, etc.), as
well as to MDM2 stabilization [11]. Recent clinical trials
showed that analogs of rapamycin such as everolimus
(RAD001), an mTOR inhibitor, have some efficacy in
patients with LMS and PEComas [12, 13]. Gene and
protein expression studies also identified genes/proteins
that seem to be associated with unfavorable prognosis and
high metastatic risk in leiomyosarcomas (see also chapter of
Beck et al.) [14–16], including mutations in TP53 gene and
inactivation of p16INK4a [17, 18], RASSF1A [19], and
MGMT [20] secondary to promoter hypermethylation. A
recent study on gene expression signature of 177 sarcomas
identified a significant relationship between upegulation of
several hypoxia-induced genes such as HIF1A and its
targets and increased metastatic potential [21]. This was
particularly true for STS with complex karyotypes, includ-
ing LMS. This application of expression data would allow
us to identify high-risk patients who might deserve specific
therapy.

Recently, it has been realized that the more differentiated
retroperitoneal leiomyosarcomas tend to behave more
aggressively and that this aggressiveness was mainly

dependent upon myocardin amplification/overexpression
[22]. Myocardin is a transcriptional cofactor of SRF
regulating smooth muscle differentiation. Pérot et al. [22]
showed that inactivation of the myocardin pathway resulted
in a significant reduction of smooth muscle differentiation,
cell proliferation, and cell migration and was associated
with less differentiated histology. These data suggest that
myocardin might constitute a promising therapeutic target.

Some LMS which occur in children and some immuno-
compromised patients are associated with Epstein–Barr
virus infection. EBV infection can be confirmed by in situ
hybridization (using Epstein–Barr virus early RNA-EBER
probes) or polymerase-chain-reaction-based methods [23],
pointing to a potential role of EBV in leiomyosarcoma
genesis. This was not observed in other neoplasms such as
GIST [24].

Leiomyosarcomas of the uterus tend to parallel LMS of
soft tissue in terms of karyotypic abnormalities. Most
frequent losses by CGH include 10q, 11q, 13q, and 2p,
whereas the most common gains are Xp, 1q, 5p, 8q, and
17p [4, 25]. Aberrations involving 1q21 seem to be more
common and aberrations of 1p13 and 10q22 less common
in soft tissue leiomyosarcomas [4, 5]. Losses involving 1q
and 3p are more frequent among soft tissue LMS whereas
losses of chromosomes 14 and 15 and of 22q12-qter are
more frequent in non-soft-tissue LMS [4]. TP53 mutations,
MDM2 stabilization, and inactivation of p16INK4a are
observed in both soft tissue and uterine LMS and seem to
be associated with LMS progression. Leiomyoma and LMS
of the uterine corpus are two different diseases, and there is
no evidence that the former originates from the latter [26].
For example, TP53 mutations and loss of heterozygosity for
chromosome 10 are not observed in leiomyomas, while the
t(12;14) (q15; q23-24) seen in many leiomyomas is not a
feature of LMS [4, 25].

Clinical features

LMS are more common in middle-aged and elderly patients
and rare in children. Clinical behavior depends mainly on
tumor location [1, 2]. Leiomyosarcomas of the dermis are
mostly observed in lower extremities of middle-aged to
older male individuals. They are often small (<2 cm) and
have an excellent prognosis. LMS of the somatic soft
tissues often present as large (6 cm on average) lesions
which tend to be situated in the extremities, especially the
thigh, frequently connected to a small vein (one third of
cases). About half of them develop in the subcutis and the
remainder in muscle. Metastases develop in 40% to 45% of
patients with a 5-year survival rate of 64% [2, 27].

LMS of the retroperitoneum, abdominal cavity, and
mediastinum account for 50–65% of all LMS. They occur
preferentially in women (two third of cases), presenting as
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large (often >10 cm) multinodular masses which tend to
infiltrate adjacent structures such as the kidney or pancreas.
The prognosis of LMS of the abdominal cavity and
retroperitoneum is markedly poor, with 70–90% of patients
dying of their disease within 5 years [2, 27].

Epstein–Barr-virus-associated LMS tend to occur in
children, to be multicentric, and to behave as low-grade
tumors. They also occur in immunocompromised patients
(e.g., transplanted patients and patients with acquired
immunodeficiency syndrome) [23].

Pathologic features

Histologically, LMS is composed of a varying proportion of
spindle and pleomorphic cells depending on the degree of
differentiation. In well-differentiated lesions, the spindle
cells are classically arranged in recognizable longitudinally
oriented fascicles intersecting at right angles (Fig. 1). The
cytoplasm of the cells is variably eosinophilic and fibrillary.
In higher-grade tumors, cytologic atypia is common,
associated with monster cells, normal and abnormal
mitoses, foci of rhabdoid cytomorphology, and tumor
necrosis. Several variants of LMS have been described,
including the pleomorphic (10% of cases), myxoid,
inflammatory, epithelioid, and osteoclast-like cell/giant-
cell-rich LMS. EBV-associated LMS differs from classical
LMS in several respects. They tend to be well differentiated
and to exhibit reduced cytologic atypia, low mitotic
activity, and numerous intratumoral lymphocytes.

Immunohistochemically, LMS show features of smooth
muscle differentiation. Tumor cells are generally positive
for muscle-specific actin (HHF-35), alpha smooth muscle
actin, desmin, calponin, h-caldesmon, and smooth muscle

myosin heavy chain and are negative for myogenin. A
significant proportion of LMS (especially well-
differentiated neoplasms) can be positive for EMA (10–
30%), keratin (10–30%), and CD34 (30%). Extrauterine
LMS are generally negative for estrogen and/or progester-
one receptors.

Differential diagnosis

The differential diagnosis of LMS is quite large. Among
benign lesions, inflammatory myofibroblastic tumor and all
pseudosarcomatous (myo)fibroblastic reactive lesions (e.g.,
postoperative spindle cell nodule) are most likely to be
confused with LMS. Spindle cell malignant neoplasms
resembling LMS include myofibroblastic sarcoma, spindle
cell rhabdomyosarcoma, pleomorphic rhabdomyosarcoma,
high-grade undifferentiated pleomorphic sarcoma, gastroin-
testinal stromal tumor, sarcomatoid carcinoma, and spindle
cell/pleomorphic melanoma.

Undifferentiated spindle/pleomorphic sarcoma
(so-called storiform–pleomorphic MFH)

Undifferentiated high-grade spindle/pleomorphic sarcoma
(undifferentiated pleomorphic sarcoma (UPS)) is now the
preferred term to designate high-grade soft tissue sarcomas
which fail to show any specific line of differentiation using
currently available ancillary techniques and in which
epithelial, melanotic, and lymphoid differentiations have
been excluded [1, 28, 29]. It is a diagnosis of elimination.
These neoplasms account for about 5–7% of sarcomas
occurring in adults. Most were previously called “stori-
form–pleomorphic malignant fibrous histiocytomas”.

Cytogenetics and molecular genetics

UPS show complex cytogenetic rearrangements involving
30–35% of the genome, but no specific structural or
numerical abnormalities have been proven, so far, to be
useful for identification purposes [30] (Fig. 2). UPS and
other pleomorphic sarcomas share many of the aberrations
observed in LMS [31–33], including losses of 1q32.1,
2p25.3, 2q36-q37, 8p23, 9p, 10q21-q23, 11q22, 13q14-
q21, 16q11, and 16q23, gains of 1p36-p31, 1q21-q24, 2p,
4p16, 5p, 5q34, 6q, 7p15-p22, 7q21-qter, 17q, 9q, 14q,
16p13, 17q, 19p13, 19q13.11-q13.2, 20q, and 21q, and
high-level amplifications of loci 1p33-p34, 12q13-q15,
17cen-p11.2, and 17p13-pter (Figs. 3 and 4). Both tumor
types share also very similar protein expression patterns
[16, 34]. Loss of chromosome 13q is the most frequent
genomic imbalance in UPS [35], leading to inactivation of
the RB pathway [36]. Alterations within the TP53/ARF/

Fig. 1 Leiomyosarcoma. The tumor is moderately differentiated,
composed of intersecting fascicles of spindle cells showing brightly
eosinophilic cytoplasm and obvious nuclear atypia
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MDM2 pathway are also frequent [32]. A recent gene
expression analysis of 64 spindle and pleomorphic sarco-
mas showed that, when performing hierarchical clustering
analyses, dedifferentiated liposarcoma, myxofibrosarcoma,

leiomyosarcoma, malignant peripheral nerve sheath tumor,
and adult-type fibrosarcoma formed their own clusters [37].
This study also showed that many of the so-called UPS/
MFH had heterogeneous profiles and could be reclassified
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Fig. 2 Complex karyotype of an undifferentiated high-grade pleomorphic. sarcoma. Many chromosomes are abnormal and difficult to classify
(asterisk indicates «apparently» normal (i.e., recognizable) chromosomes). Courtesy of Dr. F. Chibon, Bordeaux, France

Fig. 3 Metaphase-based CGH of an undifferentiated high-grade
pleomorphic sarcoma. Chromosomal imbalances are more easily
depicted on CGH (chromosomal gains in green, losses in red) than
on conventional karyotype. In this example, the tumor shows, among

other rearrangements, gains of chromosomes 19 and 20 and losses of
1qter, 10q, 13q, and 16q. This cytogenetic profile is not specific for
undifferentiated pleomorphic sarcomas and can also be observed in
leiomyosarcomas. Courtesy of Dr. F. Chibon, Bordeaux, France
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into other histologic subcategories of pleomorphic sarco-
mas, especially in the myxofibrosarcoma category. Inter-
estingly and, in some way reassuring, the authors
performed a histopathologic review after their molecular
analysis, and they found that morphologic features were
essentially in accordance with their molecular results [37].

Matrix-CGH studies showed that the gene TRIO, coding
for a guanidine nucleotide exchange factor, is upregulated
in pleomorphic sarcomas, correlating with copy number
gains and high-level amplifications of the short arm of
chromosome 5 [10]. TRIO is implicated in the control of
cytoskeleton organization, transcription regulation, cell
cycle progression, apoptosis, vesicle trafficking, and cell-
to-cell adhesion, through activation of the Rho GTPase-
mediated signaling pathway [10]. As in LMS, TRIO seems
to play a significant role in UPS progression [10].

Along with LMS, pleomorphic sarcomas also show
RASSF1A hypermethylation [19] (albeit less than in
LMS) and upregulation of several hypoxia-related genes
(e.g., HIF1A and its targets) as well as of several genes
involved in cell proliferation, adhesion, and motility,
correlating with increased aggressiveness and/or increased
metastatic potential [21, 38]. A recent analysis of 49 UPS
and LMS, which confirmed the strong similarities between
the two histotypes in terms of genomic aberrations and
gene expression patterns, identified two, so far unrecog-
nized, prognostic factors. One, loss of 4q31 (a region which
encompasses the SMAD1 gene involved in the TGF-beta

pathway), was a significant predictor of metastasis in
multivariate analysis for the entire group of UPS and
LMS, and the other, loss of 18q22, was a favorable
prognostic factor for the same group [32].

Ezrin (villin 2), a protein that serves as an intermediate
between the plasma membrane and the actin cytoskeleton,
is considered as a marker of cancer progression and a
potential target for cancer therapy. It plays a key role in
cell morphology, adhesion, migration, and organization.
Ezrin is overexpressed in many neoplasms, and this
overexpression was found to correlate with increased
metastatic potential and reduced survival [39]. Not
surprisingly, this was also the case for high-grade sarcomas
including UPS [40, 41].

The cell of origin of STS is a matter of controversy.
Recently, it has convincingly shown that mesenchymal
stem cells are good progenitor candidates for Ewing [42]
and myxoid liposarcoma [43] development. Mesenchymal
stem cells seem also to be good progenitors for MFH
development via inactivation of the Wnt pathway [44].
Recently, Matushansky et al. [44] nicely demonstrated that
DKK1, a Wnt inhibitor and mediator of human mesenchy-
mal stem cell proliferation is overexpressed in UPS/MFH
and that human mesenchymal stem cells can be transformed
via inhibition of the Wnt signaling to form UPS/MFH-like
tumors in nude mice. This undifferentiation (or “dediffer-
entiation”) can be reversed if the Wnt signaling pathway is
appropriately reestablished.

Fig. 4 Genomic profiles established by CGH BAC-array. This molec-
ular approach allows us to identify rearranged chromosomal regions in
undifferentiated pleomorphic sarcomas. Two types of genomic profiles

are shown, one very complex (a) often associated with poor outcome and
one less complex (b), associated (in the extremities) with better
prognosis. Courtesy of Dr F. Chibon, Bordeaux, France
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Clinical features

UPS occurs most frequently in the limbs (especially lower
limbs) and less often in the trunk of middle to advanced-aged
adults, with a male predominance [1, 2]. Less than 10% are
observed in the subcutaneous fat, most present as deep-
seated masses. UPS are aggressive neoplasms; 30–50% of
patients die within 5 years after diagnosis. Wide excision
followed by irradiation is the treatment of choice. Adjuvant
chemotherapy may be considered in selected cases (e.g.,
young patients). Myogenic differentiation is a negative
prognostic factor in pleomorphic sarcomas [45, 46], with,
however, the notable exception of dedifferentiated liposarco-
mas showing heterologous myogenic differentiation [47].

Pathologic features

UPS usually present as large (5–15 cm), well-circumscribed,
deep-seated masses. Cut surface often show hemorrhagic,
myxoid, and/or necrotic changes. The lesion is composed by
an admixture of spindle and pleomorphic cells, set in a
variably collagenized extracellular matrix (Fig. 5). Cellularity
is variable, and cellular atypia, nuclear pleomorphism,
mitoses, abnormal mitoses, areas of tumor necrosis,
histiocyte-like cells, and foamy cells, as well as giant tumor
cells with enlarged, polylobulated nuclei are commonly
observed.

Immunohistochemically, it is common for undifferenti-
ated high-grade pleomorphic sarcomas to show some
limited foci of smooth muscle actin reactivity, but h-
caldesmon, desmin, S100 protein, and epithelial markers
are usually not expressed. If they are, the diagnosis of

undifferentiated high-grade pleomorphic sarcoma should be
questioned and a search for a specific line of differentiation
pursued. UPS showing a significant amount of smooth
muscle actin reactivity (and sometimes focal expression of
desmin) but lacking the typical morphologic features of
leiomyosarcoma are better classified as high-grade myofi-
brosarcomas (myofibroblastic sarcomas) or myosarcomas
not otherwise specified [48, 49]. Histiocytic antigens (e.g.,
alpha-1-antitrypsin, alpha-1-antichymotrypsin, CD68, lyso-
zyme) are of no utility. There are, by definition, no
ultrastructural features of a specific lineage. Many tumor
cells show features of fibroblasts, myofibroblast, or
histiocytes.

Differential diagnosis

Undifferentiated high-grade pleomorphic sarcoma is a
diagnosis of elimination [1, 28, 29]. Before giving such a
diagnosis, all other potential mimics should have been ruled
out, including metastatic carcinomas (lung, kidney), mela-
noma, lymphoma, pleomorphic rhabdomyosarcoma, pleo-
morphic leiomyosarcoma, pleomorphic liposarcoma,
pleomorphic malignant peripheral nerve sheath tumor,
liposarcoma with high-grade dedifferentiated areas, and
high-grade myxofibrosarcoma. Extensive sampling, careful
examination of slides (looking for lipoblasts or rhabdomyo-
blasts), and ancillary techniques (immunohistochemistry,
electron microscopy, genetics) are critical in this context.

Myxofibrosarcoma

Myxofibrosarcoma, previously called myxoid malignant
fibrous histiocytoma, is a relatively common sarcoma of
older patients (median age 60 years) [1, 2, 50–53].

Cytogenetics and molecular genetics

Because myxofibrosarcoma has been, for a long time,
included in the MFH category and because the separation
between high-grade pleomorphic myxofibrosarcoma con-
taining few (<10%) myxoid areas and undifferentiated
pleomorphic sarcoma (UPS) is difficult and somewhat
subjective [1, 51, 52], data on the cytogenetics and
molecular genetics of myxofibrosarcoma are limited.
Myxofibrosarcomas are generally associated with very
complex karyotypes, sharing many of the aberrations
observed in LMS and UPS [30, 37, 54]. A recent
clinicopathologic and karyotype analysis of 32 myxofibro-
sarcomas showed that local recurrence was associated with
increase in tumor grade and in cytogenetic aberrations [55].
Chromosomal aberrations were not restricted to higher-
grade tumors but could also be observed in low-grade

Fig. 5 Undifferentiated high-grade pleomorphic sarcoma. Prolifera-
tion of undifferentiated spindle and pleomorphic cells, set in variably
collagenous background
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myxofibrosarcomas, albeit less frequently. Normal karyo-
types were also observed, independently of grade.

A CGH analysis of a series of 22 myxofibrosarcomas
showed recurrent simple gains of the chromosome regions
19p and 19q, losses of chromosome 1q, 2q, 3p, 4q, 10q,
11q, and 13q, and high-level amplifications of the central
regions of chromosomes 1, 5p, and 20q [54]. Loss of the
13q14-21 chromosomal region, encompassing the RB1
locus, was observed in all 22 cases examined. Of interest,
gain of 5p and loss of 4q are not observed in low-grade
myxofibrosarcomas as opposed to myxofibrosarcomas of
higher grades, suggesting that these aberrations are late
events in the oncogenesis of myxofibrosarcoma [54]. In
their comparative study, the authors also found similar
chromosomal aberrations in a series of nine pleomorphic
liposarcomas, suggesting close relationship between myx-
ofibrosarcoma and pleomorphic liposarcoma.

A recent gene expression analysis of 64 spindle and
pleomorphic sarcomas showed that, when performing
hierarchical clustering analyses, myxofibrosarcoma could
be separated from other spindle cell/pleomorphic sarcomas,
namely dedifferentiated liposarcoma, leiomyosarcoma, ma-
lignant peripheral nerve sheath tumor, and fibrosarcoma.
This study also showed that many neoplasms which had
initially been (mis)classified as UPS/MFH based on their
morphology and immunoprofile could be reclassified as
myxofibrosarcoma based on gene expression [37]. Two
genes, GPR64 and TNXB, were particularly expressed by
myxofibrosarcomas but not by UPS/MFH, thus allowing
distinction between the two histotypes [37]. Separating a
low-grade myxofibrosarcoma from a cellular myxoma can
be difficult. A recent study showed that this can be done
based on the differences in genetic alterations and in the
composition of extracellular matrix [56].

Clinical features

Myxofibrosarcoma is mostly found in the deep dermis and
subcutaneous fat of limbs (especially lower limbs) and limb
girdles [1, 2, 50–53]. Thirty percent to 60% of the cases are
deep-seated, developing in fascia and skeletal muscle. This
is a slow-growing, often painless, tumor affecting men and
women equally. Clinical behavior depends on tumor size,
histologic grade (which includes tumor necrosis, mitotic
rate, and amount of myxoid areas), and extent of resection
[51, 52]. Local recurrences occur in about 50% of cases,
often because of inadequate initial excisions. It is not
unusual for recurrences to show signs of upgrading with an
increase in cellularity, pleomorphism and mitotic activity,
and, conversely, a reduction of the myxoid component.
Metastases to lungs and bone are mostly observed in high-
grade, large deep-seated tumors (20–35%); they are rare in
low-grade lesions. The overall 5-year survival rate is 60–

70%. A variant of myxofibrosarcoma showing distinctive
epithelioid morphology and aggressive behavior has re-
cently been individualized [57].

Pathologic features

Grossly, myxofibrosarcoma is typically ill-defined, heteroge-
neous, often multinodular, located in the subcutaneous fat,
growing along fibrous septa and forming more or less
gelatinous nodules. Large tumors are often deep-seated and
partially necrotic and/or hemorrhagic. On microscopic exam-
ination, it is characterized by myxoid areas which are
associated with cellular areas resembling undifferentiated
pleomorphic sarcoma (Fig. 6). There is unfortunately no
consensus on the extent of the myxoid areas required for the
diagnosis of myxofibrosarcoma; whereas some authors require
at least 50% [2] or 30% [52], 10% is enough for some others
[51, 53]. Low-, intermediate-, and high-grade tumors have
been described, depending on the amount of cellular atypia
and on the respective proportions of myxoid and nonmyxoid
components (the latter showing morphologic features of
storiform–pleomorphic malignant fibrous histiocytoma) [2].
Low-grade myxofibrosarcomas are predominantly myxoid
(≥50% myxoid) and hypocellular and contains distinctive
curvilinear vessels (Fig. 7). Tumor cells, some of which have
enlarged hyperchromatic nuclei, tend to aggregate around
vessels. Vacuolated cells containing acid mucin and resem-
bling lipoblasts are also found. Mitotic figures are rare. In
high-grade lesions, the malignant fibrous histiocytoma-like
component predominates: nuclear pleomorphism is evident,
multinucleated giant cells and necrosis common, and mitotic
figures, including abnormal mitoses, readily visible. Epithe-

Fig. 6 Myxofibrosarcoma. This intermediate-grade myxofibrosar-
coma is composed of an admixture of myxoid and cellular areas.
Nuclear atypia are obvious
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lioid myxofibrosarcomas are mostly high-grade tumors
displaying prominent carcinoma-like or rhabdomyosarcoma-
like appearances [57]. Intermediate-grade myxofibrosarco-
mas are more cellular than low-grade lesions and often
contain minute solid areas showing frank pleomorphism.

Immunohistochemically, tumor cells stain diffusely for
vimentin and occasionally for smooth muscle actin. They are
negative for S100 protein and CD34. They show ultrastructural
features of fibroblasts and, less frequently, of myofibroblasts.

Differential diagnosis

High-grade myxofibrosarcoma may be confused with any
pleomorphic sarcoma including myxoinflammatory fibroblas-
tic sarcoma (see below). Occurrence in the elderly, subcuta-
neous location, and the presence of small myxoid areas in an
otherwise pleomorphic tumor should point to the diagnosis.
Epithelioid myxofibrosarcoma should be distinguished from a
poorly differentiated carcinoma, a melanoma, a pleomorphic
liposarcoma, and a pleomorphic rhabdomyosarcoma [57].

Pleomorphic liposarcoma

PLPS is the less common variant of liposarcoma, account-
ing for less than 5% of all liposarcomas. It tends to occur in
elderly people (median age 55–65 years) [1, 2, 58–60].

Cytogenetics and molecular genetics

Data on the cytogenetics and molecular genetics of PLPS
are relatively limited. PLSP show, characteristically, high

chromosome counts and complex structural arrangements,
similar to that observed in UPS [61]. No specific genetic
alterations have been attributed to PLPS. CGH analyses
showed gains of 1p, 1q21-q32, 2q, 3p, 3q, 5p12-p15, 5q,
6p21, 7p, 7q22, 8q, 10q, 12q12-q24, 13q, 14q, 15q, 17p, 17q,
18p, 18q12, 19p12, 19q13, 20q, 22q, and Xq21-q27, and
losses of 1q, 2q, 3p, 4q, 10q, 11q, 12p13, 13q14, 13q21-qter,
14q23-24, 16q22, 17p13, 17q11.2, and 22q13 [54, 62, 63].
Idbaih et al. [54] observed that chromosome imbalances
encountered in PLPS were very similar to those observed in
their series of myxofibrosarcoma, and that the two histotypes,
taken together, can be distinguished from other pleomorphic
sarcomas and more specifically from LMS. In the study of
Schmidt et al. [62], patients with gains of 13q (i.e., 13q21,
13q22, 13q31, and 13q32) experienced shortened survivals
as compared to those lacking these gains.

Deletion of 13q14.2-q14.3, targeting the RB1 pathway,
is observed in about 60% of PLPS [63]. Other frequent
events are loss of 17p13, spanning TP53, and loss of
17q11.2 containing the neurofibromatosis type 1 (NF1)
gene [63]. Mutations of TP53 are frequent in PLPS [61].
Amplification of δ catenin on 5p and deregulation of genes
involved in adipogenesis (C/EBPα and C/EBPγ on 19q,
EP300 on 22q13) are also observed, and this may explain,
in part, the propensity of PLPS to metastasize and to lose its
adipocytic differentiation, respectively [63].

Despite their morphologic similarity, PLPS and high-
grade dedifferentiated LPS show distinct chromosomal
imbalances [64, 65]. Gains of 5p13-p15, 1p21, 1q21-q22,
and 7q22 are more frequently observed in PLPS whereas
high-level amplifications within chromosomal subregion
12q13-q21 were observed only in dedifferentiated LPS [64,
65]. Using a microarray-based gene expression profiling
approach, Singer et al. [66] show that dedifferentiated and
pleomorphic liposarcomas had different molecular signa-
tures. Distinction between these two histotypes can be
performed based on 15 differentially expressed genes, of
which 12 (e.g., MDM2, CDK4) were located in the 12p13-
p15 region [66]. Similar results were obtained by Fritz et al.
in 2002 [65]. MAD2, a gene involved in the RB1 signaling
pathway which is overexpressed by PLPS (and dediffer-
entiated LPS), might constitute a therapeutic target [66].

Recently, Matushansky et al. [67] proposed a nice
hypothesis according to which soft tissue sarcomas,
including LPS, could be categorized by their developmen-
tal/differentiation status from stem cell to mature tissue.
Gene expression analyses were performed during in vitro
differentiation of human mesenchymal stem cells into
adipose tissue and results compared to gene expression in
each of the four liposarcoma subtypes. The authors
observed that some genes that were overexpressed in a
given liposarcoma subtype were also overexpressed during
given stages of normal adipocytic differentiation. In other

Fig. 7 Myxofibrosarcoma. This low-grade myxofibrosarcoma is
paucicellular and contains an abundant myxoid extracellular matrix.
Curvilinear vessels are readily visible. Despite low cellularity, nuclear
atypia are always present
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terms, each liposarcoma subtype profile would indicate the
stage of differentiation arrest. After excluding markers of
differentiation, the authors observed that cell cycle and
purine metabolism pathways were upregulated in PLPS and
MAPK kinase and insulin signaling pathways downregu-
lated, suggesting that these pathways play significant role in
PLPS tumorigenesis. Interestingly and unexpectedly, KRAS
(a well-characterized oncogene) is overexpressed in PLPS as
a marker of differentiation and not as a marker of
tumorigenesis. They also observed that some liposarcoma
subtypes do not parallel corresponding stages of adipocytic
differentiation, suggesting additional molecular events [67].

Clinical features

PLPS occur predominantly in deep soft tissues (75% of
cases) of the lower extremities, especially the thigh [1, 2,
58–60]. The limb girdles and the trunk (including the
retroperitoneum) are each involved in 20% of cases. PLPS
are high-grade tumors that recur locally in 35–50% and
metastasize in 30–40% of cases. Five-year overall,
metastasis-free and local recurrence-free survivals are 40–
63%, 30–58%, and 25–75%, respectively [1, 2, 58, 59].
Tumor grade and morphologic features (except for epithe-
lioid morphology) seem not to affect patient outcome [58–
60]. Tumors >5 cm, deep-seated lesions, and truncal tumor
location are adverse prognostic factors [58, 59]. Although
rare, dermal PLPS have a much better prognosis as they are
easily amenable to complete excision [68].

Pathological features

PLPS are composed of a varying combination of lipogenic
and nonlipogenic areas (Fig. 8). Lipogenic areas are
composed of malignant adipocytes and/or pleomorphic, often
multivacuolated, lipoblasts with scalloped hyperchromatic
nuclei. Nonlipogenic areas are characterized by malignant
fibrous histiocytoma-like, leiomyosarcoma-like, round-cell-
liposarcoma-like, and/or epithelioid/carcinoma-like features
[1, 2, 58–60]. Areas showing hemangiopericytoma-like
features are also occasionally observed [58, 59]. Tumor
necrosis is common.

Immunohistochemically, lipogenic areas are often posi-
tive for S100 protein (35–50% of cases), whereas non-
lipogenic areas show varying and often focal staining for
smooth muscle actin, desmin, and CD34. Focal reactivity
for keratins and/or EMA is occasionally observed, espe-
cially in PLPS containing epithelioid areas [58–60].

Differential diagnosis

Diagnostic criteria for PLPS rely on the histologic presence
of malignant adipocytes/lipoblasts in a high-grade pleomor-

phic sarcoma, regardless of the extent of lipogenic areas. As
a consequence, any pleomorphic sarcoma enters the
differential of PLPS, and adequate (extensive) sampling is
crucial to pick up minute lipogenic foci. Melanoma and
sarcomatoid carcinoma (renal cell carcinoma, adrenocorti-
cal carcinoma) should be ruled out. Cytoplasmic vacuoliza-
tion resulting from fixation artifacts may be misleading,
mimicking true lipoblasts. PLPS composed predominantly
of small round cells may be confused with round cell
liposarcoma (especially in the thigh). As opposed to PLPS,
dedifferentiated LPS characteristically contains a juxta-
posed well-differentiated liposarcomatous component and
displays MDM2 and/or CDK4 nuclear reactivity.

Pleomorphic rhabdomyosarcoma

PRMS are rare neoplasms of adulthood. They account for
about 5% of all adult pleomorphic soft tissue sarcomas
[1, 2, 69–72].

Cytogenetics and molecular genetics

Data on the cytogenetics and molecular genetics of PRMS are
scarce. They show nonspecific complex karyotypes. Numer-
ical and unbalanced structural abnormalities are common,
overlapping with those of UPS or osteosarcoma, and are
different from those encountered in embryonal and alveolar
rhabdomyosarcoma. Chromosomal numerical aberrations
include gains of chromosomes 1, 5, 8, 14, 18, 20, and 22
and losses of chromosomes 2, 5, 6, 10, 11, 13, 14, 15, 16, 17,
18, 19, and Y, of which losses of chromosomes 2, 13, 14, 15,
16, and 19 are the most frequent [73]. Using CGH, Gordon et

Fig. 8 Pleomorphic liposarcoma. The tumor shows the appearance of
an undifferentiated pleomorphic sarcoma, except for the presence of
highly pleomorphic and multivacuolated malignant adipocytes
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al. [74] observed gains in the regions 1p22-23, 7p, 18/18q,
and 20/20p, losses of 10q23 (spanning the gene PTEN),
15q21-q22, 3p, 5q32-qter, and 13, and amplicons involving
the regions 1p21-p31, 1q21-q25, 3p12, 3q26-qtel, 4q28-q31,
8q21-q23/8q, and 22q. With the exception of one case [74],
PRMS do not contain the t(2;13) or t(1;13) alveolar
rhabdomyosarcoma reciprocal translocations.

Clinical features

PRMS usually occur in the extremities, especially the thigh,
of middle-aged adults (often men) [1, 2, 69–72], although a
few cases have been observed in childhood [70, 72]. They
are aggressive high-grade (grade 3) tumors, prone to
recurrence and metastatic dissemination (lungs) [1, 2, 69–
72]. Roughly 70% of patients die of their disease within
2 years of diagnosis [69, 71, 72].

Pathologic features

PRMS are essentially composed of large, pleomorphic,
epithelioid to spindle-shaped cells with abundant, deeply
eosinophilic cytoplasm and vesicular nuclei with prominent
nucleoli. Marked nuclear atypia and tumor necrosis are
common. Monstrous, often multinucleated, giant cells
resembling rhabdomyoblasts are frequently encountered
(Fig. 9), but cross-striations are rarely visible.

Immunohistochemically, tumor cells are positive for
desmin and fast skeletal muscle myosin but also, at least
focally, for smooth muscle actin. Because of poor specific-
ity, myoglobin is not a good marker for the diagnosis of
rhabdomyosarcoma. Myogenin reactivity is usually ob-

served in a small proportion of tumor cells. Calponin (but
not h-caldesmon) is positive. Rudimentary sarcomeres and
ribosome–myosin complexes are observed in tumor cells on
ultrastructural examination.

Differential diagnosis

The differential diagnosis for PRMS is similar to that of
PLMS. Reactivity for desmin and myogenin are diagnostic
clues. When faced with a tumor showing skeletal muscle
differentiation, before considering the diagnosis of PRMS,
other pleomorphic sarcoma subtypes that may contain foci
of heterologous striated muscle differentiation should be
ruled out, including dedifferentiated liposarcomas, malig-
nant peripheral nerve sheath tumors (malignant Triton
tumors), and metastases from metaplastic carcinomas
(malignant mixed müllerian tumors) and Wilms’ tumor.

Malignant peripheral nerve sheath tumor

MPNSTs are defined as malignant neoplasms arising from
peripheral nerves or in extraneural soft tissue if it shows
nerve sheath differentiation (i.e., Schwannian differentia-
tion), excluding tumors originating from epineurial tissue or
from peripheral nerve vasculature [75]. MPNSTs account
for 5–8% of all soft tissue sarcomas; about 50% of them
occur in the setting of NF1.

Cytogenetics and molecular genetics

Cytogenetically, MPNSTs display complex karyotypes and
clonal chromosomal aberrations, regardless of clinical
setting (i.e., sporadic versus NF1-associated MPNSTs).
Chromosomal losses seem to be more frequent than gains
[7, 76, 77]. Losses of 1p12-13, 1p21, 1p36, 3p21-pter,
9p13-21, 9p22-24, 10, 10p11-15, 11p, 11q21-25, 13q14,
15p, 16/16q24, 17/17p, 17q11-12, 17q21-25, 22, 22p,
22q13, and 22q11-12 were the most frequent abnormalities
observed [7, 76, 77]. Gains mainly involved the regions
7p21-q36, 7p22, 7q, 8, 8q11-23, 1q25-44, and 5q13-35.
Breakpoints are often numerous, involving many chromo-
somes or chromosomal regions. Regions mostly involved
are: 1p, 7p22 (spanning the ETV1 gene), 11q13-23, 20q13
(spanning the SRC gene), and 22q11-13 (spanning the NF2
gene) [76, 77]. Ring chromosomes, trisomy 7, and
rearrangements of 11p and 12q13-15 were also reported
[7]. Amplifications are rare [77]. In the series of Fletcher et
al. [7], complex rearrangements were more frequent in
MPNSTs associated with von Recklinghausen’s disease and
in tumors showing heterologous differentiation. There were
no correlations between karyotypic abnormalities and
clinical parameters [7]. Large and/or high-grade tumors

Fig. 9 Pleomorphic rhabdomyosarcoma. Intimate admixture of
spindle cells and pleomorphic multinucleated giant cells
corresponding to malignant rhabdomyoblasts
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frequently contain triploid or tetraploid clones, correlating
with clinical aggressiveness [76]. Complex karyotypes are
generally not observed in benign peripheral nerve sheath
tumors (e.g., schwannoma and perineurioma), and this may
help in classifying atypical peripheral nerve sheath neo-
plasms. Malignant Triton tumor and conventional MPNSTs
lacking heterologous differentiation show similar complex
karyotypes [77]. MPNSTs do not contain the t(X;18)
synovial sarcoma translocation.

In CGH analyses of MPNSTs, chromosomal gains tend to
outnumber losses. Most frequent minimal recurrent regions
of gain included 1q24-25, 8p23-p12, 9q34, and 17q23-q25
[78]. Gain of 17q23-25 was strongly associated with poor
prognosis, presence of metastases, and overexpression of
some specific genes, namely topoisomerase II alpha, ETV4
(EIA), surviving/BIRC5 and HER2/neu (ERBB2) which
might be involved in MPNST pathogenesis [78–81]. Gain of
7p15-p21 was also found associated with shortened survival
[80]. Amplifications were also detected [82, 83].

Molecular genetics studies of MPNSTs showed that
sporadic and NF1-associated MPNSTs display monoallelic
or biallelic loss at the NF1 locus (localized at 17q11.2) in
about 20–50% of cases [76, 83]. Germ line mutations of the
NF1 gene, a tumor suppressor gene which encodes for the
RasGTPase activating protein neurofibromin, have been
demonstrated in families affected by von Recklinghausen
disease. Loss of function of the NF1 gene (by mutation or
loss of heterozygosity) is the key early step in the
pathogenesis of peripheral nerve sheath tumors. It leads to
neurofibromin loss and subsequent activation of the ras
signaling cascade, increasing the risk of MPNST develop-
ment [84]. Additional abnormalities are needed, however,
to progress from benign to malignant peripheral nerve
sheath tumor. TP53 (localized to 17p13) is frequently
inactivated through mutations or deletions, correlating with
the frequent loss of 17p [76]. The same observation applies
to the regions 9p21 and 13q14 which are often rearranged
or lost, resulting in an inactivation of the CDKN2A
(encoding the p16INK4A and p14ARF cell cycle inhibitory
proteins) and RB1 genes, respectively. The expression of
p15INK4B and p27KIP1, two cyclin-dependent kinase inhib-
itors is also altered in MPNSTs [84]. The tumor suppressor
NF2 gene is located at 22q12.2, and inactivation of this
gene, mostly by mutations, has been demonstrated in
neurofibromatosis type 2. Since the region 22q11-13 is
frequently rearranged in MPNSTs, it has been hypothesized
that the NF2 gene could play some role in the tumorigen-
esis and/or progression of MPNST [77]. Using high-
resolution DNA copy number profiling, Mantripragada et
al. [83] recently reported amplifications of PDGFRA,
ITGB4, MET TP73, HGF, and BIRC5/survivin and
deletions of NF1, HMMR/RHAMM, MMMP13,
CDKN2A, and TP53 in MPNSTs. Overexpression of

BIRC5/survivin correlates with an amplicon located at
distal 17q [79]. Other recently identified genes such as
TRIO, IRX2, and NKD2 [10] as well as TWIST1 and TNC
[83] might also be implicated in MPNST pathogenesis.

Clinical features

Conventional MPNSTs occur mostly in middle- to
advanced-aged adults, without sex predilection. Fifty
percent to 70% develop in preexisting neurofibroma,
especially in plexiform neurofibroma associated with NF1.
Sporadic MPNSTs are less frequent, presenting as deep soft
tissue masses, usually in association with large nerves (e.g.,
sciatic). Exceptionally, they may develop within a schwan-
noma. Ten percent of MPNSTs occur at a site of prior
irradiation. NF1-associated MPNSTs occur generally
10 years younger than sporadic forms. Pain and/or
neurological symptoms (e.g., paresthesias) are the most
common presenting symptoms. Predominantly affected
sites include the buttock and sacral plexus, thigh, paraspinal
nerves, and brachial plexus [75].

Many clinicopathologic variants of MPNSTs have been
described, including epithelioid MPNST (5% of MPNSTs),
MPNST with mesenchymal (osteosarcomatous, chondrosar-
comatous, and/or angiosarcomatous) differentiation (10% of
cases), MPNSTwith perineurial differentiation, MPNSTwith
rhabdomyosarcomatous differentiation (malignant Triton
tumor), and glandular MPNST. Malignant Triton tumors
and glandular MPNSTs are rare and associated with NF1 in
60% and 75% of cases, respectively. Epithelioid MPNSTs,
which may occur either in the subcutis or in deep soft
tissues, show no relationship to NF1.

Most MPNSTs are high-grade aggressive neoplasms,
especially glandular and malignant Triton tumors. Outcome
in MPNSTs depends on several factors, including tumor
stage, tumor size, location, histologic subtype, status of
surgical margins, previous irradiation, and high (>25%)
MIB-1 labeling index [75]. The prognostic value of
histologic grade is limited in MPNSTs. About 60% of
patients die of disease. Overall, 5- and 10-year survival
rates are 34% and 23%, respectively [75]. There are no
significant prognostic differences between NF1-associated
and sporadic MPNSTs.

Pathologic features

Most MPNSTs measure 5 cm or more in maximal diameter.
High-grade tumors frequently contain areas of necrosis and/
or hemorrhage on cut section. Histologically, many
MPNSTs present as monomorphic spindle cell tumors
resembling adult-type fibrosarcoma or monophasic synovial
sarcoma (Fig. 10). Alternating myxoid and cellular areas
are frequently observed. Tumor cells tend to agglomerate

Virchows Arch (2010) 456:201–217 211



around large vessels, often infiltrating vessel walls. Tumor
cell nuclei are typically buckled in well-differentiated
lesions, resembling that observed in neurofibroma. Whorl
structures, nuclear palisading, or reticular arrangement of
tumor cells resembling perineurioma may be seen. Brisk
mitotic activity and areas of geographic necrosis are common
in large/high-grade neoplasms. Foci of osteosarcomatous and/
or chondrosarcomatous heterologous differentiation are ob-
served in about 10% of tumors. About 5% of MPNSTs are
characterized by prominent epithelioid cytomorphology.
Rarely, MPNSTs show features of perineurial differentiation
or contain rhabdomyoblasts (malignant Triton tumor; Fig. 11)
or glandular epithelium. In glandular MPNSTs, benign or
malignant-looking glandular structures are few in number,
are well demarcated from the spindle cell component, and
often contain mucinous (globet) cells and chromogranin-
positive endocrine cells. Squamous differentiation is very
rare. Immunohistochemically, spindle cells in MPNSTs are
focally reactive for S100 protein in 50% to 70% of cases.
Staining is grade dependent; the higher the grade, the more
patchy and less intense is the staining. They may also
express CD57 and CD34, as well as EMA. EMA expression
is usually taken as a sign of perineurial differentiation.
MPNSTs are usually negative for cytokeratins. Most
MPNSTs overexpress the P53 protein, in contrast to (non-
atypical) neurofibromas. Focal reactivity for desmin and
myogenin is seen in malignant Triton tumors. As opposed to
conventional (e.g., spindle cell) MPNSTs, epithelioid
MPNSTs are generally strongly and diffusely positive for
S100 protein but negative for melanocytic and epithelial
markers. Glandular structures in glandular MPNSTs express
epithelial markers, CEA, and sometimes endocrine markers
(chromogranin-A, CD56, synaptophysin).

Differential diagnosis

Conventional spindle cell MPNSTs should be first distin-
guished from monophasic synovial sarcoma and cellular
schwannoma. Most spindle cell monophasic synovial
sarcomas express EMA and/or cytokeratins, at least focally,
and are negative for CD34. In addition, as opposed to
MPNSTs, they bear the t(X;18)(p11;q11) translocation
which is specific of this tumor type. In addition, to be well
circumscribed, cellular schwannomas are typically strongly
and diffusely positive for S100 protein. MPNSTs should also
be separated from other spindle cell tumors, namely
leiomyosarcoma (negativity for S100 protein, reactivity for
smooth muscle actin, h-caldesmon, and desmin), spindle cell
rhabdomyosarcoma (positivity for desmin and myogenin),
adult-type fibrosarcoma, spindle cell carcinoma, spindle cell
melanoma (diffuse reactivity for S100 protein), and spindle
cell mesothelioma. Glandular MPNST should be distin-
guished from biphasic synovial sarcoma and epithelioid
MPNST from melanoma (positivity for HMB45, Melan-A,
and/or Mitf), epithelioid sarcoma, epithelioid angiosarcoma,
and epithelioid-looking myoepithelioma.

Other soft tissue sarcomas with complex karyotypes

Adult-type fibrosarcoma

Twenty years ago, fibrosarcoma was a common diagnosis.
With the advent of immunohistochemistry and molecular
ancillary techniques, numerous entities escape the ill-
defined group of fibrosarcoma (e.g., deep-seated fibroma-
tosis, synovial sarcoma, malignant peripheral nerve sheath

Fig. 11 Malignant Triton tumor. Small aggregates of relatively mature
rhabdomyoblasts are observed, admixed with the spindle to round cell
proliferation. The cytoplasm of rhabdomyoblasts is copious and
markedly eosinophilic

Fig. 10 Malignant peripheral nerve sheath tumor. The proliferation is
composed of intersecting fascicles of monomorphic spindle cells.
Some degree of whorling pattern is visible in this field
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tumor, myofibroblastic sarcomas, dedifferentiated liposar-
coma, dermatofibrosarcoma with fibrosarcomatous trans-
formation, spindle cell rhabdomyosarcoma) whereas many
others were recognized as specific fibrosarcomatous entities
(e.g., infantile fibrosarcoma, low-grade fibromyxoid sarco-
ma, sclerosing epithelioid fibrosarcoma, myxoinflammatory
fibroblastic sarcoma, myxofibrosarcoma, inflammatory fi-
brosarcoma). Nowadays, adult-type fibrosarcoma is a
diagnosis of elimination. It accounts for no more than 3–
5% of adult soft tissue sarcomas, and this sarcoma category
overlaps morphologically with the undifferentiated spindle
cell/pleomorphic sarcoma—UPS category [1, 2].

Because of the relative uncertainty about the diagnosis of
adult-type fibrosarcoma, cytogenetic data are very scarce
and questionable. Cytogenetically, adult fibrosarcoma
shows multiple chromosomal rearrangements. Gains of
4q, 6q, 7, and 20 and loss of chromosomes 13 and 14
have been reported [7], as well as involvement of the 2q21-
qter region [1].

Angiosarcoma

Angiosarcomas are malignant neoplasms showing varying
degrees of vascular differentiation. External beam radiation
is an important risk factor for the development of
angiosarcomas/lymphangiosarcomas of the skin, breast,
and soft tissue. Other risk factors include exposure to vinyl
chloride and thorium. Most angiosarcomas of soft tissue are
composed by an admixture of spindle cells, epithelioid
cells, and poorly formed vascular structures, although a
predominantly epithelioid variant exists. Cytogenetic data
are minimal for angiosarcoma. These tumors usually show
complex karyotypes. The chromosomes number ranges
from hypodiploid to hypertriploid. Most common chromo-
somal imbalances are gains of 5pter-p11, 8p12-qter, and
20pter-q12, losses of 4p, 7p15-pter, and 7p15-Y, and
aberrations involving 22q [1, 2]. As opposed to Kaposi
sarcoma, angiosarcomas of soft tissue are negative for
HHV8. KRAS-2 and TP53 mutations were observed in
thorium- and vinyl chloride-associated angiosarcomas as
well as in sporadic angiosarcomas [85, 86]. An alteration of
the TP53/MDM2 pathway with elevated expression of TP53
and MDM2 proteins has been documented in 60% of
angiosarcomas [87]. Loss of heterozygosity at TP53, WT1,
and RB1 loci was recently reported in angiosarcomas,
supporting a role for these tumor suppressor genes in
angiosarcoma pathogenesis [88].

Extraskeletal osteosarcoma

Extraskeletal osteosarcoma is a malignant tumor showing
osteoid formation. Most are high-grade neoplasms. It
accounts for less than 5% of all osteosarcomas and occurs

mostly in the deep soft tissue of middle-aged adults
(median age 55–65 years) [89, 90]. Many of these tumors
have been reported previously as giant cell malignant
fibrous histiocytomas with bone production. The most
commonly affected sites included lower extremities, espe-
cially the thigh (50% of cases), thoracic wall, and internal
trunk [89, 90]. Half of neoplasms measured 5 cm or more
in maximal diameter. As opposed to osseous osteosarco-
mas, extraskeletal osteosarcomas are relatively resistant to
doxorubicin-based systemic therapy, and the prognosis is
poor. Metastases develop in 50% to 60% of cases [89, 90].
For patients with metastatic disease at diagnosis, median
survival duration was 8 months in the series of Ahmad et al.
[89]. For patients with localized disease at diagnosis, 5-year
disease-specific and event-free survival rates were 46% and
47%, respectively; quite similar to that observed in high-
grade soft tissue sarcomas [89]. External beam irradiation is
an acknowledged risk factor for the development of
extraskeletal osteosarcoma [90, 91].

Morphologically, extraskeletal osteosarcoma resembles
UPS except for the presence of osteoid (and sometimes
chondroid) matrix.

Data on the cytogenetics of extraskeletal osteosarcoma are
very scarce. Highly complex aberrations have been reported,
including gains of 1q, 2, 8, and 17p11 and losses of 1q, 2, 5, 6,
12, 13, 14, 15, 16, 18, 19, 20, 21, and Y [1, 30, 92]. These
alterations parallel those observed in skeletal osteosarcoma,
especially chromosomal gains and regional amplifications of
chromosome arms 1q, 6p21-p12, 8q23-q24, and 17p13-
p11.2 [93, 94], partial or complete loss of 6q, as well as
various rearrangements of chromosomes 20 [95, 96]. TP53
(located at 17p13) and RB1 (located at 13q14) genes are
consistently affected in skeletal and extraskeletal osteosarco-
mas (through allelic losses, rearrangements or point muta-
tions), as well as many other genes involved in cell cycle
regulation (p14ARF, p16INKa, MDM2, etc.) [97].

Myxoinflammatory fibroblastic sarcoma (inflammatory
myxohyaline tumor)

Myxoinflammatory fibroblastic sarcoma is a low-grade
neoplasm which is mostly (but not exclusively) observed
in the distal extremities (50% in fingers and hands) of
middle-aged adults [1, 2, 98, 99]. The lesion, which is
usually small (median 3–4 cm), develops in the subcutis, in
deep soft tissues, or along tendon sheaths. Histologically, it
bears a striking resemblance to high-grade myxofibrosar-
coma, showing alternating myxoid, cellular, inflammatory,
and fibrohyalinized areas (Fig. 12). Tumor cells are either
spindle-shaped or epithelioid. Epithelioid cells tend to
display a copious eosinophilic cytoplasm, enlarged vesicu-
lar nuclei, and macronucleoli, thus resembling ganglion
cells or virocytes (Fig. 13). Myxoid areas often contain
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univacuolated or multivacuolated lipoblast-like cells.
Mitotic activity is usually low and tumor necrosis infre-
quent. Local recurrences are observed in about 20% of
cases; metastases are rare (<5%).

Most myxoinflammatory fibroblastic sarcomas show
complex, near-diploid, or hypotriploid karyotypes [100–
103]. CGH analyses showed gains of chromosome 7 in two
cases [101]. Distinctive abnormalities in myxoinflammatory
fibroblastic sarcoma are the frequent presence of a balanced
or unbalanced t(1;10) (p22;q24) translocation [100–102],
ring chromosomes [102, 103], and amplification of the
chromosomal region 3p11-12 [103]. A t(2;6)(q31;p21.3)
translocation has also been described as a sole cytogenetic
abnormality in this tumor type [104]. The breakpoints in the t
(1;10) translocation map to TGFBR3 in 1p22 and in or near
MGEA5 in 10q24, resulting in transcriptional upregulation of
NPM3 and particularly FGF8, two consecutive genes located
close to MGEA5 [103]. The ring chromosomes contain an
amplified region in 3p11-12 which was associated with an
increased expression of VGLL3 and CHMP2B. Beside
typical examples of myxoinflammatory fibroblastic sarcoma,
the amplicon in 3p was also detected in some inflammatory
variants of undifferentiated pleomorphic sarcoma (so-called
inflammatory MFH) [103]. The t(1;10) translocation was
also observed in another tumor, the hemosiderotic fibroli-
pomatous tumor, which is likely to constitute a precursor for
the myxoinflammatory fibroblastic sarcoma [103].

Radiation-associated sarcomas

Radiation-associated sarcomas are defined as sarcomas
arising in a previously irradiated field after a latency period

of at least 2 years [91, 105]. Occurring in about 1/1,000
patients who have undergone radiation therapy [106], it is
an infrequent but well-known long-term complication of
radiotherapy [91, 105–108]. They usually occur in middle-
aged adults and show a more aggressive clinical course
associated with shortened patient survival as compared to
sporadic sarcomas [91, 105–108]. Most frequent histologic
types include high-grade undifferentiated pleomorphic
sarcoma (previously called malignant fibrous histiocytoma),
extraskeletal osteosarcoma, fibrosarcoma, malignant pe-
ripheral nerve sheath tumor, chondrosarcoma, leiomyosar-
coma, and angiosarcoma [91, 105–108].

Radiation-associated soft tissue sarcomas are typically
high-grade neoplasms with complex karyotypes. Numerical
and structural (mostly unbalanced) rearrangements are
common, irrespective of histological type [91]. Comparing
postradiation and de novo sarcomas, Mertens et al. [91]
observed that loss of material from chromosome 3p
(especially from the 3p21-3pter region) was most frequent
in postradiation sarcomas, in addition to the varying
presence of cytogenetically unrelated clones. Other frequent
imbalances were losses of Xq, 3p14, 1q42-qter, and 1q23-
24. CGH analyses disclosed gains of 5p, 7cen-q22, and
15cen-q15 and loss of chromosome 13 [91]. The frequency
of TP53 mutations is also very high as compared to that of
sporadic sarcomas (88% versus 20%) [109].

Conclusion

Sarcomas displaying complex karyotypes are much more
common than those harboring relatively simple cytogenetic

Fig. 13 Myxoinflammatory fibroblastic sarcoma (inflammatory myx-
ohyaline tumor). Some pleomorphic cells contain viral-like intra-
nuclear pseudoinclusions

Fig. 12 Myxoinflammatory fibroblastic sarcoma (inflammatory myx-
ohyaline tumor). An infiltrating neoplasm composed of spindle and
pleomorphic cells, inflammatory elements, hypocellular to hyalinized
areas, and myxoid areas containing vacuolated, lipoblast-like cells
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profiles with recurrent genetic aberrations (e.g., reciprocal
translocations or mutations). Within the former group,
leiomyosarcomas and undifferentiated pleomorphic sarco-
mas predominate. Thanks to new molecular technologies
such as CGH-array-based techniques and gene expression
analyses, significant progresses have been accomplished
regarding the identification of genes, gene products, and
signaling pathways particularly involved in the pathogen-
esis, progression, and metastatic dissemination of sarcomas.
Novel diagnostic and/or prognostic molecular markers as
well as promising therapeutic targets have been gradually
recognized. A new era is coming in which candidates for
adjuvant therapy will be selected not only on their
clinicopathologic characteristics but also on their “molec-
ular profile”.
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