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Abstract Recent empirical literature has seen many multidimensional indices emerge as

well-being or poverty measures, in particular indices derived from principal components

and various latent variable models. Though such indices are being increasingly and widely

employed, few studies motivate their use or report the standard errors or confidence

intervals associated with these estimators. This paper reviews the different underlying

models, reaffirms their appropriateness in this context, examines the statistical properties

of resulting indices, gives analytical expressions of their variances and establishes certain

exact relationships among them.
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1 Introduction

Many economic and social concepts such as welfare and poverty are multidimensional in

nature and hence their operationalisation needs measures or indices that capture and

combine the various dimensions in an adequate manner. Let us take the concept of human

development for instance. This concept, first proposed by UNDP’s Human Development

Report in 1990 (see UNDP, HDR 1990) and largely inspired from Sen’s various works (cf.

e.g. Sen 1985, 1999), represents a major effort to reflect the multidimensional nature of

well-being. The capability approach of Sen (re)defines development as the enhancement of
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people’s choices or capabilities in various fields: economic, social, political, cultural and so

on.

As it often happens for any new theoretical concept, the road from theory to practice is

full of obstacles and we are still at the beginning of the road as far as capability approach is

concerned. In fact there need not and will not be only one road but many paths leading to a

practical measure of human development. In this case, a fundamental problem arises due to

the fact that it is not possible to directly observe the concept as such. Almost all studies

point to this feature and agree that there are many components to it. Hence it is often

measured by means of several indicators and constructed as a composite index aggregating

these indicators.

The earliest quantification attempts consisted in selecting different indicators and cal-

culating a weighted average of these indicators. The most well-known among them are the

Physical Quality of Life Index (PQLI) proposed by Morris (1979) and the above-men-

tioned Human Development Index (HDI) proposed by UNDP (1990). PQLI is a simple

average of life expectancy at age one, infant mortality and adult literacy. HDI is similar but

includes slightly different dimensions: health and longevity (measured by life expectancy

at birth), instruction and access to knowledge (measured by literacy rate and enrollment

ratio) and other dimensions for having a decent life (for which income is taken as a proxy).

The three dimensions are given equal weights in the construction of the HDI. On the

poverty side, we have the Human Poverty Index (UNDP, HDR 1997) which is a weighted

average measuring deprivation in the same three dimensions of health (survival), education

(illiteracy) and economic deprivation (itself a combination of three elements—access to

health, safe water and adequate nourishment of children) for developing countries.

Two crucial issues in the above procedures are the adequacy of the chosen indicators for

the corresponding dimension and the arbitrariness in the choice of weights. Over the recent

years other indices have been proposed, derived from an underlying theoretical model, that

offer an explanation for the inclusion of the variables composing the index as well as a

better justification for the choice and values of the weights in the construction of the index.

These models are appealing because of two characteristics: (a) they assume that the

underlying concept is not directly observable (i.e. is latent) but manifests itself in many

observable quantities and (b) any single indicator can only be a partial measure of the

underlying concept. Factor analysis, MIMIC (multiple indicators and multiple causes) and

structural equation models (SEM) all fall into this line of reasoning. Latent variable models

are common in psychology and the reader can find an excellent coverage of most of these

models with applications in Bollen (1989), Bartholomew and Knott (1999), Muthen (2002)

and Skrondal and Rabe-Hesketh (2004). Though principal components (PC) is not a latent

variable model, it is widely used in empirical applications as an ‘aggregating’ technique

and there is some confusion in the empirical literature which sometimes tends to equate

principal components and latent factors. These two methods have different theoretical

foundations and approach the problem from different angles. The principal components

method is a pure data reduction technique that seeks linear combinations of the observed

indicators in such a way as to reproduce the original variance as closely as possible. There

is no underlying explanatory model in this method. On the other hand, the factor analysis is

an explanatory model in which the observed values are postulated to be (linear) functions

of a certain (fewer) number of unobserved latent variables (called factors). This paper

examines the analytical expressions of the estimators derived from these two models (one

descriptive and another explanatory) and shows that under certain special conditions the

PC’s are equivalent to the factor scores.

482 J. Krishnakumar, A. L. Nagar

123



The MIMIC model (cf. Jöreskog and Goldberger 1975) represents a step further in the

explanation of the phenomenon under investigation as it is not only believed that the

observed variables are manifestations of a latent concept but also that there are other

exogenous variables that ‘‘cause‘‘ and influence the latent factor(s). The structural equation

model (SEM) goes beyond one-way causal links and specifies interdependencies among

the latent variables while also including exogenous ‘‘causes’’. Thus it emphasises the

simultaneous determination of the different (latent) dimensions of well-being while

accounting for the impossibility of their direct measurement. We feel that it is the most

suitable framework in the economic and social context as it provides one single index that

incorporates in it the complex mechanisms involved in the formation of the latent concept

that it is supposed to represent.

This paper reviews the most important latent variable models which form the basis of

multidimensional indices of human development (or deprivation) starting from simpler ones

such as factor analysis and going up to structural equation models. Only those features of each

model that are relevant for our context, namely the construction of a multidimensional index,

are presented in the review, directing the reader to related references for further details.

The next section presents the principal components method, the resulting index and its

variance. It is followed by the factor analysis model in Sect. 3 where different possible

indices (factor scores) are discussed and their properties derived. Section 4 derives the

special conditions under which PC and FA can be seen to produce equivalent results. Thus

it addresses the confusion in the empirical literature in the use of these two terms which

should generally refer to two distinct quantities and clarifies the circumstances under which

the terms can be used in an interchangeable manner. Section 5 examines the index and its

properties in MIMIC models. Indices based on SEM are studied in the following section.

Section 7 ends the chapter with a few concluding remarks.

2 Principal Components Indices

The use of principal components (PC) or a combination of principal components is a

commonly used technique in the measurement of quality of life or well-being. This

method, which is essentially a data reduction technique, dates back to Hotelling (1933) in

the statistical literature with a wide range of applications in numerous fields such as

psychology, biology, anthropology and more recently in economics and finance.

One of the earliest studies in the area of welfare is Ram (1982) who first applies PC on

the three dimensions of PQLI mentioned above namely life expectancy at age one, infant

mortality and adult literacy and combines it with per capita GDP, again using PC, to form a

composite index. Slottje (1991) follows the same approach by selecting 20 attributes for

126 countries across the world, calculating a PC-based index and comparing it with indices

obtained using hedonic weighting procedures. The PC method is still one of the most

frequently used in empirical literature probably due to its computational simplicity (see e.g.

Klasen 2000; Nagar and Basu 2001; Biswas and Caliendo 2002; Rahman et al. 2003;

Noorbaksh 2003; McGillivray 2005).

The basic idea behind this method is to determine orthogonal linear combinations of a

set of observed indicators chosen in such a way as to reproduce the original variance as

closely as possible. Here we introduce some notations that will be used throughout the

paper. Let y denote a k · 1 vector of observed variables (which we already assume to be

centered without loss of generality) and let R denote its covariance matrix. Let us further

denote by h1; . . .; hk the k eigenvalues of R and by a1; . . .; ak the corresponding
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eigenvectors. For the moment we assume R to be known (which will be replaced by its

empirical version in practice). Then the principal components are given by:

pj ¼ a0jy j ¼ 1; . . .; k

or

p ¼ A0y

where A ¼ ½a1. . .ak� is the matrix of eigenvectors of R. We have A0A ¼ AA0 ¼ Ik and

R = AHA0 or A0R A = H where H = diag(hj), j = 1,... k with the hj’s arranged in

descending order of magnitude. We also have R–1 = AH–1A0. The variances of the PC’s are

equal to the corresponding eigenvalues i.e. VðpjÞ ¼ hj 8j:
One of the interpretations that is often made regarding the principal components is that

they are estimates of latent variables of which the observed values are indicators. It should

be remembered that this method is originally a purely descriptive technique which tries to

reproduce the observed variance or a large proportion of it using linear combinations. The

above interpretation is in fact the underlying assumption for the factor analysis (FA) model

to which we will turn in the next section.

Before going to the FA model and the link between PC and FA, let us present the

indicators derived from PC’s. The two most commonly used are the first principal com-

ponent i.e. the one corresponding to the greatest eigenvalue h1 and a weighted average of

all the principal components pj’s, j = 1,...,k with the weights wj being given by the pro-

portion of the total variance explained by each PC.

If we take the first principal component p1 ¼ a01y as an aggregate index then we have

V(p1) = h1. As for the weighted average its variance can be calculated as follows. Let us

write it as:

Ĥ ¼
Xk

j¼1

wjpj

with

wj ¼
hjPk
j¼1 hj

:

Denoting H = diag (hj) and w0 = [w1 ... wk] and using V(pj) = hj we have

VðĤÞ ¼ w0Hw

where

w ¼ ði0HiÞ�1i0H:

Thus

VðĤÞ ¼ i0H3i

ði0HiÞ2
:

In practice, R is unknown and hence has to be estimated and the eigenvalues and

eigenvectors of the estimator have to be used. These estimators are consistent (see e.g.

Anderson 1984).
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Though these indices are often used in empirical studies, few (none to our knowledge)

give an estimation of their variance (or precision). Here we have a convenient expression

that can be easily implemented.

3 Factor Analysis Model

The FA model assumes that the observed variables (indicators) are all dependent on one or

more latent variables which are taken to be their common cause(s). Thus it not only

conforms to our idea that the concept we are trying to assess is unobservable but also

provides a theoretical framework explaining the observed variables as different manifes-

tations of our latent concept(s) called factor(s). Some examples of works using factor

analysis are Massoumi and Nickelsberg (1988), Schokkaert and Van Ootehgem (1990),

Balestrino and Siclone (2000) and Lelli (2001).

The model is written as

y ¼ Kf þ e ð1Þ

where y (k · 1) denotes the vector of observed variables, f (m · 1) vector of latent

variables (m \ k) and K the (k · m) coefficient matrix. If there is only one latent factor

(for instance overall human development) then f is a scalar and K a (k · 1) vector.

Treating the latent factors as random, one assumes in general

Vðf Þ ¼ U and VðeÞ ¼ W

with U, W positive definite. Let R denote the variance covariance matrix of the observed

vector y as before. Then

R ¼ KUK0 þW:

This model uses the empirical estimators of R to find K, U and W. It is usual to fix U = I
for identification purposes. For the same reason, it is also assumed that C = K0 W –1 K is

diagonal. Maximum likelihood procedure is applied to the model to estimate K and W
given R. Given K, W, one can derive minimum variance estimators or predictors of f as

follows:

f̂ ¼ ðI þ CÞ�1K0W�1y ð2Þ

This estimator minimises Vðf̂ � f Þ: It is also such that f̂ ¼ Eðf jyÞ assuming joint normal

distribution for (y,f).
Estimated in this way we do not have Eðf̂ � f jf Þ equal to zero. If we add it as a

condition then we would obtain the following slightly different estimator (see Appendix

A):

f̂ � ¼ C�1K0W�1y ¼ ðK0W�1KÞ�1K0W�1y ð3Þ

which is the least squares estimator of f in model (1) given y,K.

It can be argued that Eðf̂ � f jf Þ ¼ 0 may not be not a pertinent condition when f is not

observed. In any case, the only difference between f̂ and f̂ � is that (I + C) in f̂ is replaced

by C in f̂ �: Since C is diagonal this only means a rescaling of f̂ ’s.

Let us now consider the special case W = I. Then we get the following factor scores:
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~f ¼ ðI þ K0KÞ�1K0 ð4Þ

and

~f � ¼ ðK0KÞ�1K0y ð5Þ

for the ‘unbiased’ estimation.

4 Link between PC and FA Models

Let us take the case W = I. Denoting the matrix of the m eigenvalues of R–I as H* (note

that h�j ¼ hj � 1 for j = 1,...,m) and using

A�H�A�0 ¼ R� I;

we can identify K as

K ¼ A�H�
1
2

and write

~f ¼ ðI þH�Þ�1H�
1
2A�0y ¼ H�1H�

1
2p�

where p* represents the first m principal components of R. Thus we see that the estimators

of the latent variables obtained in the FA model are proportional to those given by the PC

model (recalling that H* and H are diagonal). For the ‘unbiased’ estimation, we have:

~f � ¼ H��
1
2A�0y ¼ H��

1
2p�:

Let us go a step further and consider the principal components to be potential estimators

of the same latent factors as often done in empirical studies. Then requiring the PC’s to be

also ‘unbiased’ in the sense that E(p**–f|f) = 0 yields (see Appendix B)

p�� ¼ H�
1
2A�0y ¼ ~f �

The above identity between the ‘unbiased’ versions of PC’s and factor scores not only

completes the various links existing between PC and FA but also gives the theoretical

justification behind the interpretation of principal components as latent variable estimators.

In case W = I but diagonal and one still wants to maintain the link between the two

methods, then one has to premultiply the FA equation (1) by W�
1
2 to obtain a new model

W�
1
2y ¼ W�

1
2Kf þW�

1
2e

or

y ¼ Kf þ e ð6Þ

with a spherical e and then apply PC or FA to the transformed model (6) for which the

above result will hold. Note that the above transformation does not change the factor scores

but only the factor loadings and needs a prior estimate of W for its implementation. For this

purpose one can use the ML estimate of W obtained for the original (untransformed) FA

model.
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5 MIMIC Models

This model initially proposed by Jöreskog and Goldberger (1975) goes further in the

theoretical explanation by introducing ‘‘causes‘‘ of latent factors. According to this model,

the observed variables result from the latent factors and the latent factors themselves are

caused by other exogenous variables denoted here as x. Thus we have a ‘measurement

equation’ and a ‘causal’ relationship:

y ¼ kf þ e

f ¼ b0xþ �
ð7Þ

In their model with f a scalar and hence b, a, x vectors, the authors showed that the

estimator of f is given by

f̂ ¼ ð1� k0X�1kÞ�1ða0xþ k0W�1yÞ

with V(e) = W, V(e) = r2 I, X = k k0 + W.

The multivariate extension of this model is straightforward:

y ¼ Kf þ e

f ¼ Bxþ �
ð8Þ

with f a vector, K, B matrices of appropriate dimensions, and V(e) = W, V(e) = r2 I.
Then we have

f̂ ¼ ðI � K0X�1KÞ�1ðBxþ K0W�1yÞ:

Using the expression for the inverse of X = (W + KK0), one gets (see Appendix C)

f̂ ¼ ðI þ K0W�1KÞ�1Bxþ ðI þ K0W�1KÞ�1K0W�1y ð9Þ

The above equation shows that the MIMIC latent factor estimator is a sum of two terms:

the first one is the ‘‘causes’’ term (function of x) and the second one can be called the

‘‘indicators’’ term. Note that the latter is nothing but the factor scores (2) of the FA model.

If there are no ‘causes’ then (9) reduces to the pure FA estimator as one can expect.

Its variance is given by

Vðf̂ Þ ¼ BVðxÞB0 þ ðI þ K0W�1KÞ�1ðK0W�1KÞ

Di Tommaso (2006) and Kuklys (2005) present two important applications of this

methodology for welfare measurement. The former adopts the MIMIC approach to con-

ceptualise children’s well being using Indian data while the latter applies the MIMIC

model for measuring the unobserved functioning in health and housing, each observed

through a range of indicators and uses data from the British Household Panel Survey for

1991 and 2000 for estimating the model.

6 Structural Equation Models

Recall that the main idea behind the latent variable approach is that the different dimen-

sions of development (or deprivation) cannot be directly measured but can be represented
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by latent variables manifesting themselves through a set of achievements (or the lack of it).

At the same time these latent dimensions mutually influence one another and hence it is

important to explicitly specify these interactions in the form of a structural model.

Thus the most appropriate extension to the above models is an interdependent system of

equations for the latent variables incorporating exogenous elements and a set of mea-

surement equations linking the unobserved variables to the observed indicators. This is

called the structural equation model (SEM), the most well-known in this category being the

LISREL model proposed by Jöreskog (1973). This model specifies a system of equations

explaining the latent variables (which become the endogenous variables of the model) by a

set of exogenous (also latent) variables and including mutual effects of the endogenous

variables on one another. To this system is added a set of equations to take account of the

additional assumption that these latent endogenous and exogenous elements are observed

through some indicators. This yields:

Ay� þ Bx� þ u ¼ 0 ð10Þ

y ¼ Ky� þ e ð11Þ

x ¼ !x� þ � ð12Þ

with

VðuÞ ¼ R; VðeÞ ¼ W; Vð�Þ ¼ N

where (10) is the structural model and (11) and (12) constitute the measurement equations.

We assume that the observations are centered without loss of generality.

Though (12) does not pose any additional problem on the theoretical side, we will

remove it in the context of human development or well-being as the exogenous variables

(basically representing institutional and social structures) will generally be observed.

Though the statistical literature in this area has seen several extensions of the above model

with ordinal/categorical variables and/or covariates (exogenous variables) in measurement

equations (cf. Muthen 1984, 2002; Jöreskog 2002; Skrondal and Rabe-Hesketh 2004), we

will continue with the above formulation for clarity of exposition.

The parameters of (10) and (11) can be estimated by generalised method of moments

(GMM) by minimising the distance between the empirical variance covariance matrix of

the y’s and x’s and the theoretical expressions of the covariance matrix given by (see e.g.

Browne 1984):

V
y
x

� �� �
¼ ðKA�1ðBVðxÞB0 þ RÞA0�1K0 þW KA�1VðxÞ

VðxÞA0�1K0 VðxÞ

� �

and taking into account any a priori constraints on the parameters. The distance is opti-

mally calculated in the metric (weight matrix) given by the inverse of the asymptotic

variance–covariance matrix of the vector of sample statistics. This weighted least squares

procedure is equivalent to a non-linear GMM procedure on the reduced form of the SEM.

An alternative procedure is the minimisation of the same distance between theoretical

and empirical variance matrices conditioning on x. This is often the case as in general the

mean and the variance of x are not restricted and are estimated by their sample values.

Then one would minimise the distance between the sample variance–covariance of y
given x and (K A–1R A

0-1 K0 + W) under the same a priori constraints. Asymptotic theory

gives us the variance matrix of the resulting estimators and a ‘robust’ version can be
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computed to account for non-i.i.d. behaviour by estimating a heteroscedasticity-consistent

estimate of the variance matrix.

One can also use (conditional) maximum likelihood (cf. e.g. Jöreskog 1973; Browne

and Arminger 1995) to estimate the parameters under (conditional) normality of y* given x
and correct its variance using the well-known ‘sandwich’ formula under non-normality

(quasi- maximum likelihood, cf. White 1982; Gourieroux et al. 1984).

Once the parameter estimates are obtained, the latent factors are estimated by their

posterior means given the sample, replacing the parameter values by their estimates. This is

called the Empirical Bayes estimator. For the above model (with observed x) we get (see

Appendix D):

ŷ�i ¼ A�1Bxi þ A�1RA�10KðK0A�1RA�10K0 þWÞ�1ðyi � KA�1BxiÞ

or

ŷ�i ¼ I � A�1RA�10KðK0A�1RA�10K0 þWÞ�1K
h i

A�1Bxiþ
A�1RA�10KðK0A�1RA�10K0 þWÞ�1yi

ð13Þ

From the point of view of a substantive interpretation of the above expression (13), it is

important to point out that the factor scores are once again a combination of two terms: one

capturing the ‘causal’ influence and the other reflecting the ‘indicators’ relevance.

Its variance can be obtained as (see Appendix D)

Vðŷ�i Þ ¼ A�1BVðxÞB0A�10 þ A�1RA�10KðK0A�1RA�10K0 þWÞ�1KA�1RA�1

An alternative method of obtaining factor scores is the maximum posterior likelihood

which leads to the same result as (13) for our SEM given by (10), (11) (see Appendix D).

Note that the latent factors being ordinal, any monotonic increasing transformation of y*

will preserve the order in ŷ� (see Appendix E).

Let us end this section by citing a few major studies that apply the above model in the

field of human development or poverty. Wagle (2005) uses a SEM for deriving multidi-

mensional poverty measures using household data from a survey conducted in Kathmandu,

Nepal in 2002 and 2003. Five major dimensions of well-being are considered: subjective

economic well-being, objective economic well-being, economic well-being, economic

inclusion, political inclusion and civic/cultural inclusion. Each of these dimensions is

measured by a series of indicators and they influence one another through a system of

simultaneous equations but there are no exogenous variables in the model. Krishnakumar

(2007) proposes a general SEM with exogenous variables in both the structural and

measurement parts for operationalising Sen’s capability approach, including three

dimensions namely knowledge, health and political freedom and demonstrates the utility of

such a framework for deriving a multidimensional index of human development using

worldwide country-level data. Krishnakumar and Ballon (2007) present another applica-

tion of the same model using micro-level data on Bolivian households for analysing two

basic capability domains—knowledge and living conditions.

7 Conclusions

It has become common to use multidimensional indices for measuring concepts such as

well-being or poverty, in particular indices derived using principal components and latent
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variable models. This paper brings out the motivation behind these approaches and their

suitability in the economic and social domain. We begin with the PC method which is not a

latent variable model but an entirely descriptive procedure for data reduction and hence

useful for ‘aggregating’ several dimensions. The simplest latent variable model is the FA

model which offers theoretical (measurement) relationships linking the observations and

the latent dimensions. MIMIC structures add exogenous ‘causes’ for the latent variables.

The SEM framework encompasses all these aspects and goes further in adding interde-

pendencies and exogenous influences in both the structural and measurement equations.

Though the use of indices based on the above models and methods has become wide and

popular, few studies report the standard errors or confidence intervals associated with these

estimators. This paper examines their statistical properties, gives analytical expressions of

their variances and establishes certain exact relationships among them.

Appendix A

Minimum Variance Unbiased Estimation of Factor Scores in the FA Model

We are interested in estimators of latent factors f̂ such that

Eðf̂ � f jf Þ ¼ 0

and

Vðf̂ � f Þ is minimal:

Let us denote the estimator as f̂ ¼ Cy: Then Eðf̂ � f Þ ¼ EðCðKf þ eÞ � f Þ ¼
ðCK� IÞEðf Þ ¼ 0 implies the following condition:

CK ¼ I

Thus we need to solve the following program:

Minimise Vðf̂ � f Þ ¼ ðCK� IÞðCK� IÞ0 þ CWC0 under the constraint

CK ¼ I:

The Lagrangian is :

£ ¼ tr½CK� IÞðCK� IÞ0 þ CWC0� � q0vecðCK� IÞ
¼ tr½CK� IÞðCK� IÞ0 þ CWC0� � q0ðK0 � IÞvecC � q0vecI

Substituting the constraint in the objective function we get

£ ¼ trCWC0 � q0ðK� IÞvecC � q0vecI

The first order conditions are given by:

ðW0 � IÞvecC � ðK� IÞq ¼ 0

ðk0 � IÞvecC ¼ 0
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Solving the above system, one obtains:

q� ¼ ðK0W�1KÞ�1

C� ¼ ðK0W�1KÞ�1K0W�1

In the special case W = I, C* = (K0K)–1 K0 and ~f ¼ C�x ¼ H�
1
2A0x ¼ H�

1
2p:

Appendix B

‘‘Unbiased‘‘ Principal Components

If we require the first m principal components to be also unbiased estimators of the latent

factors that they are supposed to represent then we should find B such that

EðBA�
0
y� f jf Þ ¼ 0 i.e. EððBA�

0
K� IÞf jf Þ ¼ 0 8f :

This implies

BA�
0
K� I ¼ 0

or

BA�
0
A�H�

1
2 ¼ I

or

BH�
1
2 ¼ I

or

B ¼ H��
1
2

Thus the ‘unbiased’ principal component estimator is given by

p�� ¼ H��
1
2A0x ¼ H��

1
2p ¼ ~f �:

Appendix C

Expression of MIMIC Estimator

Following Jöreskog and Goldberger (1975), the conditional expectation of f given y,x is

given by:

f̂ ¼ Bxþ K0X�1ðy� KBxÞ

where
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X ¼ KK0 þW

Using

ðKK0 þWÞ�1 ¼ W�1 þW�1KðI þ K0W�1KÞ�1K0W�1

we obtain

f̂ ¼ ½I � K0W�1Kþ K0W�1KðI þ K0W�1KÞ�1K0W�1K�½Bxþ K0W�1y�

which can be simplified to

ðI þ K0W�1KÞ�1ðBxþ K0W�1yÞ

Appendix D

Latent Factor Estimators and Their Variances in the Linear SEM

As explained in the text, the latent factors are estimated as the expectation of the posterior

distribution of these factors given the sample i.e. given y,x. For a pure measurement model

(with exogenous variables w) written as

y ¼ Dwþ Kgþ e

x ¼ gx

ð14Þ

the latent factor (Empirical Bayes) estimator is derived in Skrondal and Rabe-Hesketh

(2004) as follows:

ĝ ¼ VðgÞK0 KVðgÞK0 þWð Þ�1ðy� DwÞ

Here we take the above formula and adapt it to our case in which we have a SEM for

explaining the latent factors. Our model is reproduced below for reference:

Ay� þ Bx� þ u ¼ 0

y ¼ Ky� þ e
ð15Þ

with

VðuÞ ¼ R

To make use of the above result we substitute the reduced form of our SEM given by

y� ¼ A�1Bxþ A�1u

into the measurement equation (15) to get

y ¼ KA�1Bxþ KA�1uþ e ð16Þ

Identifying (16) with (14) and g with u one can obtain the ‘estimator’ of u as

û ¼ RA�1K0ðKA�1RA�10K0 þWÞ�1ðy� KA�1BxÞ

The factor estimators are then obtained by substituting û for u in the SEM model (15):
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ŷ� ¼ A�1Bxþ A�1RA�1K0ðKA�1RA�10K0 þWÞ�1ðy� KA�1BxÞ ð17Þ

which is the equation given in the text.

Finally, the variance of ŷ� is derived by noting that

y� KA�1Bx ¼ KA�1uþ e

and

VðKA�1uþ eÞ ¼ KA�1RA�10K0 þW

and using the above to calculate Vðŷ�Þ according to (17).

Alternatively, Muthen (1998-2004) gives another expression of the latent factor esti-

mator based on maximisation of posterior likelihood. The model is written as

v ¼ mv þ Kvgv þ ev

Avgv ¼ av þ uv

where

v ¼ y
x

� �
; mv ¼

vy

0

� �
Kv ¼

K 0

0 I

� �
; gv ¼

g
gx

� �
ev ¼

e
0

� �

Av ¼
A �B
0 I

� �
; av ¼

a
0

� �
; uv ¼

u
0

� �
;

with

EðeÞ ¼ 0 EðuÞ ¼ 0

and

VðeÞ ¼ W VðuÞ ¼ R

Thus the model is in fact

y ¼ mþ Kgþ e

Ag ¼ aþ Bxþ u

x ¼ gx

The factor score estimator is then:

ĝv ¼ lv þ Cðv� mv � KvlvÞ ð18Þ

where

lv ¼ A�1av

C ¼ A�1
v RvA�10

v K0vðKvA�1
v RvA�10

v K0v þWvÞ�1

and
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Rv ¼
R 0

0 Rxx

� �
; Wv ¼

W 0

0 0

� �
:

Replacing the above partitioned matrices and vectors in (18) and performing all the

calculations, one gets:

ĝ ¼ A�1aþ A�1Bxþ A�RA�10KðKA�1RA�10K0 þWÞ�1ðy� vy � KA�1a� KBxÞ

and

ĝx ¼ x

The last result is expected as we assume that the x’s are directly observed.

Assuming y is centered and regrouping the intercept term A–1a and the ‘exogenous’

elements term A–1Bx into one term denoting it with the same symbol A–1Bx (i.e. assuming x
incorporates a constant), one gets

ĝ ¼ A�1Bxþ A�1RA�10KðKA�1RA�10K0 þWÞ�1ðy� KA�1BxÞ

Thus we see that it is the same expression as the Empirical Bayes estimator (17) (under

our above assumptions) and hence has the same variance.

Appendix E

Monotonic Transformation and Posterior Distribution

The ordinality of latent factors implies that any monotonic transformation of y* will

preserve the order in ŷ�: We will show this in the case of a scalar latent factor y* with a

vector indicator y. The proof can be extended to the vector case without any major

difficulty.

The posterior distribution of the latent factor y* given the indicator y is given by

pðy�jyÞ ¼ pðy�Þpðyjy�Þ
f ðyÞ

where p(y*|y) denotes the posterior density of y* given y, p(y*) is the prior density of y*,

p(y|y*) is the distribution of y given y* and f(y) denotes the density of y.

Let us now transform y*: u* = g(y*).

Then, using

y� ¼ g�1ðu�Þ; pðu�Þ ¼ pðy�Þ dg

dy�

� ��1

and

pðyjy�Þ ¼ pðyjg�1ðu�ÞÞ

one can write
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pðy�jyÞ ¼
pðy�Þ dg

dy�

� �
pðyjg�1ðu�ÞÞ

f ðyÞ

or

¼ dg

dy�

� � pðg�1ðu�ÞÞ dg
dy�

� �
pðyjg�1ðu�ÞÞ

f ðyÞ

The first element of the product is positive if g(y*) is monotonic increasing and one can

write the second part as p(g–1(u*)|y) : p(u*|y).

Hence

pðu�jyÞ ¼ dg

dy�

� ��1

pðy�jyÞ

Therefore if

Eðy�jy1Þ[ Eðy�jy2Þ

then we have
Z

y�pðy�jy1Þdy�[
Z

y�pðy�jy2Þdy�

Z
gðy�Þpðy�jy1Þdy�[

Z
gðy�Þpðy�jy2Þdy�

Z
gðy�Þ dg

dy�

� ��1

pðu�jy1Þdy�[
Z

gðy�Þ dg

dy�

� ��1

pðu�jy2Þdy�

Z
u�

dg

dy�

� ��1

pðu�jy1Þ
dg

dy�

� �
du�[

Z
u�

dg

dy�

� ��1

pðu�jy2Þ
dg

dy�

� �
du�

Z
u�pðu�jy1Þdu�[

Z
u�pðu�jy2Þdu�

and finally

Eðu�jy1Þ[ Eðu�jy2Þ:
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Jöreskog, K., & Goldberger, A. (1975). Estimation of a model with multiple indicators and multiple causes
of a single latent variable. Journal of the American Statistical Association, 70(351), 631–639.

Klasen, S. (2000). Measuring poverty and deprivation in South Africa. Review of Income and Wealth, 46,
33–58.

Krishnakumar, J. (2007). Going beyond functionings to capabilities: An econometric model to explain and
estimate capabilities. Journal of Human Development, 7, 39–63.

Krishnakumar, J., & Ballon, P. (2007). Estimating basic capabilities: A structural equation model applied to
Bolivia. Working paper under review.

Kuklys, W. (2005). Amartya Sen’s capability approach: Theoretical insights and empirical applications.
Berlin: Springer.

Lelli, S. (2001). Factor analysis vs. fuzzy sets theory: Assessing the influence of different techniques on
Sen’s functioning approach. Center for Economic studies, K.U. Leuven.

Maasoumi, E., & Nickelsburg, G. (1988). Multidimensional measures of well-being and an analysis of
inequality in the Michigan data. Journal of Business and Economic Statistics, 6(3), 327–334.

McGillivray, M. (2005). Measuring non-economic well-being achievement. Review of Income and Wealth,
51(2), 337–364.

Morris, M. D. (1979). Measuring the condition of the world’s poor: The physical quality of life index. New
York: Pergamon.

Muthen, B. (1984). A general structural equation model with dichotomous, ordered categorical and con-
tinuous latent indicators. Psychometrika, 49, 115–132.

Muthen, B. (2002). Beyond SEM: General latent variable modelling. Behaviormetrika, 29(1), 81–117.
Muthen, B. O. (1998-2004). Mplus technical appendices. Los Angeles, CA: Muthen & Muthen.
Nagar, A. L., & Basu, S. (2001). Weighting socio-economic indicators of human development (a latent

variable approach). New Delhi: National Institute of Public Finance and Policy.
Noorbaksh, F. (2003). Human development and regional disparities in India. Discussion Paper, Helsinki:

UN-WIDER.
Rahman, T., Mittelhammer, R. C., & Wandschneider, P. (2003). Measuring the quality of life across

countries: A sensitivity analysis of well-being indices. In WIDER International Conference on
Inequality, Poverty and Human Well-being, Helsinki, Finland

Ram, R. (1982). Composite indices of physical quality of life, basic needs fulfilment, and income: A
principal component representation. Journal of Development Economics, 11, 227–247.

Schokkaert, E., & Lootehgem, L. (1990). Sen’s concept of the living standard applied to the Belgian
unemployed. Recherches Economiques de Louvain, 56, 429–450.

Sen, A. K. (1985). Commodities and capabilities. Amsterdam: North-Holland.
Sen, A. K. (1999). Development as freedom. Oxford: Oxford University Press.
Slottje, D. J (1991). Measuring the quality of life across countries. The Review of Economics and Statistics

73(4), 684–693.
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal,

and structural equation models. Boca Raton, U.S.A.: Chapman & Hall/CRC.
UNDP (1990). Human Development Report (HDR). U.K.: Oxford University Press.
Wagle, U. (2005). Multidimensional poverty measurement with economic well-being, capability and social

inclusion: A case from Kathmandu, Nepal. Journal of Human Development, 6(3), 301–328.
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–26.

496 J. Krishnakumar, A. L. Nagar

123

http://www.ssicentral.com/lisrel/ordinal.htm

	On Exact Statistical Properties of Multidimensional Indices Based on Principal Components, Factor Analysis, MIMIC and Structural Equation Models
	Abstract
	Introduction
	Principal Components Indices
	Factor Analysis Model
	Link between PC and FA Models
	MIMIC Models
	Structural Equation Models
	Conclusions
	Appendix A
	Minimum Variance Unbiased Estimation of Factor Scores in the FA Model

	Appendix B
	‘‘Unbiased‘‘ Principal Components

	Appendix C
	Expression of MIMIC Estimator

	Appendix D
	Latent Factor Estimators and Their Variances in the Linear SEM

	Appendix E
	Monotonic Transformation and Posterior Distribution

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


