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Abstract. Recently, the permutation-information theoretic approach
has been used in a broad range of research fields. In particular, in
the study of high-dimensional dynamical systems, it has been shown
that this approach can be effective in characterizing global properties,
including the complexity of their spatiotemporal dynamics. Here, we
show that this approach can also be applied to reveal local spatiotem-
poral profiles of distributed computations existing at each spatiotempo-
ral point in the system. J. T. Lizier et al. have recently introduced the
concept of local information dynamics, which consists of information
storage, transfer, and modification. This concept has been intensively
studied with regard to cellular automata, and has provided quantita-
tive evidence of several characteristic behaviors observed in the system.
In this paper, by focusing on the local information transfer, we demon-
strate that the application of the permutation-information theoretic
approach, which introduces natural symbolization methods, makes the
concept easily extendible to systems that have continuous states. We
propose measures called symbolic local transfer entropies, and apply
these measures to two test models, the coupled map lattice (CML) sys-
tem and the Bak-Sneppen model (BS-model), to show their relevance
to spatiotemporal systems that have continuous states. In the CML,
we demonstrate that it can be successfully used as a spatiotemporal
filter to stress a coherent structure buried in the system. In particular,
we show that the approach can clearly stress out defect turbulences or
Brownian motion of defects from the background, which gives quan-
titative evidence suggesting that these moving patterns are the infor-
mation transfer substrate in the spatiotemporal system. We then show
that these measures reveal qualitatively different properties from the
conventional approach using the sliding window method, and are also
robust against external noise. In the BS-model, we demonstrate that
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these measures can provide novel insight to the model, featuring how
symbolic local information transfer is related to the dynamical proper-
ties of the elements involved in a spatiotemporal dynamics.

1 Introduction

Understanding the properties of a spatiotemporal system that consists of a large num-
ber of interacting elements has been an important research topic for several decades.
In such a system, it has often been suggested that local interactions in space can give
rise to global spatiotemporal patterns, and huge amounts of effort have been devoted
to characterizing the behaviors of the spatiotemporal dynamics of the system [1–6].
Information theoretic approach is one of the main methods for analyzing such systems.
For example, mutual information (MI) has been intensively used to characterize the
class of spatiotemporal dynamics revealed in cellular automata [2], the order-chaos
transition in random boolean networks [7], or the interaction regimes in coupled map
lattice (CML) systems [8,9]. Also, the diversity of information processing capacity
of spatiotemporal dynamics has been characterized in terms of information struc-
tures using excess entropy (or, the complexity-entropy diagram) [10]. Although these
analyses reveal important statistical properties of the global behavior of spatiotempo-
ral dynamics, they often miss capturing their spatiotemporal profile or the structure
of the dynamics, namely the characteristics distributed at each spatiotemporal point
in the system.
Recently, J. T. Lizier et al. introduced the concept of information dynamics for

the analysis of distributed computations in spatiotemporal dynamics, which addresses
this inadequacy [11]. The information dynamics consist of the fundamental operations
of information storage, transfer, and modification, where these operations are quan-
tified on a local scale in space and time. They have formalized these operations in
terms of information theoretic quantities for spatiotemporal dynamics, and they are
called local information storage [12], local information transfer [13], and local infor-
mation modification [14], respectively. These measures have been intensively studied
with regard to elementary cellular automata (ECA), and have provided quantita-
tive evidence of several characteristic behaviors observed in the system. For example,
they introduced the measure of local information transfer based on a measure called
transfer entropy (TE) [15], and showed that a typical emergent agent in ECA, known
as glider and long considered an information transfer substrate from the observation
of the spatiotemporal pattern of ECA, was characterized as such in a quantitative
manner with an information theoretic term [13].
Our aim in this paper is to provide an extension to make this framework feasible

for the spatiotemporal system that has continuous states. This is achieved by intro-
ducing a natural symbolization technique for a continuous time series, which uses
local orderings (permutations) of the values as associated states [16]. This approach
is called the permutation-information theoretic approach, and it was first introduced
as a permutation version of Shannon entropy, known as permutation entropy (PE)
[16]. It has been shown to be equivalent to the original if both are considered as the
rates for a stationary time series under a certain assumption [17–22], and has been
extensively used because of its ease of implementation, its computational efficiency,
and its robustness against external noise [17,23–25]. Several measures have recently
been proposed based on this technique [19,26–31]. In this paper, we only focus on the
concept of local information transfer for spatiotemporal dynamics and propose mea-
sures in the realm of symbolic local information transfer based on the permutation
versions of TE. In order to demonstrate their relevance to the spatiotemporal system
that has continuous states, we apply these measures to the CML system and the
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Bak-Sneppen model (BS-model), and show that they can provide the characteristic
spatiotemporal profile in each system.
This paper is organized as follows. In Sect. 2, we give a brief overview of informa-

tion theoretic preliminaries and introduce the measure of TE. We then explain the
permutation expression of the measure adopted in this paper. In Sect. 3, we explain
how to make the measure local to be applied for the spatiotemporal system by re-
viewing the procedure introduced in [13] and propose the measures of symbolic local
transfer entropies. In Sect. 4, we apply these measures to the CML and the BS-model
and analyze their spatiotemporal profile in detail. In particular, for the CML, we com-
pare the performance of the measures with conventional techniques based on sliding
windows, and also investigate the robustness of the measures against external noise.
For the BS-model, we provide some explanations of the local information transfer
profile, which are specifically useful for understanding the properties of this model.
Finally, in Sect. 5, we give conclusions and discuss future extension scenarios for these
measures.

2 Information transfer and its permutation expression

We begin with a brief overview of the background of the information theoretic con-
cepts required in this paper [32]. The uncertainty associated with the state x of a
random variable X following a probability distribution p(x) is given by the Shannon
entropy:

H(X) = −
∑

x

p(x) log2 p(x), (1)

where the base of the logarithm is taken as 2 throughout this paper; therefore, the
unit of all measures we present in this paper is unified as bit. The MI between two
processes X and Y measures the average information gained about X by knowing
the process of Y , or vice versa, as follows:

MXY =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (2)

where p(x, y) is a joint probability distribution of processes X and Y [32]. For sta-
tistically independent distributions, p(x, y) = p(x)p(y) and MXY = 0. If statistical
dependencies exist, MXY > 0. MI is a fundamental measure in information theory
and is used to evaluate an association between two or more processes, which natu-
rally encompass linear and nonlinear dependencies. However, as can be seen from the
equation, MI is intrinsically symmetric under the exchange of the two processes X
and Y , which means that MI does not contain any directional information.
In this paper, we focus on the notion of information transfer, which requires

capturing both directional and dynamic relations from an information source to a
receiver. Therefore, MI is insufficient for this purpose. There are several measures
proposed to address these inadequacies (see [15,33–36], for example). Our focus here
is on the measure known as transfer entropy (TE) proposed by Schreiber [15]. TE is
a measure of the information transfer from the driving system (Y ) to the responding
system (X). Let us write xt and yt for the values of two temporal processes Xt and
Yt, respectively. TE essentially quantifies the deviation from the generalized Markov

property: p(xt+1|x(K)t ) = p(xt+1|x(K)t , y(L)t ), where p(xt+1|x(K)t ) denotes a transition
probability from x

(K)
t to xt+1, andK,L are the length of the delay embedding vectors.

If the deviation from a generalized Markov process is small, then the state y
(L)
t can
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be assumed to have little relevance to the transition probabilities from x
(K)
t to xt+1.

If the deviation is large, however, then the assumption of a Markov process is not
valid. The incorrectness of the assumption can be expressed by the TE, formulated
as a specific version of the Kullback-Leibler entropy [15,32]:

TEY→X =
∑

xt+1,x
(K)
t ,y

(L)
t

p
(
xt+1, x

(K)
t , y

(L)
t

)
log
p
(
xt+1|x(K)t , y(L)t

)

p
(
xt+1|x(K)t

) , (3)

where the index TEY→X indicates the influence of Y on X, and can thus be used to
detect the directed information transfer. In other words, TE measures how well we
can predict the transition of system X by knowing system Y . TE is non-negative,
and any information transfer between the two variables results in TEY→X > 0. If
the state y

(L)
t has no influence on the transition probabilities from x

(K)
t to xt+1, or if

the two time series are completely synchronized, then TEY→X = 0. TE can also be
denoted as follows:

TEY→X = −H(Xt+1,Xt, Yt) +H(Xt, Yt) +H(Xt+1,Xt)−H(Xt), (4)

where H(Xt+1,Xt, Yt), H(Xt, Yt), and H(Xt+1,Xt) are joint entropies of correspond-
ing temporal processes.
Our aim in this paper is to apply information theoretic measures to a spatiotem-

poral time series. As explained above, the entropies are functionals of probability
distributions, and there are variations of methods proposed to estimate the distri-
butions from an obtained time series [37]. One popular class of estimators divides
the given range of state space into a set of partitions, which is often referred to as
binning. On the other hand, PE quantifies the uncertainty of the local orderings of
values, unlike the usual entropy, which quantifies that of the values themselves. This
approach introduces a natural symbolization technique for continuous states as we
will see later. In spite of the differences between the procedures, it was proven that the
PE rate is equal to the usual entropy rate for any finite-alphabet stationary stochastic
process [17,19]. It was also shown that PE is robust to noise, which is common in a

real-world time series [16]. PE is derived from this permutation partition. Let x
(L)
t

represent an L dimensional embedding vector from the obtained time series x′t, and
x̂
(L)
t be a sequence of numbers representing the orderings of x

(L)
t . Based on the per-

mutations of the values, x̂
(L)
t is generated as follows: x

(L)
t = (x′t, x′t−1, ..., x′t−(L−1)),

and are arranged in ascending order, x′t−(ot(1)−1) ≤ x′t−(ot(2)−1) ≤ ... ≤ x′t−(ot(L)−1).
A symbol is thus defined as x̂

(L)
t ≡ (ot(1), ot(2), ..., ot(L)) ∈ X̂t, where X̂t is the set

of symbols generated in the temporal process Xt. Based on the generated symbols

x̂
(L)
t , PE is expressed as:

H(X̂t) = −
∑

x̂
(L)
t

p(x̂
(L)
t ) log p(x̂

(L)
t ), (5)

where p(x̂
(L)
t ) is the probability of the occurrence of x̂

(L)
t in the set of symbols X̂t.

Similarly to TE, its permutation version is proposed in [38] and is called symbolic
transfer entropy (STE), expressed as:

STY→X = −H(X̂t+1, X̂t, Ŷt) +H(X̂t, Ŷt) +H(X̂t+1, X̂t)−H(X̂t), (6)

where H(X̂t+1, X̂t, Ŷt), H(X̂t, Ŷt), and H(X̂t+1, X̂t) are joint entropies of the set of
symbols in the corresponding temporal processes, and in terms of the probability
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distribution functions as:

STY→X =
∑

x̂
(M)
t+1 ,x̂

(K)
t ,ŷ

(L)
t

p
(
x̂
(M)
t+1 , x̂

(K)
t , ŷ

(L)
t

)
log
p
(
x̂
(M)
t+1 |x̂(K)t , ŷ(L)t

)

p
(
x̂
(M)
t+1 |x̂(K)t

) , (7)

where M,K, and L are the length of the embedding vectors, and the index STY→X
indicates the influence of Y on X.
Note that Eq. (7) is not completely analogous to the original expression of TE

(Eq. (3)) because of the embedding vector M defined for x̂
(M)
t+1 in the set of symbols

X̂t+1. This setting introduces the overlap of the symbols between x̂
(M)
t+1 (x̂

(M)
t+1 ∈ X̂t+1)

and x̂Kt (x̂
K
t ∈ X̂t), which also introduces the intrinsic bias to the measure [39]. In

order to overcome this effect of bias, the improved version of STE was proposed in
[39], called transfer entropy on rank vectors (TERV). The basic concept of TERV is
to use further timesteps ahead to avoid this overlap of symbols, namely a symbol

x̂
(M)
t+1 is generated from the obtained time series vector, (x

′
t+1, x

′
t+2, ..., x

′
t+1+(M−1)),

instead of the original one, (x′t+1, x′t, ..., x′t+1−(M−1)), while the other symbols x̂
(K)
t

and ŷ
(L)
t are generated by the original procedure. We distinguish the former denoting

the symbol as x̂
(M),ahead
t+1 from the latter. Accordingly, TERV can be expressed as:

TERVMY→X =
∑

x̂
(M),ahead
t+1 ,x̂

(K)
t ,ŷ

(L)
t

p

(
x̂
(M),ahead
t+1 , x̂

(K)
t , ŷ

(L)
t

)

× log
p

(
x̂
(M),ahead
t+1 |x̂(K)t , ŷ(L)t

)

p

(
x̂
(M),ahead
t+1 |x̂(K)t

) · (8)

In this paper, we use the special case of TERV in which the embedding vector M is
set to 1 expressed as:

TERV 1Y→X =
∑

x̂t+1,x̂
(K)
t ,ŷ

(L)
t

p
(
x̂t+1, x̂

(K)
t , ŷ

(L)
t

)
log
p
(
x̂t+1|x̂(K)t , ŷ(L)t

)

p
(
x̂t+1|x̂(K)t

) · (9)

This setting allows us to combine the tuple (x̂
(M=1),ahead
t+1 , x̂

(K)
t , ŷ

(L)
t ) into

(x̂
(K+1)
t+1 , ŷ

(L)
t ) when generating the symbol and calculating the TERV from the ob-

tained time series [39], since x̂t+1 alone cannot form a permutation ordering. Accord-
ingly, TERV with M = 1 can be expressed as follows:

TERV 1Y→X = −H(X̂t+1, Ŷt) +H(X̂t, Ŷt) +H(X̂t+1)−H(X̂t)· (10)

This forms the permutation expression of the information transfer in this paper
[27,40]. When we actually calculate the value of TERV 1Y→X , we first calculate the
joint and single entropies in the right side of Eq. (10) from the corresponding probabil-

ity distributions, namely p(x̂
(K+1)
t+1 , ŷ

(L)
t ), p(x̂

(K)
t , ŷ

(L)
t ), p(x̂

(K+1)
t+1 ), and p(x̂

(K)
t ), with

the obtained time series.

3 Local information transfer and its permutation expressions for
spatiotemporal systems

In this section, we review the procedure for making TE local. In [13], based on TE,
Lizier et al. focused on the fact that, in obtaining the value of TE from the time series,
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the joint probability p(xt+1, x
(K)
t , y

(L)
t ) is operationally equivalent to the ratio of the

count of observations c(xt+1, x
K
t , y

(L)
t ) of state transition tuples (xt+1, x

(K)
t , y

(L)
t ), to

the total number of observationsN made. In applications to time series, the number of

observations is finite, and p(xt+1, x
(K)
t , y

(L)
t ) can be expressed as p(xt+1, x

(K)
t , y

(L)
t ) =

c(xt+1, x
(K)
t , y

(L)
t )/N . Then, TE can be expressed as follows:

TEY→X =
1

N

∑

xt+1,x
(K)
t ,y

(L)
t

⎛

⎝
c(xt+1,x

(K)
t ,y

(L)
t )∑

a=1

1

⎞

⎠ log
p
(
xt+1|x(K)t , y(L)t

)

p
(
xt+1|x(K)t

) · (11)

By considering that a double sum running over each actual observation a for each

possible tuple observation (xt+1, x
(K)
t , y

(L)
t ) is nothing but a single sum over all N

observations, we obtain the following:

TEY→X =
1

N

∑

all observations

log
p
(
xt+1|x(K)t , y(L)t

)

p
(
xt+1|x(K)t

) · (12)

Thus, we can write TE as the global average over local transfer entropy (LTE),
teY→X(t+ 1), defined as,

TEY→X =< teY→X(t+ 1) >, (13)

teY→X(t+ 1) = log
p
(
xt+1|x(K)t , y(L)t

)

p
(
xt+1|x(K)t

) , (14)

where < X > denotes the expectation value of X. Note that LTE can have a negative
value. The negative value of LTE means that the sender is misleading about the
prediction of the receiver’s next state [13]. For a spatiotemporal system, where the
senders and receivers are spatially ordered cells, the LTE to cell i from cell i − j at
timestep t+ 1 (Fig.1) can be expressed as:

te(i, j, t+ 1) = log
p
(
xi,t+1|x(K)i,t , x(L)i−j,t

)

p
(
xi,t+1|x(K)i,t

) · (15)

This measure is defined for every spatiotemporal receiver (i, t), forming a spatiotem-
poral profile for every information direction j. Note that j represents the number of
cells from the sender to the receiver. For example, if j = 1 or −1, then te(i, j, t + 1)
expresses the LTE from the spatially neighboring cell to the cell i. As we will see later,
we only consider spatiotemporal dynamics where each cell i has a local interaction
with its neighboring cells, j = 1,−1, in this paper. Lizier et al., then, introduced a
variation of the LTE, which considers conditioning out other possible causal informa-
tion contributors apart from the information source under consideration [41] (Fig. 1).
This measure is called local complete transfer entropy (LCTE), and expressed as
follows:

tec(i, j, t+ 1) = log
p
(
xi,t+1|x(K)i,t , x(L)i−j,t, vi,j,t

)

p
(
xi,t+1|x(K)i,t , vi,j,t

) , (16)
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t-4

ii-1 i+1i-2 i+2

t+1

t

space
tim

e

L

K

L

Excluding the other causal 
contributors

Information transfer under 
consideration

Fig. 1. Schematic showing the local information transfers in a spatiotemporal system. The
solid arrow shows the local information transfer from a cell i−1 to cell i (LATE) at timestep
t+1, where the embedding vector of each state, xLi−1,t or x

K
i,t, is (K,L) = (5, 2) in the figure.

LCTE is obtained by conditioning out all the other causal contributors (the dashed arrow)
to the destination cell i. In the CML and the BS-model, since each cell only interacts with
its nearest neighboring cells (i − 1, i + 1), to obtain the LCTE from a cell i − 1(i + 1), we
condition out the contribution from i+ 1(i− 1). See text for details.

vi,j,t = {x(L)i+q,t|∀q : information sources, q �= −j, 0}, (17)

where vi,j,t is the joint value of the neighborhood of the destination xi,t+1, excluding

the source for the TE calculation x
(L)
i−j,t and the previous value of the destination

x
(K)
i,t . To explicitly distinguish the LCTE from the original one, the LTE expressed

as Eq. (15) is called local apparent transfer entropy (LATE), and is denoted as
tea(i, j, t+1). Finally, the summed up version of both LATE and LCTE (tesa(i, t+1)
and tesc(i, t+ 1)) over the neighboring cells (j = 1,−1) are introduced as follows:

tesa(i, t+ 1) =
∑

j:neighborhood

tea(i, j, t+ 1), (18)

tesc(i, t+ 1) =
∑

j:neighborhood

tec(i, j, t+ 1). (19)

In [13], these measures were applied to ECA and several interesting properties of its
spatiotemporal profile were reported. Our aim here is to extend this framework to
spatiotemporal systems which have continuous states. Usually, for continuous time
series, the estimation of the probability distributions requires an intensive amount
of preconditioning of the data to obtain the appropriate binning of the state or the
fine tuning of the parameters of the probability distribution estimators. However, as
explained in the previous section, the permutation partitioning can naturally sym-
bolize the continuous states, thus can be effectively applied to the spatiotemporal
systems with continuous states. Based on TERV (with M = 1) explained in the pre-
vious section, we can straight-forwardly introduce symbolic local transfer entropies
(symbolic local apparent transfer entropy, symbolic local complete transfer entropy,
summed symbolic local apparent transfer entropy (SLA), summed symbolic local com-
plete transfer entropy (SLC), which are denoted as stea(i, j, t + 1), stec(i, j, t + 1),
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stesa(i, t+ 1), and stesc(i, t+ 1), respectively) as follows:

stea(i, j, t+ 1) = log
p
(
x̂i,t+1|x̂(K)i,t , x̂(L)i−j,t

)

p
(
x̂i,t+1|x̂Ki,t

) , (20)

stec(i, j, t+ 1) = log
p
(
x̂i,t+1|x̂(K)i,t , x̂(L)i−j,t, v̂i,j,t

)

p
(
x̂i,t+1|x̂(K)i,t , v̂i,j,t

) , (21)

v̂i,j,t = {x̂(L)i+q,t|∀q : information sources, q �= −j, 0}, (22)

stesa(i, t+ 1) =
∑

j:neighborhood

stea(i, j, t+ 1), (23)

stesc(i, t+ 1) =
∑

j:neighborhood

stec(i, j, t+ 1). (24)

In order to calculate the symbolic local transfer entropies, we combine the tuple

(x̂i,t+1, x̂
(K)
i,t ) into (x̂

(K+1)
i,t+1 ) and generate the required probability distributions from

the obtained time series as explained in the previous section. In the following sec-
tions, we show how these local measures can reveal the spatiotemporal profiles of the
spatiotemporal dynamics which have continuous states.

4 Demonstrations

In this section, we demonstrate the power of the symbolic local transfer entropies in
analyzing the spatiotemporal profiles of the spatiotemporal dynamics. As test mod-
els of the spatiotemporal dynamics, we selected the CML system [5,42,43] and the
BS-model [44,45]. For the CML, the spatiotemporal dynamics is expressed in one-
dimensional space, and all the cells interact with the neighboring cells at each timestep
with uniformly fixed coupling strength, which is a common setting in spatially distrib-
uted dynamical systems. In contrast, although the BS-model is also expressed in one
dimension, the model’s form of interaction is different from that of CML. Namely, as
explained later, only a cell selected by a certain condition can interact with neighbor-
ing cells at each timestep. Due to this specific form of interaction, we can investigate
in detail how the local information transfer and the local interaction mechanism of
the cells are related to each other in this model.

4.1 Symbolic local information transfer in the CML

The CML used in this paper is expressed as follows:

xi,t+1 = (1− c)f(xi,t) + c
2
(f(xi+1,t) + f(xi−1,t)), (25)

f(x) = 1− ax2, (26)

where c is the coupling strength set as c = 0.1, the nonlinear parameter a is selected
from the range in 1.5 ≤ a ≤ 2.0, x ∈ [−1, 1] in our experiment and the periodic
boundary condition is adopted. In the CML, it is well known that according to the
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)

i i

SLA

SLC

SLA

SLC

Frozen chaos Chaotic Brownian motion of defect

Fig. 2. A typical example of spatiotemporal dynamics and the corresponding local infor-
mation transfer in the FC (left row) and BD (right row) phases. The system size N is set to
100, and for SLA and SLC, the embedding vectors (L,K) are set to (2, 5). In each phase,
we ran the system from a random initial condition for 10000 timesteps, and the initial 1000
timesteps were discarded; the remaining 9000 timesteps were used to calculate the proba-
bility distributions for the local information transfers, and the spatiotemporal profile of the
last 100 timesteps are shown. (a) xi(t) is overlaid according to the space for each phase.
(b) The spatiotemporal dynamics for each phase. (c) The spatiotemporal profile of SLA for
each phase. The darker the color, the lower the value of the local information transfer. For
the FC (left diagram) and BD (right diagram) phases, the values ranged from 0 to 4 [bit].
(d) The spatiotemporal profile of SLC for each phase. The darker the color, the lower the
value of the local information transfer. For the FC (left diagram) and BD (right diagram)
phases, the values ranged from 0 to 4 [bit] and from 0 to 5 [bit], respectively.

selection of c and a, the system shows qualitatively different spatiotemporal dynamics
[5,43]. The spatiotemporal dynamics has been explained by the characteristic spatial
structures, where cells form clusters with various sizes and, in each cluster, show sim-
ilar behaviors ranging from chaos to oscillatory behaviors.
For example, if the nonlinear parameter a is less than around 1.55, cells form

fixed clusters of various sizes according to the initial states selected, and in some
clusters show chaotic behaviors (Fig. 2(a), (b) left figure). Due to this characteristic,
this form of spatiotemporal dynamics is called Frozen chaos (FC). By increasing the
degree of nonlinearity, larger clusters become unstable, and cells start to form smaller
clusters. In these clusters, the chaotic behaviors observed in FC are suppressed, and
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Fig. 3. A typical example of spatiotemporal dynamics and the corresponding local informa-
tion transfer in the DT (left row) and FDC (right row) phases. The experiment settings are
the same as in Fig. 2. (a) xi(t) is overlaid according to the space for each phase. (b) The spa-
tiotemporal dynamics for each phase. (c) The spatiotemporal profile of SLA for each phase.
The darker the color, the lower the value of the local information transfer. For the DT (left
diagram) and FDC (right diagram) phases, the values ranged from 0 to 6 [bit]. (d) The
spatiotemporal profile of SLC for each phase. The darker the color, the lower the value of
the information transfer. For the DT (left diagram) and FDC (right diagram) phases, the
values ranged from 0 to 4.5 [bit] and from 0 to 6 [bit], respectively.

as a result, various oscillatory behaviors are found in each cluster. The characteris-
tic of the size and this oscillatory behavior depend on the setting of a and c. Due
to this cluster formation process, this form of spatiotemporal dynamics is called
Pattern selection (PS). If we increase the degree of nonlinearity further, the clus-
ters become smaller and stable, but in specific coupling strengths, because several
cells miss forming a cluster, the defected formation of clusters start to move around
the space randomly in a Brownian manner (Fig. 2(a), (b) right figure). This type of
spatiotemporal dynamics is called Chaotic Brownian motion of defect (BD) and can
be especially found in relatively smaller value of coupling strengths. Further increase
in nonlinearity makes the clusters more unstable, so that both coherent and chaotic
spatiotemporal patterns co-exist in the system. In this phase, we can often find Defect
turbulence (DT), where the irregular motion of defects starts to emerge spontaneously
(Fig. 3(a), (b) left figure). And finally, when the degree of nonlinearity is increased
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further, the system reaches the state called Fully developed chaos (FDC), where all
the cells reveal chaotic behaviors (Fig. 3(a), (b) right figure).
Now, we analyzed these spatiotemporal dynamics in terms of the symbolic local

information transfer profile. As explained in the previous section, the symbolic local
information transfer values are sometimes negative. In those cases, we set the value to
0 throughout the analyses in this subsection. In addition, we especially focus on the
measures SLA and SLC throughout this subsection, but we would like to note
that the results using the other symbolic local transfer entropies were qualitatively
the same with those reported below.
Figure 2 shows the results for SLA and SLC in FC and BD. In FC, since each cell

belongs to the fixed clusters, according to the dynamics (chaos or nearly oscillatory
behavior) in each cluster, SLA and SLC also reveal a specific profile for each cell
(Fig. 2(c), (d); left row). The results depend on the dynamics of the cluster that the
cell belongs to and the dynamics of the neighboring cluster of the cell, in the degree of
how well the sender cell can predict the dynamics of the receiver cell. From this local
information transfer profile, we can infer that the spatio-structure of the dynamics
is fixed. We also observed qualitatively similar types of local information transfer
profiles in the PS phase, since the spatio-structure is characterized by the fixed struc-
ture of the clusters after being selected. In BD, we can confirm that the Brownian
motion of defect is clearly filtered out in SLA and SLC (Fig. 2(c), (d); right row).
In this phase, since the background cells, which are not in defect, form a cluster of
size one and each cluster reveals oscillatory behavior with almost the same frequency
and with the opposite periodic phase, almost no local information transfer can be
found in the background. (Note that, as explained in section 2, if the dynamics of
the sender and the receiver are synchronized, then the information transfer reveals 0.
This is because the degree of predictability of the receiver dynamics will not improve
by knowing the sender dynamics.) However, the results suggest that the Brownian
motion of defect receives information from the neighboring cells, meaning that the
degree of predictability of the receiver dynamics (defect cells) improves by knowing
the neighboring sender dynamics. From this local information transfer profile, we can
infer the existence of an information transfer substrate that travels around the space.
Figure 3 shows the results for SLA and SLC in DT and FDC. In DT, similarly

to the BD case, we can confirm the spatial traveling motion of defect turbulence is
clearly filtered in SLA and SLC (Fig. 3(c), (d); left row). This is caused by the same
reason as the BD case. From this local information transfer profile, we can infer that
the information transfer substrate travels around the space in a more complicated
manner than in the BD case. In FDC, from the spatiotemporal profile of SLA and
SLC, we can see that the high and low local information transfer are randomly dis-
tributed in the space, suggesting that there is no coherent structure in the dynamics
(Fig. 3(c), (d); right row).
From these results, we can suggest that the Brownian motion of defect and defect

turbulence observed in the CML are the information transfer substrate of the system
in Lizier’s sense. Interestingly, this type of spatiotemporal profile cannot be revealed
with the conventional sliding window method. Figure 4 shows the example of the
spatiotemporal profile revealed by the sliding window method by varying the length
of the time window (Tw = 1000, 5000, and 10000) in the DT phase compared with
the local information transfer profile. For the comparison, we here simply defined
measures which are TERV versions of SLA and SLC as follows:

TERV 1a,(i−j)→i =
∑

x̂i,t+1,x̂
(K)
i,t ,x̂

(L)
i−j,t

p
(
x̂i,t+1, x̂

(K)
i,t , x̂

(L)
i−j,t
)
log
p
(
x̂i,t+1|x̂(K)i,t , x̂(L)i−j,t

)

p
(
x̂i,t+1|x̂(K)i,t

) ,

(27)
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Fig. 4. Comparisons of SLA and SLC with the value of TERV 1sa,i and TERV

1
sc,i calculated

for each cell using the sliding window method. (a) The reference spatiotemporal dynamics
with a = 1.89 and c = 0.1. The system was run with the same setting in Fig. 3. (b) The
results of the spatiotemporal profile revealed by SLA (left figure) and the TERV 1sa,i for
each cell using the sliding window method. The length of the time window is varied as
Tw = 1000, 5000, and 10000. (c) The results of the spatiotemporal profile revealed by SLC
(left figure) and the TERV 1sc,i for each cell using the sliding window method. The length of
the time window is varied as Tw = 1000, 5000, and 10000.

TERV 1c,(i−j)→i =
∑

x̂i,t+1,x̂
(K)
i,t ,x̂
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(L)
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× log
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)

p
(
x̂i,t+1|x̂(K)i,t , x̂(L)i+j,t

) , (28)

TERV 1sa,i = TERV
1
a,(i−j)→i + TERV

1
a,(i+j)→i, (29)

TERV 1sc,i = TERV
1
c,(i−j)→i + TERV

1
c,(i+j)→i. (30)

In the plots for the sliding window method, we calculated TERV 1sa,i and TERV
1
sc,i

(with j = 1) of each cell i by using the given Tw. We can clearly see that the slid-
ing window method shows a qualitatively different spatiotemporal profile, which does
not give any information about the defect turbulence (Fig. 4). This would be caused
by the difference in the method for generating the probability distribution. In the
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conventional sliding window method, the analysis focuses on only a single cell (and
its neighboring cells), so it cannot form consistent information among the overall spa-
tiotemporal cells.
The proposed measures can be also applied as a visualization tool or filter to

stress the coherent structure existing in spatiotemporal dynamics. To achieve this, by
taking the SLC profiles, we adopted Otsu’s thresholding method [46] and expressed
the profile in binary states. This method assumes that the image to be thresholded
contains two classes of states (e.g., foreground and background) and then calculates
the optimum threshold separating those two classes so that the intra-class variance is
minimal [46]. By taking the minimum and maximum values of the data obtained (in
our case, 100 × 100 samples), we discretized the state into 20 bins and used Otsu’s
method to determine the threshold. Then, the value exceeding the threshold is ex-
pressed as 1 and 0 otherwise. Figure 5(a) (the upper line) shows the typical example
of the results of this filtering. For comparison, we adopted the same thresholding pro-
cedure for filtering the raw spatiotemporal dynamics. As can be seen in the figure, the
filtered image of the SLC profiles clearly stresses the complex traveling wave of the
defect turbulences, while the filtered image of the reference spatiotemporal dynamics
does not stress them as much.
To investigate the robustness of this method against the external noise, we ap-

plied various levels of Gaussian noise to the reference spatiotemporal dynamics and
applied this procedure for each noise level. (Note that, as explained in Fig. 3, we
run the CML (N = 100) for 50000 timesteps and by using 49000 timesteps dis-
card the first 1000 timesteps as washout to prepare the probability distributions and
the final 100 timesteps are used for the SLC analysis. The Gaussian noise is added
to the raw spatiotemporal dynamics for the overall 50000 timesteps for each noise
level.) The noise level is expressed in terms of the signal-to-noise ratio (SNR [db])
as: SNR = 10 log10(Qdynamics/Qnoise), where Qdynamics and Qnoise are the root
mean square amplitudes of the reference spatiotemporal dynamics and the Gaussian
noise, respectively. Figure 5(a) (the lower lines) shows the typical filtered image with
Gaussian noises. We can clearly see that the reference spatiotemporal dynamics and
its corresponding filtered image starts to be buried in the noise according to the in-
creased noise level, while the SLC profiles and their filtered images moderately sustain
the foreground-background separations even if the reference spatiotemporal dynamics
is almost completely buried in the noise (SNR=0.05). We also picked up 7 different
reference spatiotemporal dynamics, and analyzed the transitions of the ratio of state
1 (R1) and 0 (R0) in the filtered SLC image over all the spatiotemporal cells. (Note
that sometimes a few defect turbulences appear in the last 100 × 100 spatiotemporal
cells, so we selected the spatiotemporal dynamics, which seemed to contain relatively
many defect turbulences for the clarity of the analyses.) Figure 5(b) and (c) show the
results. We can see that according to the increase in the noise level, R1 (R0) starts
to increase (decrease). This was mainly driven by the increase in the state flips from
0 to 1 in the background cells. However, we can infer from the plots that, in each
case, even if the reference spatiotemporal dynamics is completely buried in the noise
(around SNR=0), it moderately keeps the foreground-background separations, since
if the separation vanished, R1 (R0) should show 0.5.
As a summary, we have demonstrated that the symbolic local transfer entropies

can characterize the specific spatiotemporal profile of the CML in each phase, and
especially found that the Brownian motion of defect and defect turbulence can be
clearly stressed out from the background. Furthermore, we have shown that the spa-
tiotemporal profiles revealed in these measures are qualitatively different from the
profiles revealed by the conventional sliding window method, and demonstrated that
these measures are robust against external noise.
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Fig. 5. (a) Typical example of spatiotemporal profiles with Gaussian noise. The figures on
the left, middle left, middle right, and right show the profiles of the reference spatiotemporal
dynamics ((a, c) = (1.89, 0.1)), the expression in binary states, the corresponding SLC pro-
files, and the expression in binary states, respectively. The first upper line shows the profiles
without the noise, and as the line goes lower, the strength of the noise increases (expressed in
SNR). The SLC is calculated with the same setting as in Fig. 3. For the profiles of the refer-
ence spatiotemporal dynamics and the corresponding SLC profiles, the darker the color, the
lower the value. For the binary expression, the white and black cells are 1 and 0, respectively.
See the text for details. (b) The plots show the averaged R1 over 10 trials of noise additions
regarding each noise level (SNR). Seven reference spatiotemporal dynamics are used for the
analysis. In the default setting without noise, R1 for trials 1–7 showed 0.12, 0.19, 0.15, 0.12,
0.10, 0.13, and 0.11, respectively. (c) The plots show the averaged R0 calculated in the same
experiment in (b). In the default setting without noise, R0 for trials 1–7 showed 0.88, 0.81,
0.85, 0.88, 0.90, 0.87, and 0.89, respectively.

4.2 Symbolic local information transfer in the BS-model

In this section, we investigate how symbolic local information transfer is related to
the dynamical features of the elements involved in a spatiotemporal dynamics. Here,
we focus on the BS-model of biological evolution [44,45] for its simplicity.
The original BS-model consists of N species arranged on a one-dimensional lat-

tice with the periodic boundary condition [44]. Each species i has its own barrier bi
representing its stability or fitness. bi is initially given as a random number uniformly
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Fig. 6. For each effective temperature T = 0.01, 0.05, 0.10, the spatiotemporal pattern of
the barrier dynamics ((a) ,(d), (g)), the symbolic local information transfer difference profile
((b), (e), (h)) and the spatiotemporal positions of the mutations ((c), (f), (i)) are shown.

distributed in the unit interval [0, 1]. At each timestep, the species i that has the
smallest bi is selected and its barrier is mutated by a new random number in [0, 1].
This can be regarded as either a mutation of the species or the substitution by a
new species. At the same time, the barriers of the nearest neighboring species are
also changed to new random numbers in [0, 1]. This latter step represents interaction
between the species. It is well known that the BS-model exhibits a self-organized
critical state in which all mutations occur below a critical value of bc ≈ 0.67 in the
limit N →∞. The distribution of the avalanche size, which is defined as the number
of consecutive mutations below the given threshold b < bc, in the critical state shows
a power law.
Here, we employ a different version of the BS-model with intrinsic noise [47] char-

acterized by an effective temperature T . The only point that differs from the original
model is that the selected species is not necessarily the one with the smallest barrier;
however, any species with the barrier bi can be selected with the probability propor-
tional to exp(−bi/T ). Thus, as T → 0 we recover the original BS-model. In Fig. 6(a),
(d) and (g), we show the spatiotemporal behavior of the BS-model with N = 100 and
effective temperatures T = 0.01, 0.05, 0.10, respectively. As references, the positions
of the mutations are also shown in Fig. 6(c), (f) and (i). Here, timesteps are sim-
ply measured by the number of mutations. For low T , mutations are consecutively
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clustered. However, the frequency of the unclustered mutations, namely, rather iso-
lated mutations, becomes high as T increases.
In the following, we apply the symbolic local apparent transfer entropy

(stea(i, j, t + 1), Eq. (20)) from species i − j to species i at timestep t by setting
the embedding vectors as (K,L) = (4, 4). However, we note that we obtained simi-
lar results for other values of (K,L) (data not shown). The conditional probabilities
are estimated from 10000 timesteps after the initial transient 1000 timesteps with
N = 100. An additional 1000 timesteps are used to study the relationship between
the symbolic local information transfer and the stability of species below.
We introduce the symbolic local transfer entropy difference on species i by

Δte = tein − teout, (31)

where

tein = stea(i, 1, t+ 1) + stea(i,−1, t+ 1) (32)

= stesa(i, t+ 1) (33)

and
teout = stea(i− 1,−1, t+ 1) + stea(i+ 1, 1, t+ 1). (34)

Namely, Δte on a species is the difference between the inflow and outflow of the sym-
bolic local information transfer from/to the nearest neighboring species. In Fig. 6(b),
(e) and (h), the value of Δte at each spatiotemporal position is shown for the spa-
tiotemporal dynamics in (a), (d) and (g), respectively. From the low temperature
case, we can see that Δte correctly filters out the mutation sites. If we observe the
high temperature case carefully, Δte values at unclustered mutations are rather sup-
pressed. Thus, it actually filters out the consecutively clustered mutations.
We plot the relationship between bi and Δte in Fig. 7(a), (d) and (g) for effective

temperatures T = 0.01, 0.05, 0.10, respectively. In any case, large positive Δte (in
short, Δte
 0) can occur only when bi takes a high value, and a large negative Δte
(in short, Δte � 0) is realized only if bi is small, although these tendencies become
obscure as T increases. In other words, a large positive symbolic local information
transfer difference on a species implies that the species is in a rather stable state. On
the other hand, a large negative Δte implies the species is in a rather unstable state.
In the second and third columns of Fig. 7, we also show the relationship between bi
and tein, and between bi and teout, respectively. Although stea(i, j, t + 1) can take
a negative value a priori, these figures indicate that this does not contribute signifi-
cantly to large |Δte| values. Namely, Δte
 0 results because of a large inflow of tein
to the species, and Δte� 0 because of a large outflow of teout from the species.
In Table 1, we show the average and the standard deviation of Δte over the

spatiotemporal positions with d = 0, 1, 2, where d is the spatial distance on the one-
dimensional array from the mutated species for T = 0.01, 0.05, 0.10. fd=1Δte>μ+σ, the
fraction of the spatiotemporal positions with d = 1 among those with Δte > μ+σ, and
fd=0Δte<μ−σ, the fraction of the spatiotemporal positions with d = 0 among those with
Δte < μ−σ, are also shown. If we interpret the condition Δte
 0 with Δte > μ+σ
and Δte� 0 with Δte < μ− σ, then we can say that in most cases Δte
 0 occurs
only when the species is involved with the mutation at one of its two neighboring
species, and in many cases Δte � 0 occurs only when the species itself is mutated.
A large positive symbolic local information transfer indicates the change in a stable
entity interacting with an unstable element.
The above observations can be roughly explained as follows: if the value of the

barrier is high for a species, then its change is an unexpected event that typically
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Fig. 7. The relationship between bi and Δte ((a), (d), (g)), that between bi and tein ((b),
(e), (h)) and that between bi and teout ((c), (f), (i)) are shown for each effective temperature
T = 0.01, 0.05, 0.10. The level of grey scale indicates the value of log10(1 + Fx,y), where
Fx,y is the frequency of the spatiotemporal positions located on the bi-Δte plane, such that
x ≤ bi < x+ 0.1 and y ≤ Δte < y + 1 (x = 0, 0.1, . . . , 0.9 and y = −15,−14, . . . , 14) for the
left-most figures. The grey scales for the other figures are defined similarly.

Table 1.

T μ σ fd=1Δte>μ+σ fd=0Δte<μ−σ
0.01 0.04 9.58 0.99 1.00
0.05 0.03 8.23 0.98 1.00
0.10 0.01 3.87 0.91 0.67

occurs due to interaction between the species. If the barrier value of the species

decreases, then the permutation b̂
(L+1)
i,n+1 involving the information on both the past

and future states of the species changes from rare to typical. Hence, with possibly
some subtle extra conditions, the information on the states of neighboring species is

expected to contribute to improving the prediction of b̂
(L+1)
i,n+1 , namely, tein will take

a large value. From the opposite standpoint, a species with a small barrier tends to
mutate easily, and if the interaction leads to the change in the permutation type of
the barrier sequence in one of the two neighboring species from typical to rare, then
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the information on the species will contribute to the prediction on the neighboring
species, which leads to a large teout value.

5 Conclusion and discussion

In this paper, we proposed measures, symbolic local transfer entropies, to reveal
the local profile existing in spatiotemporal dynamics. We then applied these mea-
sures to two test models, the CML system and BS-model, to show their relevance
to spatiotemporal systems that have continuous states. As a result, in the CML, we
demonstrated that these measures can be successfully used as a spatiotemporal filter
to stress a coherent structure buried in the system. In particular, we showed that
the approach can clearly stress out defect turbulences or Brownian motion of defects
from the background, which provides quantitative evidence that these moving pat-
terns are the information transfer substrate in the spatiotemporal system. We then
showed that these measures reveal qualitatively different properties than the conven-
tional approach using the sliding window method, and are also robust against external
noise. In the BS-model, we demonstrated that these measures can provide novel in-
sight to the model, explaining how symbolic local information transfer is related to
the dynamical properties of the elements involved in the spatiotemporal dynamics.
The methods we proposed in this paper can be extended in several ways. For

example, as explained in Sects. 2 and 3, although we focused on the special case
of TERV that has M = 1 for simplicity, it would be worth investigating how the
performance of the measures differs according to the selection of M . In addition, sev-
eral measures have recently been proposed that can capture directional and dynamic
information transfer in the realm of permutation partitioning, such as momentary
sorting information [33] or symbolic directed information [40]. Because of the speci-
ficity of each measure, we can expect variations in the performance when extended
for the local scale. Furthermore, as explained in Sect. 1, local information transfer is
one of the factors consisting the concept of information dynamics. The permutation-
information theoretic approach to local information storage and local information
modification can be explored in future work.
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