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ed-State Specific Heat of the Type-II Superconductor 
0.77Zr0.~3 Ma fie Fields up to Boz 
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In order to document the behavior of the mean-field mixed-state sp~ific heat of an isotropic, 
strongly type-II supe~onductor (i.e., ,Mth a large value of the Ginzburg parameter tc), and 
to provide a bas~ for comparison with hibh-temFerature superconductors, we measured the 
st~Nfic heat C of the alloy Nbo.77Zrom with Tc = 10.8 K, Bo2(O)- 7.9 T, in magnetic fielcLs B = 
0, 0.2, 1.0, 12, 2.0, Z4, 3.0, 3.3, 4.0, 4.4, 4.8, 5.2, 6.0, 6.6, 7.2 and t0 T. The values of the 
upper cTiticaA field Bo2(T), thermod:mamfic critical field Be(T), Ginzburg parameter K(T), rand 
cc, e ~ i ~ t  7(B)= limr_.o(C(K B)/T) are d~ved from the sp~ific heat data and found to be 
in ~eement  with the GLAG theo~r in the dirty lkmit. The behavior of the mixed-state s~cific 
h~ t  is analyzed in of C~t/T, 8(C,,t/r)/c?B, and g(C~t/T)/ST vs. T curv~, where C~t is 
the electronic contribution to the specific heat. 

W O R D S :  T y ~ - I I  s-ape~onductivity; mixed state; specific heat; Nb~-xZrx.  

1. ODUCTION 

Specific heat is one of the few bulk t h e ~ o -  
d y n ~ c  probes of the rconducting state, and as 
such was studied exten~vely in both classic and high- 
t ture superconductors. In classic suwrconduc- 
tors, i.e, those studied re 1986, with criticaJ tem- 
peraPares T~ not ex g ~ ~ h ~ t  city 
m~asuremenU es tab~hed the e~stence of a in 
the electronic density of states (DOS) at fine F e ~ i  
level, of the order of A(0)~3.5keT~, showed an 
a ~ o s t  ideal example of a mean-field, second-order 
t r ~ i f i o n  o g at To, with a specific heat jmrnp 
on the order of AC(T~)~l.47Tc, and generally 
allowed one to correlate qualitatively the electron and 
phonon density of states and the cr i t i~l  temperature 
as predicted by the BCS theory [1], t ~ n g  into 
account suitable corrections fi?r retardation effects 
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[2,3]. ~ e  reqlAred fianctionals of the electron and 
phonon DOS, i.e., the Sommerfeld constant 7, the 
Debye tempe e |  and various moments 
(co n> of the phonon DOS F(co), could be extracted 
from the specific heat cmwes in the normal state (see, 
e.g., [4]). M a ~ e t i c  fields were mostly applied for this 
pin-pose, to extend the normM-state data below Tc 
when s ~ p l e  extrapolations were unreliable. Although 
this method is usefial for type-I superconductors, the 

suppression does not exceed 0.38 K per Tesla for 
pa ramagne t i~ ly  ~_i ted t?~e-II superconductors. 
Most measurements were performed below 8 T in rea- 
sonably priced Nb-Ti  m a ~ e t s ;  rare early measure- 
ments were accomplished in fields as high as ~ 20 T 
[5,6]. As a result, the m~ed  state ~ecific heat of 
extreme tFpe-II superconductors cannot be consid- 
ered as well documented experimentally, even in the 
classic case. On the theoretical side, expressions for 
the m~xed-state specific heat were obtained only in the 
temperature limit T<< Tc, reflecting a superconducting 
DOS l o c a t e d  in the vortex cores and growing lin- 
early with the magnetic field B [7,8]. 

The discovery of high-temperature supercon- 
ductors has led to a dramatic renewal of interest in 
type-II superconductivity, in particular the behavior 
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of thermodynamic quantities such as the magnetiza- 
tion and the specific heat. Considerable differences 
with respect to classic superconductors arise from the 
fact that the coherence length { is extremely small, 
approaching atomic dimensions, and anisotropic. 
Critical fields are now on the order of 102 to 103 T, 
and anisotropies are so large that some properties 
can be considered as two-dimensional; the coherence 
volume is so small that the mean-field behavior is lost, 
while critical fluctuations play an important role near 
the transition [9]. The origin of pairing is an unsettled 
question, and indirect ingormation on its mechanism, 
such as the symmetw of the order parameter, have 
been vividly debated [10-13]. Although the shift of 
Tc caused by available fields is modest, it is found that 
the field nevertheless has a dramatic effect on the 
specific heat anomaly at T~ and on the low-temperature 
specific heat. These effects are believed to convey fun- 
damental information on the phenornenology of high- 
Tc superconductors, and detailed knowledge of the 
behavior of the mean-field component of the specific 
heat in the mixed state in the whole range of both tem- 
perature (0 < T_< T~) and field (0 < B <_ Bc2) is often 
required for the analysis of the experimental data. 

Recently the specific heat of two classic type-II 
superconductors, PbMo6Ss and NbSe2, was studied 
in magnetic fields up to 14 T [14-16]. PbMo6Ss is a 
Chevrel-phase, strongly coupled superconductor that 
approaches some microscopic parameters of high-To 
superconductors, such as the Fermi energy and the 
coherence length, but contrasts with its low aniso- 
tropy. Due to the very high value of the upper critical 
field Be2(0) = 52 T [ 14,16] the normal-state specific 
heat cannot be measured directly. A conspicuous 
difference with the theoretical prediction [7,8] is the 
considerable reduction of the mixed-state "linear" 
term at low temperature: only half of the mean-field 
contribution ~/TB/Bc2 is found at To/10. 2H-NbSe2 
is a layered compound that shows the effect of aniso- 
tropy on a type-II, strongly coupled superconductor. 
Due to the large coherence volume, superconducting 
fluctuations are not observable in zero field. The new 
feature found for this superconductor is the nonlinear 
growth of the mixed-state linear term with the field 
for B>Bel [15,16]. 

The aim of the present study is to document the 
behavior of the mean-field mixed-state specific heat 
of a strongly type-II (i.e., with a large value of the 
Ginzburg parameter tc), isotropic superconductor 
across the whole range of temperatures 0 < T_< Tc and 
fields 0 < B_< Bc2. The bcc substitutional alloy system 
Nb~-xZrx has a maximum T c of 10.8 K near x=0.25 

[17]. Nb0.75Zr0.25 is a strong coupling superconductor 
with (dBc2/dT)r,~: - 1 T / K  [ 18], gap ratio 
2A(O)/k,~Tc=4.2, thermodynamic critical field 
&(0) = 0.25 T, ~ ~ 20, coherence length ~(0) = 64 A, 
Sommerfeld constant ?/~:9 mJ / (K  2 g-at.), and atornic 
volume V= 11.7 cm2/g-at. [4]. The coherence volume 
contains more than 10 4 atoms, and theret:ore super- 
conducting fluctuations are not observable in zero 
field. Thus, it is a good candidate for our purpose. In 
this paper, we present specific heat measurements for 
a Nbo.TvZr0.23 sample with a very narrow zero-field 
superconducting transition in magnetic fields up to 
B> Be2. The values of the upper critical field &2(T), 
thermodynamic critical field Be(T), Ginzburg param- 
eter v(T),  and linear term coefficient )/(B) are derived 
from the specific heat data and found to be in agree- 
ment with GLAG theory in the dirty limit. The 
behavior of the mixed-state specific heat is docu- 
mented in terms of C~JT, O(C~,/T)/OB, and O(C~I/ 
T)/OT vs. T curves, where C~, is the electronic contri- 
bution to the specific heat. 

2. EXPERIMENTAL 

The sample suitable for the purpose of the 
present study should have Tc near the maximum of the 
Nbl-xZrx system, and as narrow a superconducting 
transition as possible. This is not a trivial task due to 
peculiarities of the phase diagram [19]. The sample 
was selected from a series of specimens, including 
single crystals and ingots with various heat treat- 
ments. The chosen ingot with cornposition Nb0.77Zr0.23 

was produced by electron bombardment zone melting 
in vacuum. The cooling was rapid enough to prevent 
the precipitation of the a-phase, which is a sluggish 
process. A small piece of the ingot was cut and probed 
by ac susceptibility measurements in 0 .10e  rms. The 
fi.dl width of the superconducting transition between 
the 10 to 90% levels did not exceed 60 mK (Fig. 1). 
A sample of 24.8 mg in mass was cut from the same 
ingot for heat capacity measurements. 

The total specific heat C was measured between 
1.3 and 20 K in magnetic fields of 0, 0.2, 1.0, 1.2, 2.0, 
2.4, 3.0, 3.3, 4.0, 4.4, 4.8, 5.2, 6.6, 7.2, and 10 T by a 
relaxation technique. Details are given in [16]. The 
accuracy, controlled using different masses of Ag and 
Cu, is • to • including all fields; the relative 
accuracy vs. field changes is better. Note that the field 
was applied or changed above Tc in order to ensure 
equilibrium conditions in the thermodynamic sense. 
Because the mixed-state magnetization is small, we do 
not make a distinction between B and ~toH. 
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Fig. 1. AC susceptibility of the Nbo.77Zro.23 sample measured in a 
field of 10 ~T rms, 80 Hz. 

3. PA~SULTS AND DISCUSSION 

3.1. Mixed-State Specific Heat 

Figure 2 shows the specific heat curves C/T vs. 
temperature squared for the Nb0.vvZr0.23 sample 
measured in different fields. In agreement with ac sus- 
ceptibility measurements, the zero-field specific heat 
anomaly is ~60 mK wide. Since the zero-field data 
obtained in the present study are in good agreement 
with previous specific heat measurements for a 
Nbo.75Zro.25 polycrystal published in [4], where a full 
Eliashberg analysis of the zero-field specific heat was 
carried out, we shall concentrate here on the effect 
of the magnetic field. Basically, the field shifts the 
temperature of the specific heat step, reduces its 
amplitude, broadens the jump, and increases the 
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7 2 Fig. 2. Total specific heat C/T vs. up to 20 K for Nbo.77Zro.23 
in various fields B = 0  (full squares), 0.2, 1.0, 1.2, 2.0, 2.4, 3.0, 3.3, 
4.0, 4.4, 4.8, 5.2, 6.0, and 7+2 T (lines), and 10.0 T (open circles). 

specific heat in the limit of low temperatures. For B = 
7.2 T, only traces of a superconducting transition are 
seen (Fig. 2), and at B= 10 T the superconducting 
anomaly has completely disappeared. Above To(B), 
the curves C~ T vs. T 2 (or vs. T) for all fields coincide 
within experimental accuracy. Therefore, the specific 
heat measured at 10 T can be taken as the n o d a l -  
state specific heat (7,,(T), thus giving the Sommerfeld 
constant 7 = 9 . 1 5 •  2 g-at.). It should be 
emphasized that downward integration of 
A C / T -  (C,( T, B) - C,(T)) / T vs. T, where C,. is the 
specific heat in the superconducting state, results in 
AS-= S,(T, B) - &(T)--+0 at T-+0 within experi- 
mental uncertainty for all fields including B = 0 (Table 
I, last two columns). This proves that the procedure 
that consists in applying or changing the field above 
Tc, in the normal state, ensures equilibrium condi- 
tions in the thermodynamic sense. 

Figure 3 shows the electronic specific heat for the 
sample under study in the f o ~  (C,.(T, B ) -  C , (T) ) /T  
vs. 7'. Note that this is a straightforward difi2erence 
between raw experimental points; the complication of 
phonon background subtraction is avoided. From the 
data of Fig. 3, we can immediately determine the 
behavior of the mixed-state specific heat in the low- 
temperature limit for all fields. At T~ To~ 1 O, the only 
observable contribution is a mean-field, mixed-state 
linear term that grows almost proportionally to 
B/Be2(O), in agreement with theoretical predictions 
[7,8] (Fig. 4). At higher temperatures, the exponential 
rise of C~(T) is due to excitations across the tempera- 
ture-dependent gap A(T). 

Another characterization of the mixed-state 
specific heat that is directly measurable in a wide tem- 
perature range is given by the derivative of the specific 
heat with respect to magnetic field O(C/T)/OB, 
obtained by finite differences from consecutive fields 
(Fig. 5). Note again that no background subtraction 
is required to calculate this quantity because the lat- 
tice specific heat does not depend on B. For a classic 
type-II superconductor in the absence of thermal 
fluctuations, the field derivative of C/T is described 
phenomenologically by [ 16] 

0(C/T)__~ r o ( r -  To(B)) 
8 B  Be2(0) 

+ ?'J(B) cS(T- To(B)) (1) 

where O(x)=_l-j+~.a(x')dx ' is the step function, 
and J(B)=(AC//TT)r,{m is the dimensionless specific 
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Table I. Superconducting Transition Temperature T,., Specific Heat Jump (AC/T)r~r (Idealized Value as Described 
in the Text), and Entropy of the Superconducting State S,. and Normal State & at a Temperature ~,, SIi~tly Above 

T,(B) for Nb077Zr,~.~ for Different Ma~et ic  Fields" 

r,.~ r,:, \C T, ~B} T,,, S, (T,~,) &,(T,,,) 
[T] [K] [K] [mJ/K-" g-at.] [K] [mJ/K g-at.] [mJ/K g-at.] 

0 10.79 21.0 11.010 173.80 173.59 
0.1 10.68 
02  10.58 18.5 
1.0 9.86 15~5 I 0.250 15Z49 152.7 I 
1.1 9.75 
1.2 9 .64  15.3 

2.0 8.85 13~5 9.35I 130.66 130.52 
2.2 8.66 
2.4 8 . ~  12.5 
3.0 7.84 1 I. 1 8263 106.81 106.9 I 
3.15 7.65 
3.3 7.50 10.0 
4.0 6.71 8.7 7.508 93.24 92.48 
4.2 6.49 
4.4 6.26 7.9 6.987 83.39 83.35 
4.6 6.00 
4.8 5.77 6.4 7.102 85.65 85.76 
5.0 5.51 
5.2 5.25 5.75 6507 72.33 72.57 
5.6 4.82 
6.0 4.20 4.2 5.827 65.18 65.28 
6.3 3.78 
6.6 3.40 2.4 4.780 51.05 50.9I 
6.9 2.85 
7.2 2.5 

ate .  T and T,.,,~ are determined by the position of the peaks in ~?(C..,,, TJ,~?T and ?.(C T)/(PB. respectively. 
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Fig. 3. l~fference between the spedfic heat of Nbo.77 in the 
superconducting state and in the normal state measu~d in B=  
10 T vs. Lernperature T. Tlne fields are B = 0  (full squares), 0.2, 1.0, 
1.2, 2.0, 2.4, 3.0, 3.3, 4.0, 4.4, 4.8, 5.2, 6.0 T (lines), and 7.2 T (open 
squares). 
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Fig. 4. Coefficient of the linear term of the spec~c heat in the 
mixed state in the I o w - t e m ~ t m r e  limit vs. m a s t i c  field for 
Nbo.,v~a.23. The fialI Iine ~ t  7g/Bca- 

heat jump, e.g., J ( 0 ) = 2  in the two-fluid model. The 
first  term represents the n~lixed-state contribution 
below To(B) in the Makh-de Gennes approximation 
[7,8], and the second one accounts for the suppression 

of the jump (A C//T) ~ over a~ infimitesimai tempera- 
ture interval AT=AB/(dB~/dT). The enn-opy 
increase from T = 0  to T >  7"._.(0) is left unchanged by 
the magnetic field. This constraint gives a relation 
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Fig. 5. Derivative of the specific heat C~ T with respect to the mag- 
netic field vs. temperature for Nbo.77Zro.23. The derivative is 
obtained by finite differences from consecutive fields listed in the 

legend. 

between the dimensionless jump J(B) and the slope 
of the upper critical field" 

Tc(B) dBc2 
J(B) = (2) 

Bc2(0) dT 

Therefore" 

a ( C / T )  ~-_ ........... 7 ....... [O ( T -  Tc(B)) 
c~B Bc2(0) 

- r c ( B ) 6 ( r -  To(B))] (3) 

This formula allows one to reconstruct the specific 
heat anomaly in zero field starting from the normal 
state at B>B~2(0), and summing up elementary 
contributions at lower fields" 

C~, (T, B=0)  t ~~ c?(C/T) 
T = / + J8 dB (4) 

Assuming, t-or example, a parabolic approximation 
for the temperature dependence of the upper critical 
field, Bcz(T) = Bc2(0)(1 - t2), one obtains C(T, B= 
O)/T = 3yt 2, t =_ T/'~: < 1, which is the two-fluid model 
obeyed by many medium to strong coupling super- 
conductors at not too low temperatures. 

From Fig. 5, the field derivative of the specific 
heat in the mixed state c?( C/' T) / cPB is approxinaately 
equal to 1.5 mJ/(T K 2 g-at.) below the superconduct- 
ing transition, and stays almost temperature and field 
independent, in conformity with Eq. (3). Thus, the 
mixed-state specific heat G( T, B) - C=( T, O) / r is pro- 
portional to the magnetic field not only in the limit 
of low temperatures (Fig. 4), but also almost up to 
To(B). Note that the dip of 0(C,,./T)/c3B varies strongly 
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with Tc(B). Its amplitude (in units of m J / ( T K  2 
g-at.)) can be approxLmated by 0 . 1 ~ ( B )  2"65. Accord- 
ing to Eqs. (1)-(3), the area under the dip should be 
proportional to T~(B) to preserve the conservation of 
entropy; consequently its width should vary as 
Tc(B) -~'65. This agrees qualitatively with the observed 
broadening, the origin of which will be discussed later. 

3.2. Determination of ~=(B), Bc2 (T), and Be(T) 

In order to proceed further, we first determine 
the values of To(B). The practical definition is not 
unique. The inflection point of the electronic specific 
heat, i.e., the temperature at which 0(Cei/T)/c3 T has 
its maximum negative value in the specific heat jump, 
defines Tc.r(B) (Table I, first column). The position 
of the maximum negative value of O(C/T)/OB 
(Fig. 5) gives another bulk determination Tc, B(B) 
(Table I, second column). For the latter, it is not 
necessary to remove the lattice contribution. Both 
definitions of course coincide in the case of an ideally 
sharp second-order transition. As shown in Fig. 6, 
they do in practice within error limits, and allow a 
precise determination of the phase boundary in the 
(B, T) plane. The Bc2(T) curve follows the theoretical 
WHH function in the dirty limit [20], thus confirming 
earlier findings [18]. The implicit WHH ftmction in 
the case a = X=0 is conveniently approximated by 
Bc2(T)/Bc2(O) ~ (l-t2)(1 - 1.181t2+l.614t3-O.712t4), 
t = T/T,. ; in particular, Bc2(0) = -0.693Tc(dBc2/ 
dT)tr, .  A fit to the experimental points yields the 
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Fig. 6. Upper critical field as a function of temperature for 
Nbo.77Zr0.23 determined by the position of the peak of (?(C//T)/0B 
or O(C,4/T)/cPT (closed circles). The full line is a fit of the WHH 
function in the dirty limit, with 7",.= 10.79 K and B,.2(0)=7.9 T. 
The broken line represents B,.2(T) in the BCS limit. Inset: deviation 
function of the thermodynamic critical field. 



e Tc = I0.79 K and B~z(0)=7.9 T ( ~  
kn Fi~  6). Note ~ a t  the 

the BCS in fion t o ~  Bd~ T) ~ ~'-Bc(0) 
( I -- ~)( 1.77-- 0.43t 2 + 0.07?) [21 ] ( d o ~  
Fig 6). 

We can now ~ the st_ate 
h ~ t  in m o ~  de . P,~ ted out m on 3.1, 

th~ low- limit ~(C/T)/~B~7/Bc,_(O), 
~ a t  (C~(T.B)-C,(T, O))/TT~B/B~2(O), 

B <  0), in c lo~  t ~- [7,8]. 
conWibufion ~ ,an toc~ as c h ~ t  of  t~e 
n ing m ~ v o n ~  ~ r ~ .  At 
so t hi t m ~ can be from 
~ 5, c3(C/T)/~?B is about 1.5 m J / ( T  K ~ g-aL) 
1.3?/B~(0), ~ C,(T. B) -  C,(T, O)/TT~ 
13B//B~2(O). ~ o e r  w o r ~  d-state 
heat ~ alw p r o ~ ~ o n a A  to B/B~(O), the 
p tor ~ ~ t m dent m the 

w h e ~  ta 

tiM. We ~na~ to ~ m t  m n 3.3. 
~ e  of  fine tic h (AC/T)  ~m 

at t f i e t~  w ~  ob by fions of  
C/T from above and from ~ l o w  T~.~B), and by 
roq g ~ a t  ~ e  enh"opy ad j ~ t  below Tc.r(B) 

equal to the entropy removed j ~ t  above T~r(B) 
(TaNe L co ). 

H g o b ~ n e d  To, the j ~ p  m zero fiel& ~ d  
the normS-state  cific heat, we o~n cal te the 
thermodynamic critical field B~(~"  

~ ( r )  jr162 J~~'- T") dT' dT" C~( -- C.( T") 
T" 

(5) 

where V= 11.7 can3/g-at. N the atomic v o l - ~ e  for 
N~o.yvZo.z3. The value of B~ at T = 0  is 0.256 T. Its 
temperature dependence follows very clo~ly the two- 
fluid parabolic law, with a m um derivation 
D(t)=Bc(T)/Bc(O)-(1-tz) ~- +0.005 at t2= 0.2 (Fig. 
6, inset), in qualitative agreement -Mth pre,Aous 
results [4]. In the weak-coupling, BCS case, the maxi- 
mum deviation would b e - 0 . 0 3 7  at t 2 =0.49. 

3.3. SpecLfic Heat  J ~ p  at T~(B) and GLazburg 
Parameter ~(T)  

We can now calculate the values of the Ginz- 
burg parameters S:l(T) and ~:2(T) in the notation of 
Eilenberger [22]: 

Bc2(T)=,//2u:~Bc(T) (6) 
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0 ...... ~ " ~ L _t * ~ I . . . .  1 . . . .  t , . . . . . . . . . .  ! . . . . . . . . . . .  , . . . . . . . . . . . . . . .  

0 2 4 6 8, 10 "12 

Tt~ 
F ~  7. T ~  dep o f  tl'~ G m g~ 
( sq ) ~ ~-z (~_,lt ) for  Nbo .~Zrr  

(6) a~d (7). 

V 

I. 16Uo(2tc~-- l) 
(7) 

rare d of ~-1(T) m'~d 
~cz(~ ~ ~ o ~  m 7. ~ [~ ] ,  ~ , (T)  
~ d  gz(T) m the value at T--* T~ the 
el of fine g st, ate 

. .A~ a t i~  p 
at ~ e  tion from tlhe no s m ~  to the ~ e d  

r e d u ~  in amp ~i th  to the jump 
at the tion from the no state to the 
~ n d  s tn~  m B=O, w ~ h  is ~..~en by R s 
equation: 

( if v = - -  (8) 
TA o ) fl  o ~(o) 

~ e  value of the c h ~ t  jump at the 
transition from the normal state to the ~ e d  stare 
fiound to be p ~ionaI to 1-B/B~z(O) for 
0.2 T < B__<_ B~2(0) (Fig. 8). The quantity 1 - B/Bc2(0) 
can be visua a s  the volume fraction of the sample 
that is locally smperconductmg, i.e., outside of the 
vortex cores counmd with an effective area 2Jv~ z. The 
difference between the zero-field and the in-field tran- 
sitions shows up as an upturn at B-+0 on the fight of 
Fig. 8. This difference is also directly apparent in Fig. 
3. The ratio between the zero-field jump and the in- 
field jump extrapolated to B = 0  (lull line in Fig. 8) is 
1.16, in agreement with Eqs. (6)-(8). Note that the 
coefficient 1.16 arises for a triangular vortex lattice, 
i.e., when interactions between vo~ices are taken into 
account. The curve for the lowest nonzero field in 
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Fig. 8. Specific heat jump (AC/T)r,{8) vs. 1-B/&2(O) (full 
squares) for ~*rb0.77Zr0.23 , all fields included. The open circle shows 
the value of the specific heat jump in B-0 divided by a factor 1.16. 
The line through the full symbols represents the dependence 
(AC/'T)~(m= [(AC/T)F,(B=o)/1.16][ I - B/Bc2(O')]. 

these experiments (B=0 .2  T) has an intermediate 
behavior. A similar dependence of the specific heat 
jump on the m a ~ e t i c  field was reported in [6] for 
Nb3Sn. 

As a matter of fact, the proportionality between 
the mixed-state specific heat and 1-B/Bc2(O) is not 
limited to the jump at Tc(B). As shown in Fig. 9, the 
AC (T, B ) / T  vs. T curves for B > 0.2 T can be col- 
lapsed over most of the intermediate temperature 
range by plotting ( (C , -C, , ) /T) / (1 -B/Bc2(O))  vs. 
T/T~ (B). In the low-temperature limit, this is a direct 
consequence of the Maki-de  Gennes contribution 

20 
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- - , a  

c D  

m 5 
J 

o, 

-10 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 

T,'Tc(B ) 

Fig. 9. Zero-field (open squares) and mixed-state (lines) electronic 
specific heat difference ( C , . ( K B ) - C , ( T ) ) / T - A C ( T , B ) / T  in 
various magnetic fields for Nbo.77Zr0.23, normalized by the "effec- 
tive superconducting fraction" 1-B/Bc2(O), vs. reduced tempera- 
ture T/Tc (B). The fields are B = 1.0, 1.2, 2.0, 2.4, 3.0, 3.3, 4.0, 4.4, 
4.8, 5.2, and 6 T. 

with C / T  proportional to B/Bc2(O). Near To, the 
symmetry of the vortex lattice plays a role, as shown 
by the factor 1.16 that arises there. One sees that 
the magnetic field excludes some entropy from the 
transition region, which must be redistributed at lower 
temperature to obey the third law of thermodynamics. 
This causes a subtle change of the shape of the mixed- 
state specific heat. Even if the curves for B >  0.2 T 
were rescaled by a factor 1.16, their normalized shape 
would differ from that of the B = 0  curve. F o c a l l y ,  the 
collapse of the curves for B > 0.2 T in Fig. 9 means that 
we can define a dimensionless scaling function f b y  

y T  - Be2(0) f ( t s ) ,  t s=Tc(B ) 

which implies the following relation for the field 
derivative" 

#B 
) 

1 I Be2(0) - f ( t , )  + 
d in Tc (B) 

d In (Bc:(0) - B) 
tB ]( ~0) 

The fianctionfmust have the property f ( 0 ) = - 1 ,  
and consequently relation (10) includes the particular 
case O(C/T)/c~B= ?'~Be2 at T~0 .  With some rather 
strong assumptions, e.g., the power laws 
f ( t s )  = 3t 2 -  1 and Bc2(T) = Bc2(0)(1 - t2), this propri- 
ety would hold exactly up to Tc. If BCS functions 
were used both f o r f  and Bc2(T), cI(C/T)/aB would 
tend to zero at T,:, at variance with experiment. The 
experimental f i n  the present case is close to the aver- 
age between the BCS and 3t 2 -  1 functions, and 
Bcz(T) follows the W H H  dependence. In these condi- 
tions, Eq. (10), based on the observed scaling prop- 
erty, reproduces the smooth increase of O(C,/T)/OB 
from 7/Bc2 at r<< Tc to ~ 1.3 (y/Be2) in the mid-T~ 
range. 

3.4. Broadening of the Superconducting Transition in 
a Magnetic Field 

The broadening of the superconducting transi- 
tion that results fl~om the application of a magnetic 
field can be described by generalizing Eq. (3). The 5- 
~anction is replaced by its broadened counterpart:  

5(T-T~(B) )  

x - A  
T -  ~c(B) 

17 

A 1 
~B" 1 + x 2 

(11) 
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The field dependence of the dip width in O(C/T)/(?B 
(Fig. 5) is described by an exponent n near 1.5 for 
Nb0.77Zr0.23. This leads us to conclude that the sys- 
tematic broadening of the initially sharp transition, 
which simulates the effect of the fluctuations, results 
fi~om local variations of the mean free path in the dirty 
limit. If broadening was due to thermal fluctuations of 
the order parameter, the typical transition width in a 
magnetic field of 4 T would be on the order of 60 mK, 
whereas the observed transition width is larger by an 
order of magnitude. Besides, fluctuation effects lead 
to exponents n < 1 [16]. Alternatively, local variations 
of the mean free path lead to a co~esponding distribu- 
tion of the upper critical field ABc2 via a distribution 
of the Ginzburg parameter ~c, while the thermo- 
dynamic critical field, i.e., the condensation energy, 
remains uniform throughout the sample. Such a 
broadening results in a field-dependent transition 
width AT,:(B) varying as 

i ] I)-1 A Tc (B) _ ABe2 d In b 

To(0) B~2(0) dt 

b(t)~ 
Bc2(t) 
a~(0) 

(12) 

The curves c~(C/T)/c?B vs. T (Fig. 5) measured in 
various fields B>  2.4 T collapse onto a single curve 
(Fig. 10) when they are normalized to their peak value 
and plotted as a function of T-Tc(B)/ATc(B). The 
fact that they do does not depend on the value of 
ABe2. The latter parameter is determined by the width 
of the common curve, with the result ABc2 ~ 1 T. At 
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Fig. 10. Derivative of the total specific heat C/'T with respect to 
the magnetic field near To(B), normalized to -1  at the minimum, 
vs. reduced temperature (T-T,.(B))/A~(B), where AT..(B) is 
given by Eq. (12). 

0.5 

~ '  0 
I/1 

O 

-0.5 

o 
A 4 . 0 T  

A 4 . 4 T  

o 4 . 8 T  

o 5 . 2 T  

a 6 . 0 T  
a 6 . 6 T  

-1.5 ....................................................................................................... 
-1 o 1 2 

[T-TJB)]/ATc(B) 

Fig. 11. Derivative of the electronic specific heat C~t / T with respect 
to temperature near T~(B), normalized to -1  at the minimum, vs. 
reduced temperature ( r -  Tc (B))/AT.~. (B). 

lower fields, the experimental field mesh is too crude 
to allow a precise determination of O(C/T)/OB; but 
the same scaling holds at all fields _> 1 T for the 
equivalent plot of 0(Cet/T)/c~T, which may be calcula- 
ted with a better resolution, but requires fi~st the sub- 
traction of the lattice contribution (Fig. 11). 

4. CONCLUSION 

The behavior of the mixed-state specific heat of 
Nb0.77Zr0.23, which can be considered as a reference 
type-II classic superconductor (Table II), is docu- 
mented in t e ~ s  of AC/T vs. T and O(C/T)/c~B vs. 
T curves. The field causes a shift of the transition 
toward lower temperatures, and an increase of the 
electronic specific heat in the superconducting state. 
The bulk measurements of To(B) by closely spaced 
specific heat experknaents from 0 to Bc2(0)=7.9 T 
shows an almost perfect WHH [20] dependence. The 
difference between the transitions to the Meissner 

Table II. Parameters Characterizing Nb77Zr23 a 

Nb75Zr25 NbvvZrz3 
[4] (this work) 

Tc (K) 10.78 10.79 
V (cm3/g-at.) 11.67 11.67 
Bc (T) 0.249 0.256 
Bc2 (T) 7.9 
~c(0) 21.8 
~:( Tc) 15.9 
7 (mJ/K2 g-at.) 8.96 9.15 
AC/TTc 2.23 2.30 

"See text for definitions. Estimated accuracy is :t: 1%. 
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state and to the Shubnikov state is observed. The 
systematic broadening of the initially sharp transition, 
which simulates the effect of fluctuations, results from. 
local variation of the mean free path in the dirty limit. 
The mixed-state specific heat (Cs(K B) - C,(T, 0)) / 
?'T is proportional to B/B~2(O), in close agreement 
with theory [7,8], almost up to Z=.(B). This contribu- 
tion at low temperature is understood as the specific 
heat of nonsuperconducting electrons in the vortex 
cores. Its extended validity almost up to T~ appears 
to be a particular property of moderately strong cou- 
pling superconductors. 
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