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Abstract We consider the problem of optimizing a novel acoustic leakage detection
system for urban water distribution networks. The system is composed of a number
of detectors and transponders to be placed in a choice of hydrants such as to pro-
vide a desired coverage under given budget restrictions. The problem is modeled as
a particular Prize-Collecting Steiner Arborescence Problem. We present a branch-
and-cut-and-bound approach taking advantage of the special structure at hand which
performs well when compared to other approaches. Furthermore, using a suitable stop-
ping criterion, we obtain approximations of provably excellent quality (in most cases
actually optimal solutions). The test bed includes the real water distribution network
from the Lausanne region, as well as carefully randomly generated realistic instances.

Keywords Prize-collecting Steiner problem · Branch and cut ·
Network leakage detection
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1 Introduction

Leakages are well-known to be a major issue in all urban water distribution networks.
At best, they will just cause sizeable water losses, while at worst, they can result
in serious damage to people and buildings in the neighborhood where they occur.
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Therefore, network managers are keen on having a reliable monitoring system for
early detection of water losses.

This paper considers the optimization of a network of acoustic water leakage sen-
sors and accompanying radio relays, being tested by the city of Lausanne. Various
such systems have been proposed in the past. The particular one underlying this paper
is called LORNO, and is made of acoustic sensors placed at various hydrants and tran-
sponders that store and transmit the monitored and received information from other
transponders to a central station. Each acoustic sensor hears problematic signals within
a neighborhood defined by its placement and dependent on local network topology
and geometry. Such a neighborhood must be estimated for each potential placement.
Where there is a sensor, there is a transponder, but supplementary transponders may
be needed to carry all information to the central station. For a given city, this gives
rise to a family of combinatorial optimization problems. One example is: Given the
set of hydrants and, for each of them, the neighborhood covered by a sensor placed
there, find a minimum cost placement of sensors covering the whole network as well
as of transponders enabling the corresponding information to be transmitted to the
central station. Another version is: For a given budget, find a maximum utility place-
ment of sensors and transponders, where utility is measured by the information that
is transmitted and that can depend on the place from where it is collected. Some opti-
mal placement problems in a water distribution network can simply be formulated as
integer programs [see 2]. However, the problems at hand contain a hard constraint,
as the transmission of the data to a central station requires that the solutions induce
a connected subgraph of a given network. These connectivity constraints lead us to
model the problems as variants of Steiner’s problem, resp. Prize-Collecting Steiner’s
Problem, and we don’t know any alternate way to model them directly in a Mixed Inte-
ger Program. These Steiner’s problems are NP-hard, except on special graphs [e.g.,
11], but polyhedral approaches like those described by [5–8] may help to find optimal
or good approximate solutions.

In this paper, we present a novel branch-and-bound-and-cut approach for solving
these problems and compare it with others from the literature [9]. We have tested
our approach on real data from Lausanne water supply network. Furthermore, in
order to provide better-founded empirical validation of our approach, we also tested
it on specially constructed water supply systems, tailored to be realistic. We find
that our approach is clearly competitive and, in many cases, the only one to solve
those problems. Moreover, it can be implemented to provide approximate solutions
with a guarantee on the optimality gap. The relevance of our study for decision mak-
ers is that it is possible to treat large size problems and obtain very good—and, in
many cases, optimal—solutions. In particular, it makes it possible to carry out sen-
sitivity analyses and variant studies that require repeated solutions of the underlying
problem.

The remainder of the paper is structured as follows. First, we give a description
of the LORNO system and mathematical formulations of the optimization problems.
We next describe our approach for solving the Prize-Collecting Steiner Arborescence
Problem. Finally, we present and discuss our computational results, both on real-world
and realistically simulated models.
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Locating leak detecting sensors in a water distribution network 121

2 LORNO system and modeling

2.1 The problem

In the Lausanne water distribution network, water losses of approximately 20% have
been reported. In other cities, this loss proportion can easily reach 50%.

Such losses may have many different causes, such as leaky or broken pipes or unreg-
istered utilization (theft or even exercises performed by local fire departments). In a
region where water supply is not a problem, these losses are not so important, with the
exception of broken pipes, which may cause serious damage and related costs (traffic
perturbation, floods, water distribution’s break-downs). In a distribution system, leaks
are often the best available sign that a pipe may break soon, making leak detection
crucial for the manager.

The LORNO system has been developed to detect leaks in a water distribution net-
work. It relies on recognizing the unusual noises that arise in the pipes due to the leaks.
It consists of units placed in the hydrants and a central server connected to the man-
ager’s office. Thus, its installation does not require any heavy civil engineering work.
Each unit consists of a listening device, integrated in the column inside a hydrant,
and a radio transponder placed on the hydrant at the surface. The auditory function
is realized by an acoustic sensor, which can hear the pipes around it up to a certain
topology-dependent distance, coupled with electronic chips which analyze the sound
signal, compare it with normal and historical curves, and send an alert or a periodic
report. There is also a component that measures the amount of water drawn from the
hydrant. These data are then transmitted through radio signals to the central server. In
order to limit electricity consumption (energy is provided by a battery which should
last for several years) low power transponders are used. These can only communicate
with their neighbors located up to a certain distance—200–500 m, depending on the
physical obstacles—and the signals are transmitted from hydrant to hydrant, through
what we call the communication network, until the server is reached.

The engineers’ thumb rule says that equipping half of the hydrants with full LORNO
units (listening device and radio transponder) is enough for covering the pipe network
for leak detection, and that one third of the hydrants equipped already provides a good
coverage. In order to get a connected communication network, it is also possible to
equip a hydrant with a radio transponder only. Thus, for each hydrant it should be
decided whether to equip it with a full LORNO unit, a radio transponder only, or not
to use it at all.

The following example (see Fig. 1) shows a middle size subnetwork of the
Lausanne water distribution network. It contains 173 hydrants represented by stars.
While edges in the first picture correspond to pipes, they indicate in the second picture
that two hydrants can communicate.

The optimization problem we want to solve is then the following: Choose a subset
of hydrants to equip with a full LORNO unit, and possibly a subset of hydrants to equip
with a radio transponder only, in order to get a connected communication network,
and maximize the expected benefit.

The cost of installing a LORNO system is composed of a fixed part for the cen-
tral server, its software, and the overhead, plus a part proportional to the number of

123



122 A. Prodon et al.

Fig. 1 Pipes and communication networks of Dailles

LORNO units that must be acquired. One could imagine that the cost of a full unit
may vary according to the position of the hydrant, while we assume that the cost of a
radio transponder is always the same. For our modeling purposes, we decompose the
cost of a full unit into the cost of the radio transponder plus the cost of the rest of the
installation.

The benefit of installing a LORNO unit at a particular site depends on the probabil-
ity of a pipe breaking there and the potential damage caused by such an event. These
quantities may vary depending on material and age of the pipes and, of course, on the
surrounding environment (presence of residences, industry, hospitals, electricity, or
telecom cables, and so on). In the real data we had from Lausanne, these factors had
not been evaluated, and we used only the natural assumption that the benefit of one
unit is proportional to the length of the pipes that is heard.

We also assume that the pipes are discretized into small enough pieces such that
each is “scanned” entirely or not at all from a given hydrant. Note that such a piece may
be heard by more than one hydrant, but the corresponding benefit should be counted
only once. Here, it is tacitly assumed that redundant detection is not necessary to
protect against equipment failure, since it tests itself continually by sending around
appropriate signals.

2.2 The model

We model the optimization problem as a rooted prize-collecting Steiner arborescence
problem in a directed graph G = (V, E). Recall that the prize-collecting Steiner arbo-
rescence problem consists in finding a minimum weight subarborescence in a directed
graph with non negative arc weights and non positive node weights. The graph G is
constructed as follows. Let H be the set of hydrants and R the set of pipe pieces.
For each hydrant hi ∈ H we introduce two nodes hi and hi and for each pipe piece
ri ∈ R, a node denoted also ri . Denote these node sets by H , H and R, respectively.
Then, V = {r0} ∪ H ∪ H ∪ R, where r0 is a special node, the root. It is easier to draw
these nodes at different levels: the root r0 at level 0, H at level 1, H at level 2 and R
at level 3. The arcs of graph G are decomposed into four types. There is an arc from
root r0 to every node in H . There is a pair of opposite arcs {(hi , h j ), (h j , hi )} for each
pair of hydrants which can communicate by radio station (that is, for each edge of the

123



Locating leak detecting sensors in a water distribution network 123

Fig. 2 A LORNO network

communication network), and an arc (hi , hi ) for each hydrant. Finally, there is an arc
(hi , r j ) for each region r j that can be heard by hydrant hi . Figure 2 shows an example
of such a network.

The elements of the network given by the graph and its weights have the following
interpretation. Node r0 represents the central station, which will actually be located
in the vicinity of some hydrant. The choice of this hydrant may be free or restricted.
This is modeled by an appropriate choice of arcs leaving r0. Level 1 represents the
communication network, and each node in H has the cost of a radio transponder.
Level 2 represents the listening devices of the LORNO system, and each node in H
has the cost of this installation (cost of the full LORNO unit minus cost of a radio
transponder). Note that the only way to reach a node hi from r0 is by using hi . Finally,
each node at level 3 has the benefit associated with this region. Note that this level
may be further simplified by aggregating all nodes with the same set of predecessors
in a single node with the sum of the benefits, so that the complexity does not depend
on the discretization used, but only on the network topology. Now, one can see that
each solution to the optimization problem corresponds to an arborescence in G, by
choosing some spanning tree in the subgraph of the connection network induced by
the nodes used and choosing arbitrarily which LORNO unit hears a region in case of
multiple possibilities. Conversely, each rooted arborescence in G having at most one
arc leaving r0 defines such a solution.

Thus the problem can be formulated as that of finding an optimal r0-rooted arbores-
cence with the property of having exactly one arc leaving r0—for simplicity we discard
the theoretically possible solution of installing nothing—and, as an arborescence has
exactly one arc entering each of its nodes, we report the cost of each node (positive
or negative) on each of its entering arcs, thereby getting a standard prize-collecting
Steiner arborescence problem.

3 Solving prize-collecting Steiner arborescence problems

3.1 Definitions and formulation

The prize-collecting Steiner problem has been originally defined on undirected graphs
with non-negative benefits associated to the nodes and non-negative costs to the edges
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as looking for an optimal connected subgraph. Under these conditions there is a tree
among the optimal solutions. The rooted version ensures a given node r0 will be part
of the solution. This definition extends straightforwardly to a rooted directed graph,
in which we are looking for an optimal Steiner arborescence, with the property that all
costs and benefits can then be transferred with appropriate signs on the corresponding
incoming arcs.

The most successful formulation for the prize-collecting Steiner arborescence
(PCSA) so far is the classical cut formulation defined next, using 0/1 variables xi j

associated with the arcs and yi associated with the nodes of the graph.

min
∑

(i, j)∈E

ci j xi j (1)

s.t.
∑

( j,i)∈E

x ji = yi , ∀i ∈ V − {r0} (2)

x
(
δ−(S)

) ≥ yk, ∀k ∈ S, ∀S ⊂ V − {r0} (3)
∑

(r0,i)∈E

xr0i = 1 (4)

xi j , yi ∈ {0, 1}, ∀i ∈ V − {r0}, ∀(i, j) ∈ E (5)

Here ci j is the cost of including edge (i, j) in the solution, δ−(S) = {(i, j) ∈ E |i ∈
S, j ∈ S} and x(A) = ∑ {xe, e ∈ A}.

Constraints (2) enforce that each node i in the solution must have exactly one incom-
ing arc, while constraint (4) implies that exactly one arc leaves r0. The constraints (3),
which we call connectivity constraints, ensure that, if the solution contains node k, it
should also contain a path from the root r0 to k and, thus, at least one arc in each cut
induced by a node set S containing k and not r0.

In a recent paper [9], this formulation is used as a starting point to solve PCSA
problems. This paper motivated us to try to solve problems of the size we are dealing
with here and we used their ideas extensively in our work. The difficulty inherent in
this formulation is managing the connectivity constraints (3). There are exponentially
many of these constraints, so only those truly necessary for a given instance should
be used.

Relaxing all but some connectivity constraints (3), that is selecting a subset, denoted
L, of valid pairs (S, k), yields the following formulation we call current program (CP):

min
∑

(i, j)∈E

ci j xi j (6)

s.t.
∑

( j,i)∈E

x ji = yi , ∀i ∈ V − {r0} (7)

∑

(r0,i)∈E

xr0i = 1 (8)

x
(
δ−(S)

) ≥ yk, ∀(S, k) ∈ L (9)
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∑

( j,i)∈E

x ji ≤
∑

(i, j)∈E

xi j , ∀i �∈ R ∪ {r0} (10)

yi ≤ 1 − xr0 j , ∀i < j, {i, j} ⊂ H (11)

xi j + x ji ≤ yi , (xi j ≤ yi ), ∀(i, j) ∈ E, i ∈ V − {r0} (12)

xi j , yi ∈ {0, 1}, ∀i ∈ V − {r0}, ∀(i, j) ∈ E (13)

Due to the symmetric structure of the communication network and to the symmetries
in the cost function, many equivalent solutions exist. To fight against this symmetry,
we have added some symmetry breaking constraints (11), which force a connection
between the root and the node of the communication network in the solution with
smallest index.

We have also added constraints (10) and (12) for strengthening the relaxed lin-
ear programming formulation. The constraints (10) make sure that there are at least
as many arcs leaving as there are arcs entering an internal node, which is valid for
any arborescence. We also tried both forms of constraints (12), the stronger form,
xi j + x ji ≤ yi avoiding cycles of length 2, and the weaker form xi j ≤ yi , forcing use
of both end nodes with each choice of edge.

The connectivity constraints , i.e., the pairs (S, k) in L, introduced at the root node
are obtained as follows:

1. For each node r ∈ R, we consider the set p(r) of its (direct) predecessors, (thus
p(r) ⊂ H ), form the set S1 = {r} ∪ p(r) and add the pair (S1, r) to L.

2. For each node r ∈ R, we consider the set p(p(r)) of predecessors of its prede-
cessors, (thus p(p(r)) ⊂ H ), form the set S2 = {r} ∪ p(r)∪ p(p(r)) and add the
pair (S2, r) to L.

3. If the connection network is not connected, then for each connected component
C , we form the set S3 = {

h|h ∈ C ∩ H
}

of nodes in that component and add a
pair (S3, k) to L for each k ∈ S3.

For example, in figure (2), one would have for r = 15, S1 = {15, 7, 8} for type 1
and S2 = {15, 7, 8, 1, 2} for type 2. We would also have S3 = {1, 2, 3, 4} for type
3. The motivation for this choice is that these are constraints whose associated dual
variables may have a positive value.

3.2 Branch-and-bound algorithm

The approach used in [9] in order to solve PCSA is to solve the linear relaxation of
the current program, find violated connectivity constraints, introduce them in the cur-
rent program, and iterate until all connectivity constraints are satisfied by the current
solution. Finally, branch and bound is used if the optimal solution found so far is not
integer. Finding the most violated connectivity constraint for a given terminal node
ri can be done efficiently by solving a max flow problem. If the maximum r0 − ri

flow value is less than yi , the corresponding minimum cut produces such a violated
constraint.

The difficulties we encountered with this approach come from two special proper-
ties of our instances. First, the number of terminal nodes is very large, about one half
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of the nodes in the network. This means we find a lot of violated constraints, usually
with the same amount of violation, and have no good criteria to select some among
them, while introducing all of them in the current problem quickly brings the system
out of memory. Secondly, the convergence of the approach is very poor due to the fact
that all arcs in the communication network have the same cost.

In order to overcome these difficulties we used an approach based on finding inte-
ger solutions to the current program, using standard branch-and-bound methods. If the
integer solution found is an arborescence we are done. Otherwise, the special structure
of our instance allows either to find an arborescence with the same value, and thus we
are done, or to find effective connectivity cuts, which we add to the current problem
and iterate in the same way. Though it may seem foolish to solve a series of integer
programs, this worked well for us, specially due to the following property.

Let Gsol = (Vsol , Asol) denote the graph associated with the solution to CP, G the
LORNO network, and G(S) the subgraph of G induced by the nodes in S.

Recall the special form of the networks (see Fig. 2) we consider:

– All arcs are either directed from level i to level i + 1, i = 0, . . . , 2, or have both
end nodes in H (at level 1), thus all circuits are entirely contained in G(H).

– All arcs having both end nodes in H have the same cost.

Proposition 1 If Gsol is not an arborescence but G(Vsol ∩ H) is a connected graph,
then there exists an arborescence with the same value as the current solution to CP.

Proof From (7) and (8) it follows |Vsol | = ∑
i∈V yi = 1 + ∑

i∈V −r0
yi = 1 +∑

i∈V −r0

∑
( j,i)∈E x ji = 1 + |Asol |. Thus, if Gsol is not an arborescence, then it is

disconnected. From (7) and (12) we have that if the solution contains a node i �= r0 , it
also contains exactly one arc ( j, i) and also node j . Thus it contains a path going (back-
ward) from i either to r0 or to a node k contained in a circuit which is, from the precedent
property, entirely contained in G(H ). We also have |Vsol∩H | = ∑

i∈H

∑
( j,i)∈E x ji =

1 + ∑
i∈H

∑
j∈H x ji , that is the solution has in G(H) a number of arcs equal to its

number of nodes minus one. If G(Vsol ∩ H) is connected, it contains a spanning tree
which has the same number of arcs as the solution in G(H). Replacing the arcs of the
solution in G(H) by such a spanning tree (properly oriented) gives an arborescence
with the same value as Gsol . 
�

Figure 3 illustrates our algorithm. On the left, a solution of the current problem
associated with the network in Fig. 2 is shown. This solution is not connected, but can
be transformed into a connected solution with the same cost, as shown on the right.

This leads to the following algorithm

Step 0 Solve the current problem CP (using branch and bound)
Step 1 Find the connected components C1, . . . , Cl of Gsol . If Gsol is connected,

STOP, else go to Step 2.
Step 2 Find the connected components of G(Vsol ∩ H). If G(Vsol ∩ H) is connected,

go to Step 3, else go to Step 4.
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Fig. 3 Getting a connected network from a solution

Step 3 Find a spanning tree T of G(Vsol ∩ H), replace the arcs of Asol contained in
G(H) by those of T properly oriented, if necessary prune the leaves which
are not in R and terminate with this solution.

Step 4 Insert the cut

x(δ−(Ci )) ≥ yk, k ∈ Ci

into CP, for all i = 1, . . . , l, and return to Step 0.
It should be stressed that one of the reasons the problems at hand are hard to solve is

the fact that all arcs in the communication network have the same weight. Indeed, this
causes the linear programming relaxation to run astray without finding solutions that
are connected graphs. Our approach aims at overcoming this difficulty by searching
for trees with the same weight as the current solution. Note, furthermore, that this
approach also allows us to easily find approximations, i.e., feasible solutions whose
value is guaranteed to be at most α times the optimal one. Indeed it suffices to stop the
branch-and-bound procedure as soon as the gap first hits α. This becomes particularly
important when finding an optimal solution is no longer possible within reasonable
computing time.

4 Computational experiments

With our algorithms, we were able to successfully process three real-world instances,
stemming from the water distribution network of the city of Lausanne and surrounding
region, the largest instance comprising 606 hydrants. This encouraged us to proceed
to further testing of our approach on random instances. Below we give results from
50 such instances.

4.1 Problem generation

As described above, the PCSA instances dealt with in the present study have a spe-
cial structure. We were therefore led to develop a procedure enabling us to generate
random problem instances having the required characteristics. We proceed as follows.
First, we generate a planar representation of a planar graph representing the pipe
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network. Then, we choose a number of hydrants and their locations, and compute
which hydrants if LORNO equipped would be able to listen to which pipe portions.
Next, we generate a communication network and, finally, build the corresponding
LORNO network (i.e., where our Steiner arborescence lives). In order to do this, we
first generate n uniformly distributed points in a square of side length proportional to√

n. Then, the Delaunay triangulation of this set of points (a sparse planar connected
graph, containing the optimal spanning tree and easy to compute, see e.g., [1] ) is
computed, yielding a graph G D on n nodes, in which a minimum Euclidean length
spanning tree SD is determined. For each edge e in E(G D), a probability pe pro-
portional to its length is assigned. Then, edges e ∈ E(G D) − E(SD) are randomly
eliminated with probability pe, until a desired average node degree da is achieved.
This process yields a connected planar graph G ′

D with n nodes and average degree
da . We then add |H | hydrants to randomly chosen edges of this graph. The position of
each hydrant on the edge is also determined randomly, at a location close to the center
of the edge. For each hydrant, a node is added to the graph and the associated edge is
split, creating two new edges and one new node. Then, the communication network is
generated by adding an edge between hydrants h1, h2 ∈ H with probability

ph1,h2 =
⎧
⎨

⎩

0 d(h1, h2) > r2
p2 r1 ≤ d(h1, h2) ≤ r2
p1 r1 > d(h1, h2).

Finally, we determine for each edge, the set of hydrants from which it can be heard.
An edge e = (e1, e2) is audible by hydrant h if d(h, e1) < rL and d(h, e2) < rL .
Results are reported below for instances generated with |H | = n/2, and

da = 2.3

r1 = 250

r2 = 400

p1 = .8

p2 = .5

The name of each instance in the following tables resumes the main data: r1 − 10050
means that it is a random instance, the seed of the random generator was 1,100 points
have been generated in the plane and 50 hydrants have been placed in the resulting
graph.

4.2 Algorithms

The branch-and-cut algorithm, denoted CONN, was implemented in C/C++, using
the libraries available from the Computational Infrastructure for Operations Research
(COIN-OR) repository [10]. The Open Solver Interface (OSI) was used to inter-
face with the integer and linear programming solvers. All results reported here
reflect the use of OSI CPLEX interface, where CPLEX 9.1 was used to solve the
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integer and linear programming instances generated throughout the course of the
algorithm. The algorithm was tested on an Intel Xeon 2.4 GHz processor with 4 GB
of memory.

After carefully examining our preliminary results, we realized that a significant
amount of running time was being spent on proving the optimality of solutions to
CP that would eventually be discarded because of constraint violation. As mentioned
previously, the design of our algorithm allows to change the optimality requirements
of CP solutions without altering the overall structure of the algorithm. Aside from the
ability to get good solutions quickly, this also allows us to change our optimality gap
dynamically within the algorithm. The cut generation routine requires only a feasible
solution to produce valid cuts. Thus, it is possible to widen the optimality gap in the
early iterations of the algorithm and generate several rounds of cuts in a much smaller
amount of CPU time. In order to test the benefit of this procedure, we experimented
with a slight variant of the branch-and-cut algorithm denoted GAPCONN, where we
systematically modify the optimality requirement during the course of the algorithm,
i.e., Step 0 of the algorithm becomes “Solve the current problem CP with an optimal-
ity gap set to δ” and the parameter δ is decreased during the course of the algorithm.
We refer to algorithms of this type as dynamic, while the standard algorithms can be
described as static. As already described, the objective function comprises an easily
quantifiable component, namely the investment costs, and one which is less so corre-
sponding to the drawn benefits. The former are quantized by the cost of a full LORNO
unit, resp. that of a transponder unit. Rather than using a relative gap measure for
stopping criteria it seems more sensible to use an absolute gap. We chose to bound
the gap successively by the cost of a full LORNO unit, that of a transponder unit and
by ε, a sufficiently small parameter to prove optimality. Note that for our numerical
examples these values make good sense, indeed they add up to at most a fraction of a
percent of the objective function value.

To evaluate the effectiveness of our separation routine, we implemented an alter-
nate algorithm similar to that described in [9]. In this algorithm, denoted FLOW, a
modification of Goldberg’s maximum flow algorithm [3] is used to find violated con-
straints with respect to solutions of the LP-relaxation of CP. In the case that such a
solution does not violate any constraints, an integer programming solver is called to
find an integer solution to CP. If the resulting integer solution is also feasible for the
original problem, it must be optimal. Else, new violated inequalities are added to CP,
and the algorithm continues. This algorithm was also implemented in C/C++, using
COIN-OR’s libraries to interface with CPLEX 9.1.

As mentioned previously, in addition to the comparison of separation routines, we
also experimented with the form of the constraints (12). The algorithms included in
our experiments are summarized in Table 1.

4.3 Results

We present here results from two classes of experiments. The first consists of a series of
tests where we compare the algorithmic variants on data instances of increasing size.
In each table, the set of columns labeled Iterations gives the number of algorithmic
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Table 1 The algorithm variants
used in the computational study

CONN FLOW GAPCONN

xi j + x ji ≤ yi CONN2 FLOW2 GAPCONN2

xi j ≤ yi CONN4 – GAPCONN4

Table 2 Summary results for
all algorithms

Success ratio Avg no. Iter. Avg CPU sec

CONN2 0.78 7.85 249.15

CONN4 0.80 7.38 118.49

FLOW2 0.54 66.30 154.52

GAPCONN2 0.82 15.54 331.41

GAPCONN4 0.88 20.43 318.15

loops necessary to find the optimal solution. The group of columns labeled CPU sec
gives the running time of the algorithms on the platform described above. Unless
otherwise noted, all results presented represent a CPLEX optimality gap of 1 × 10−4.
For the algorithms in which the gap is changed dynamically, this corresponds to a
choice of ε = 1 × 10−4. For this study, a maximum running time of 5000 CPU sec-
onds was allotted. In the tables, instances that were not solved within this time limit
are indicated with a dash in the corresponding row of the table. Note that the set of
unsolved instances includes both those instances that exceeded the time limit, as well
as those whose memory requirements were too large for the resources available. We do
not differentiate between these two types of unsolved instances in our presentation of
results. However, we do note that the FLOW algorithm frequently fails due to memory
requirements. This suggests that if this algorithm is used, unnecessary cuts should be
removed dynamically throughout the course of the algorithm.

The complete output for the experimental study is shown in Table 3. From the table,
we can see that the dynamic variants of the branch-and-cut algorithm (GAPCONN2
and GAPCONN4) clearly dominate their static counterparts. Further, there is no prob-
lem that GAPCONN2 is able to solve that GAPCONN4 cannot. Thus, we can say that
GAPCONN4 is the most robust, with respect to number of problems solved, of all the
branch-and-cut variants. Additionally, in Sect. 4.4, we compare the performance of
GAPCONN2 and GAPCONN4 across different optimality requirements, and see that
when the optimality gap is equal to the cost of a full LORNO installation, GAPCONN4
is able to solve all but two problems in our test set.

It is not immediately obvious, however, how the branch-and-cut variants compare
to FLOW2, since there are problems that FLOW2 is able to solve where all branch-
and-cut algorithms fail. However, a comparison between FLOW2 and GAPCONN4
shows that this occurs only twice in the entire test set. Additionally, the total number
of problems solved by each of the branch-and-cut algorithms is significantly higher
than that by FLOW2.

The results are summarized in Table 2.
In this table, we report the average number of instances solved, the average required

iterations and average CPU time required for each algorithm. Table 2 gives further
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Fig. 4 Performance profiles of each of the solvers described

evidence that GAPCONN4 is the most robust of all algorithm variants, solving almost
90% of the problems in the test set, but also shows that it requires the second highest
average CPU time. FLOW2 is the fastest algorithm, on average, but solves only 54% of
the problems. CONN4 seems to yield the best balance between speed and robustness,
solving 80% of the test problems, with the second lowest average CPU time. This
table also suggests that, for the problems we study here, the weaker form of constraint
(12) is preferable to the stronger form since, for both the static and dynamic variants,
using this form yielded a higher success rate and a lower average CPU time. It should
be noted, however, that the results in Table 2 may be somewhat misleading, since the
averages do not account for those instances that remain unsolved by each algorithm.
As noted in [4], using the averages tends to punish the more robust solvers and reward
those that solve a few instances quickly but fail to solve the more difficult ones in the
test set.

In an attempt to overcome this shortcoming, we use the presentation described by
[4], where we measure performance of an algorithm relative to performance of other
algorithms on the same instance. Formally, for each algorithm s ∈ S, we consider

ρs(τ ) = 1

n p
size

{
p ∈ P : rp,s ≤ τ

}
, (14)

where n p is the size of the test set P and rp,s is the ratio of the running time of s on
p to the minimum running time for p over s ∈ S. Note that (14) is the cumulative
distribution function for the performance ratio rp,s and yields the probability that rp,s

is within a factor of τ from the best ratio. Thus, ρs(1) gives the probability that solver
s beats the other solvers in S. We refer to the function ρs as the performance profile.
Note that there is slight abuse in terminology here. All definitions from [4] are given
in terms of solvers, rather than algorithms. Of course, in order to compare algorithms,
we are truly comparing their implementations by a given solver. As the solvers we

123



Locating leak detecting sensors in a water distribution network 135

Ta
bl

e
4

R
es

ul
ts

fr
om

bu
dg

et
st

ud
y

d
a
i
l

r
1
-
3
0
0
1
5
0

G
A

PC
O

N
N

2
G

A
PC

O
N

N
4

G
A

PC
O

N
N

2
G

A
PC

O
N

N
4

B
It

er
C

PU
se

c
O

bj
It

er
C

PU
se

c
O

bj
B

It
er

C
PU

se
c

O
bj

It
er

C
PU

se
c

O
bj

45
−

−
−

−
−

−
55

−
−

−
−

−
−

47
15

51
66

.8
30

−2
08

33
50

23
28

62
.8

60
−2

08
33

50
57

47
99

9.
51

0
−3

06
47

00
64

30
58

.0
00

−3
06

47
00

49
12

62
8.

14
7

−2
11

75
40

8
21

3.
95

7
−2

11
75

40
59

18
34

2.
89

3
−3

09
99

80
9

38
3.

14
8

−3
10

02
40

51
4

17
4.

46
3

−2
14

94
00

2
81

.6
45

−2
15

01
50

61
13

17
6.

33
9

−3
13

10
50

21
97

8.
06

1
−3

13
13

20

53
1

65
.9

84
−2

18
07

40
1

66
.3

88
−2

18
07

40
63

19
16

6.
99

0
−3

15
73

50
34

71
5.

03
3

−3
15

76
10

55
1

46
.5

15
−2

20
60

60
1

70
.9

76
−2

20
60

60
65

24
20

2.
71

7
−3

18
10

40
7

11
7.

64
7

−3
18

10
40

57
1

47
.5

31
−2

22
42

40
1

73
.1

85
−2

22
56

80
67

8
33

.0
02

− 3
19

95
00

7
10

8.
98

7
−3

20
02

20

59
1

42
.6

39
−2

24
26

60
1

63
.8

08
−2

24
35

40
69

7
24

.3
73

−3
21

66
20

5
62

.2
08

−3
21

66
20

61
1

42
.0

79
−2

25
88

40
1

69
.8

64
−2

25
88

40
71

3
20

.2
85

−3
22

89
80

6
69

.1
36

−3
22

89
80

63
1

57
.5

76
−2

27
17

00
1

67
.4

28
−2

27
17

00
73

3
9.

39
7

−3
24

03
00

3
39

.3
31

−3
24

03
00

65
1

51
.5

67
−2

28
16

70
1

68
.8

00
−2

28
16

70
75

3
12

.9
41

−3
24

96
70

2
35

.9
74

−3
24

96
70

67
1

59
.3

12
−2

28
69

80
1

60
.8

52
−2

28
69

80
77

5
17

.6
05

−3
25

63
90

2
44

.1
83

−3
25

63
90

69
1

52
.7

35
−2

28
76

40
1

55
.9

47
−2

28
76

40
79

5
15

.2
09

−3
25

63
90

3
52

.9
35

−3
25

63
90

123



136 A. Prodon et al.

Fig. 5 Tradeoff between the installation budget and the objective value

wish to compare are identical except for the difference explicit in the algorithms, we
use these terms interchangeably. Figure 4 shows the performance profiles of the solv-
ers on the full test set (see also Table 3), where ns is the number of solvers, whereas
n p is the number of problems being tested, each solver is given a number between 1
and ns , i.e., S = 1, 2, . . . , ns . From the figure, we can see that CONN2 achieved the
minimum solution time on the largest number of problems (roughly 40%). Thus, in
a loose sense, we can say this algorithm is the fastest. Finding points of intersection
within the plot allows us to determine those values of τ for which a subset of the
algorithms is equivalent with respect to running time. From the plot, we can see that
CONN2, CONN4, GAPCONN2, GAPCONN4 will all solve a given problem within
a factor of 4 of the fastest algorithm roughly 70% of the time.

In fact, for a range of values of τ between 3.5 and 4, the algorithms CONN2 and
CONN4 are almost undistinguishable with respect to running time. This is not so sur-
prising, since these two solvers differ only in the form of the constraints (12). From
the larger values of τ , we can see the probability that the solvers solve a problem
within our test set. GAPCONN4 is the most likely to solve a random instance, solv-
ing approximately 90% of the problems tested. GAPCONN2 and CONN4 both solve
roughly 80% of the instances, and CONN2 is successful 75% of the time. From the
plots, we can also see that the probability of success does not significantly increase
for τ > 5 for any of our solvers, except GAPCONN4. Thus, if GAPCONN2, CONN2
or CONN4 is able to solve an instance, it is likely that it will solve the instance within
five times the speed of the fastest solver. Figure 4 confirms our earlier assertion that the
flow algorithm is dominated by all variants of the branch-and-cut algorithm. FLOW2
is the fastest solver only 15% of the time and solves only half of the instances in the
test set. Conversely, for each solver, we can consider the fraction of problems that
the solver fails to solve within a factor of τ of the best solver. This value is given by
the metric 1 − ρs(τ ), and includes those problems for which the solver fails to solve
altogether. Using this metric, we can analyze the performance of the solvers, neither
giving undue credit to solvers that lack robustness nor allowing difficult instances to
dictate our results.
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Table 5 Comparing the cost of optimality for GAPCONN2

Instance LORNO TRANS EPS

Iterations CPU Objective Iterations CPU Objective Iterations CPU Objective
sec sec sec

r1-10050 1 0.848 −960341 1 0.876 −960341 2 1.320 −961061

r2-10050 1 0.464 −890994 1 0.468 −890994 1 0.468 −890994

r3-10050 3 0.764 −1062120 3 0.792 −1062120 6 8.165 −1062120

r4-10050 37 30.074 −1139590 40 31.478 −1140310 41 31.550 −1141030

r5-10050 2 1.344 −957468 2 1.356 −957468 2 1.360 −957468

r6-10050 1 0.420 −1113020 1 0.428 −1113020 1 0.428 −1113020

r7-10050 10 7.152 −813227 10 7.176 −813227 11 10.553 −813227

r8-10050 2 1.072 −1023130 2 1.080 −1023130 2 1.080 −1023130

r9-10050 8 6.296 −969108 8 6.316 −969108 − − −
r10-10050 5 4.772 −987484 5 4.820 −987484 5 5.568 −987484

r1-200100 7 27.214 −2209600 51 967.125 −2210320 51 991.814 −2210320

r2-200100 1 9.421 −2080110 1 9.505 −2080110 1 11.601 −2080110

r3-200100 14 78.121 −1910670 − − − − − −
r4-200100 57 274.581 −2027370 − − − − − −
r5-200100 1 4.708 −2166220 1 4.732 −2166220 1 4.748 −2166220

r6-200100 2 6.676 −2017630 2 6.700 −2017630 2 6.712 −2017630

r7-200100 3 11.665 −2008300 3 11.689 −2008300 3 11.697 −2008300

r8-200100 3 5.836 −2010260 3 6.416 −2010260 3 8.129 −2010260

r9-200100 3 3.548 −2176660 4 3.892 −2177380 4 7.828 −2177380

r10-200100 1 6.552 −2086780 1 8.053 −2086780 1 8.065 −2086780

r1-300150 3 13.077 −3256390 3 13.233 −3256390 3 19.201 −3256390

r2-300150 1 19.161 −3131920 1 27.606 −3131920 1 27.918 −3131920

r3-300150 17 105.683 −3133680 17 105.807 −3133680 18 106.323 −3134400

r4-300150 2 47.331 −2725630 2 47.487 −2725630 2 47.807 −2725630

r5-300150 76 551.646 −3048320 76 551.802 −3048320 76 560.043 −3048320

r6-300150 3 36.258 −3098540 4 37.302 −3099260 4 41.183 −3099260

r7-300150 21 458.725 −3134060 21 499.796 −3134060 21 565.780 −3134060

r8-300150 3 16.913 −3114700 3 17.121 −3114700 3 34.490 −3114700

r9-300150 12 97.430 −3029640 12 97.586 −3029640 − − −
r10-300150 4 33.390 −3161470 5 40.239 −3162190 5 45.923 −3162190

r1-400200 5 66.032 −4290830 5 66.236 −4290830 6 67.664 −4291550

r2-400200 1 45.059 −4273880 2 51.003 −4274600 2 51.271 −4274600

r3-400200 1 32.438 −4105300 1 32.514 −4105300 1 32.546 −4105300

r4-400200 − − − − − − − − −
r5-400200 68 658.465 −4178710 187 2132.825 −4179430 − − −
r6-400200 15 184.216 −3880780 15 184.440 −3880780 20 238.467 −3881500

r7-400200 5 79.665 −4269060 6 89.642 −4269780 6 99.922 −4269780

r8-400200 11 66.416 −4324840 11 66.468 −4324840 11 66.496 −4324840

r9-400200 29 303.971 −4091240 116 2278.291 −4091960 116 2284.763 −4091960

r10-400200 5 70.220 −3987600 7 108.671 −3987600 − − −
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Table 5 continued

Instance LORNO TRANS EPS

Iterations CPU Objective Iterations CPU Objective Iterations CPU Objective
sec sec sec

r1-500250 15 350.346 −5196930 16 468.133 −5196930 29 2084.723 −5197650

r2-500250 2 90.938 −5257910 2 91.294 −5257910 3 139.333 −5257910

r3-500250 31 685.811 −5040440 44 1278.000 −5041160 44 1304.158 −5041160

r4-500250 100 3346.910 −5420330 113 4192.203 −5421050 113 4192.555 −5421050

r5-500250 3 66.344 −5236380 3 72.665 −5236380 3 90.942 −5236380

r6-500250 − − − − − − − − −
r7-500250 1 64.088 −5088330 2 75.521 −5089050 2 75.961 −5089050

r8-500250 18 399.773 −5030270 − − − − − −
r9-500250 3 101.246 −5154660 7 185.963 −5155070 7 186.351 −5155070

r10-500250 4 110.307 −5401620 4 112.843 −5401620 4 113.095 −5401620

In the formulation described in this paper, we have assumed that we are free to
install as many full LORNO installations as desired. However, this may not be a realis-
tic assumption, since this number may be limited by physical or financial constraints.
In order to test the sensitivity of our algorithm to this assumption, a second computa-
tional test was performed. We add the constraint

∑

i∈H

yi ≤ B (15)

to the formulation and apply the solution algorithms for varying bounds B on the num-
ber of installed auditory components. Due to the increased difficulty of these restricted
problems, we chose to relax our optimality requirements. As mentioned previously,
the design of our algorithm allows the user to change the desired optimality gap with-
out alteration of the algorithm. For this experiment, we used an optimality gap equal to
the cost of one LORNO installation. These results are also presented in tabular format,
as before. Here, we have two additional columns, labeled B and Obj, which indicate
the limit placed on the number of full LORNO installations and the resulting optimal
objective value, respectively. The data used for the experiment consisted of both a real
water network from Lausanne, as well as a randomly generated instance with similar
characteristics. The full results are shown in Table 4.

Aside from testing the sensitivity of our algorithm, this study allows us to examine
the inherent tradeoff that exists between the installation limit and the resulting ben-
efit. Figure 5 illustrates this relationship for both data instances. The portions of the
tradeoff curves in Fig. 5 we are most interested in are those with a steep slope. These
areas represent critical points, where small increases in B yield substantial increases
in the optimal benefit. Assuming the budget constraint (15) is somewhat flexible, these
critical points indicate where it is worthwhile to increase the installation limit.
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Table 6 Comparing the cost of optimality for GAPCONN4

Instance LORNO TRANS EPS

Iterations CPU Objective Iterations CPU Objective Iterations CPU Objective
sec sec sec

r1-10050 3 0.488 −961061 3 0.492 −961061 3 0.492 −961061

r2-10050 2 1.348 −890994 2 1.352 −890994 2 1.352 −890994

r3-10050 4 2.056 −1062120 4 2.080 −1062120 7 16.585 −1062120

r4-10050 2 0.668 −1140310 2 0.696 −1140310 6 3.216 −1141030

r5-10050 1 0.972 −957468 1 0.980 −957468 1 0.988 −957468

r6-10050 1 0.400 −1113020 1 0.404 −1113020 1 0.408 −1113020

r7-10050 14 11.037 −813227 14 11.061 −813227 15 16.281 −813227

r8-10050 1 0.356 −1023130 1 0.356 −1023130 1 0.360 −1023130

r9-10050 15 10.957 −968388 25 16.057 −969108 − – −
r10-10050 3 2.348 −987484 3 2.372 −987484 3 3.560 −987484

r1-200100 22 86.185 −2210320 22 89.534 −2210320 22 110.323 −2210320

r2-200100 5 7.020 −2080110 5 7.140 −2080110 5 9.845 −2080110

r3-200100 34 253.704 −1910670 − − − − – −
r4-200100 110 1121.570 −2028090 110 1121.666 −2028090 110 1128.246 −2028090

r5-200100 1 4.732 −2166220 1 4.744 −2166220 1 4.752 −2166220

r6-200100 3 11.125 −2017630 3 11.137 −2017630 3 11.145 −2017630

r7-200100 1 5.700 −2008300 1 5.720 −2008300 1 5.728 −2008300

r8-200100 2 4.764 −2010260 2 5.216 −2010260 2 7.176 −2010260

r9-200100 4 12.429 −2177380 4 12.541 −2177380 4 16.285 −2177380

r10-200100 4 18.497 −2086790 4 19.965 −2086790 4 19.973 −2086790

r1-300150 9 52.667 −3256390 9 52.867 −3256390 9 61.420 −3256390

r2-300150 6 50.579 −3131920 6 56.616 −3131920 6 57.000 −3131920

r3-300150 19 83.625 −3133680 19 83.833 −3133680 31 152.254 −3134400

r4-300150 3 44.267 −2724910 6 107.263 −2725630 6 107.479 −2725630

r5-300150 357 3757.180 −3047600 361 3839.161 −3047600 362 3850.542 −3048320

r6-300150 5 43.099 −3098540 7 51.791 −3099260 7 55.571 −3099260

r7-300150 23 357.806 −3134060 23 667.617 −3134060 23 846.492 −3134060

r8-300150 7 55.731 −3114700 7 55.944 −3114700 7 76.277 −3114700

r9-300150 6 35.250 −3028920 40 347.438 −3029640 − – −
r10-300150 8 64.168 −3162190 8 64.380 −3162190 8 73.241 −3162190

r1-400200 1 33.786 −4291550 1 33.870 −4291550 1 33.910 −4291550

r2-400200 6 86.541 −4274600 6 86.857 −4274600 6 87.137 −4274600

r3-400200 2 67.876 −4104580 3 90.242 −4104580 4 91.018 −4105300

r4-400200 − − − − − − − – −
r5-400200 2 34.474 −4180150 2 34.730 −4180150 2 45.847 −4180150

r6-400200 37 515.456 −3881500 37 515.764 −3881500 37 516.076 −3881500

r7-400200 7 212.777 −4269060 9 244.911 −4269780 9 265.700 −4269780

r8-400200 4 84.905 −4323400 11 153.734 −4324120 15 263.249 −4324840

r9-400200 9 121.748 −4091960 9 122.028 −4091960 9 134.309 −4091960

r10-400200 3 56.243 −3987600 5 101.106 −3987600 − – −
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Table 6 continued

Instance LORNO TRANS EPS

Iterations CPU Objective Iterations CPU Objective Iterations CPU Objective
sec sec sec

r1-500250 17 580.528 −5197650 17 609.634 −5197650 17 610.334 −5197650

r2-500250 5 173.587 −5257190 10 279.890 −5257910 10 310.512 −5257910

r3-500250 22 482.546 −5041160 22 482.962 −5041160 23 692.931 −5041160

r4-500250 5 197.368 −5421050 5 222.194 −5421050 5 222.622 −5421050

r5-500250 9 138.053 −5236380 9 138.509 −5236380 9 160.966 −5236380

r6-500250 − − − − − − − – −
r7-500250 2 63.268 −5088330 3 83.061 −5089050 3 86.357 −5089050

r8-500250 68 2442.070 −5030270 70 2505.382 −5030990 70 2909.051 −5030990

r9-500250 2 146.837 −5154660 7 277.413 −5155070 7 293.374 −5155070

r10-500250 19 527.873 −5400900 20 573.680 −5400900 22 638.072 −5401620

4.4 The cost of optimality

In this section, we compare the cost of proving optimality for GAPCONN2 and GAP-
CONN4. Tables 5 and 6 show the full sets of results for the two algorithms. In each
table, we see the required iterations and CPU time, as well as the objective value for
each value of optimality gap discussed in the previous section. We denote these values
by LORNO, the cost of a full LORNO installation, TRANS, the cost of installing a radio
transponder only, and EPS, a sufficiently small parameter that yields “true” optimality.
For GAPCONN2, the results indicate that, on average, moving from LORNO-opti-
mality to TRANS-optimality requires approximately 107% more CPU time, while
improving the objective by only 0.007%. Further, to achieve EPS-optimality, GAP-
CONN2 requires approximately 162% more CPU time than for LORNO-optimality,
and yields only a 0.012% objective improvement. The results for GAPCONN4 are less
dramatic, but show a similar tendency. For GAPCONN4, the average difference in run-
time between LORNO- and TRANS-optimality is approximately 37% with a 0.005%
objective improvement, and obtaining EPS-optimality requires a 59% increase in CPU
time and yields a 0.007% objective improvement.

5 Conclusion

In this paper we presented a decision aid methodology for the evaluation of LORNO,
a new acoustic water leakage detection system in urban water distribution networks.
The following aspects were stressed:

– modeling the operation of LORNO in a way capturing its main features;
– describing the placement problem as a well-defined optimization problem, which

turned out to be a particular type of Prize-Collecting Steiner Arborescence Prob-
lem;
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– developing suitable methods for finding both exact and approximate solutions with
a given performance guarantee;

– collecting real data from a middle-sized city and creating a test-bed with realistic
looking randomly generated instances.

The tool has been tested on real Lausanne data and has produced convincing results,
furthermore it allows to perform various types of sensitivity analyses. As a bottom line
it can be said that the present approach is not only well suited to solve the practical
problems at hand, but also yields efficient procedures to solve difficult instances of
the prize-collecting Steiner arborescence problem.
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