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Abstract Given a set P of n points in R
d , let d1 > d2 > · · · denote all distinct

inter-point distances generated by point pairs in P . It was shown by Schur, Martini,
Perles, and Kupitz that there is at most one d-dimensional regular simplex of edge
length d1 whose every vertex belongs to P. We extend this result by showing that for
any k the number of d-dimensional regular simplices of edge length dk generated by
the points of P is bounded from above by a constant that depends only on d and k.

Keywords Diameter graphs · Distance graphs · Large distances · Regular simplices ·
Number of cliques

Mathematics Subject Classification 52C10

1 Introduction

The investigation of various properties of graphs of distances generated by a finite set
of points in Euclidean space was initiated by Erdős (1946), and it has become a clas-
sical topic in discrete and computational geometry, with applications in combinatorial
number theory, the theory of geometric algorithms, pattern recognition, etc. Among
the problems that have drawn a lot of attention for decades are: Erdős’s problem on
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unit distances (Erdős 1946; Spencer et al. 1984), Erdős’s problem on distinct distances
(Erdős 1946; Guth and Katz 2011), Borsuk’s conjecture on the chromatic number of
diameter graphs (Borsuk 1933; Kahn and Kalai 1993), the Hadwiger–Nelson coloring
problem (Hadwiger 1945). Consult (Brass et al. 2005) for many other problems of this
kind.

In the present paper, we concentrate on graphs of large distances. Given a set P of n
points in R

d , consider all
(n

2

)
distances between pairs of points in P . The same distance

may occur several times. Throughout this paper, we will use the convention that the
sequence of distinct distances in decreasing order will be denoted by d1 > d2 > · · · .
In other words, dk is the k-th largest distance generated by P . For a fixed k, we can
study the graph of k-th largest distances generated by P . The vertex set of this graph
is P , and two vertices are connected by an edge if and only if their distance is dk . The
most frequently studied and perhaps most interesting case is k = 1, when we have
a graph of diameters. One of the basic results concerning graphs of diameters was
obtained by Hopf and Pannwitz (1934): the maximum number of diameters among n
points in the plane is n. Later a similar result was conjectured by Vázsonyi and proved
by Grünbaum (1956), Heppes (1956), and Straszewicz (1957): the maximum number
of diameters generated by n points in R

3 is 2n−2. In higher dimensions, the analogous
problem turned out to have a different flavor: Lenz found some simple constructions
with a quadratic number of diameters. For more exact bounds, see Avis et al. (1988),
Erdős and Pach (1990), and Swanepoel (2009).

For larger values of k, Vesztergombi showed that the second largest distance d2
can occur at most 3

2 n times among n points in the plane (Vesztergombi 1996, 1987),
and at most 4

3 n times if the points are in convex position (Vesztergombi 1987). She
also observed that the number of k-th largest distances in the plane is always smaller
than 2kn. For small values of k, this was improved in Morić and Pritchard (2013).
While the majority of the results on graphs of large distances provide upper bounds
on the number of edges, some other properties have also been explored. For example,
Erdős et al. (1989, 1988) obtained some results concerning the chromatic number of
the graph generated by the top-k largest distances, i.e, the graph in which two points
are connected if and only if their distance is at least dk .

Schur et al. (2003), instead of counting the number of edges, Schur, Perles, Martini,
and Kupitz initiated the investigation of the number of cliques in a graph of diameters.
This paper is the starting point of our investigations. A k-clique, that is, a complete
subgraph of k vertices in the graph of diameters of P corresponds to a regular (k −
1)-dimensional simplex (or, in short, (k − 1)-simplex) of side length d1 generated
by P .

Theorem A (Schur et al. 2003) Any finite subset P ⊂ R
d contains the vertices of at

most one regular d-simplex of edge length d1.

The aim of this paper is to show that this beautiful statement marks the tip of an
iceberg: for any k, the number of d-simplices of edge length dk generated by P can
be bounded from above by a constant depending only on d and k.

Theorem 1 For any k ≥ 1 and d ≥ 2, there exists a constant c(d, k) satisfying the
following condition. Any finite set P of points in R

d can generate at most c(d, k)

regular d-simplices of edge length dk.
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In Sect. 3, we give a construction with d(k − 1) + 1 regular simplices of edge
length dk . The Proof of Theorem 1 presented in Sect. 2 uses extremal graph theory
and provides an enormously huge bound for the constant c(d, k), which can be surely
improved a lot.

The main result in Schur et al. (2003) is the following.

Theorem B (Schur et al. 2003) Any set of n points in R
3 can generate at most n

equilateral triangles of side length d1.

Again, we show an analogous result for the k-th largest equilateral triangles. The
proof of this statement is given in Sect. 4.

Theorem 2 For any k ≥ 1, there exists a constant ck = kO(k) such that the number
of equilateral triangles of side length dk generated by any set of n points in R

3 is at
most ckn.

Theorem B can be regarded as a 3-dimensional generalization of the Hopf–Pannwitz
result mentioned above, according to which any set of n points in the plane has at most
n diameters. It was conjectured by Schur (see Schur et al. 2003) that this result can be
extended to all dimensions d.

Conjecture 1 (Schur et al. 2003) The number of d-cliques in a graph of diameters on
n points in R

d is at most n.

The fact that this bound can be attained can be shown by a simple construction; see
Schur et al. (2003).

In Sect. 5, we present the following theorem about the number of k-th largest
distances in R

3, generalizing the analogous observation of Vesztergombi in the plane.

Theorem 3 For every k ≥ 1, there is a constant ck such that the following holds: the
number of k-th largest distances generated by any set of n points in R

3 is at most ckn.

Finding good bounds for ck , at least for small values of k ≥ 2, is a challenging
open problem.

2 Proof of Theorem 1

First, we collect several auxiliary results needed for the proof. The following result
was proved in Pach (1997).

Lemma 2.1 There exists a constant c > 0 such that for any set of n distinct points
p1, . . . , pn ∈ R

d and for any ε > 0, the number of triples i < j < k for which
� pi p j pk > π − ε, is at least �n3/2(c/ε)d−1�.

By a spherical cone in a linear subspace L ⊂ R
d we understand a cone generated

by a ball, i.e., a set C of the form C = {t x : t ≥ 0, x ∈ B}, where B = B(a, r) is a
full-dimensional ball in L , that does not contain the origin (i.e., the dimension of B is
the same as the dimension of L). In the sequel, unless indicated otherwise, we will use
the term cone to refer to a spherical cone. The translate of a (spherical) cone C by a
vector v we call a cone with apex v (see Fig. 1a). The angle of a (spherical) cone C is

123



48 Beitr Algebra Geom (2013) 54:45–57

(a) (b)

Fig. 1 a Cone generated by a ball ; b Proof of Lemma 2.2

defined as 2 arcsin r
‖a‖ . When the subspace L is not specified (as in the next lemma),

we assume L = R
d .

To prove the next fact we use the well-known Kővári–Sós–Turán theorem: every
bipartite graph that has m vertices in one part, n vertices in the other part, and at least
(r − 1)1/s(n − s + 1)m1−1/s + (s − 1)m edges contains a subgraph isomorphic to
Kr,s . In fact, we need only the following simple consequence of the theorem: for any
c1 > 0, there is c2 > 0 such that any graph on n vertices with at least c1n2 edges
contains Kc2 log n,c2 log n as a subgraph.

Lemma 2.2 For any d ≥ 2, n ≥ 1 and ε > 0, there exists c = c(d, ε, n) > 0 such
that for any set T of c points in R

d , one can find a point x ∈ T and a cone C with apex
x and angle ε such that both C and its opposite cone contain at least n points of T .

Proof We will show that c(d, ε, n) = 2c1n is a good choice, for large enough c1.
Suppose we have a set T of N = 2c1n points in R

d . From Lemma 2.1 it follows
that there are f N 3 angles generated by these points of size at least π − ε

4 , for some
f = f (d, ε) > 0. Hence, there is a point x ∈ T which is the apex of f N 2 angles
of size at least π − ε

4 . Define a graph G with vertex set T − {x} in which two points
q, r ∈ T −{x} are connected by an edge if and only if � qxr > π − ε

4 . Since this graph
on N − 1 vertices has at least f N 2 edges, by the above observation we conclude that
G contains a subgraph isomorphic to Kn,n , provided we choose large enough c1. In
other words, there are points a1, . . . , an, b1, . . . , bn ∈ T such that � ai xb j > π − ε

4
for any i, j ∈ {1, . . . , n} (Fig. 1b). Now we have that for any i ∈ {1, . . . , n}

� ai xa1 + 2
(
π − ε

4

)
< � ai xa1 + � a1xb1 + � b1xai ≤ 2π,

and, therefore, � ai pa1 < ε
2 (here we used a small lemma, which is not difficult to

show: for any four points a, b, c, x ∈ R
d we have � axb + � bxc + � cxa ≤ 2π ).

Finally, we can take for C the cone with apex x , axis xa1 and angle ε. 
�
We introduce a notion that we need in order to formulate the next fact. In a linear

subspace L ⊂ R
d , consider a cone C , whose apex is the origin. Define the set

S(C) = {x ∈ L : there exists v ∈ C such that x · v = 0}.
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(a) (b)

Fig. 2 a The co-cone S(C) of a cone C in R
3; b Lemma 2.3: the projection of the simplex cannot fit in

S(C)

We call S(C) the co-cone of C (Fig. 2a). Note that the angle of any cone that lies in
S(C) cannot exceed the angle of C .

Lemma 2.3 For every d ≥ 2, there exists ε(d) > 0 with the following property. Let
C be a cone whose apex is the origin, whose angle is at most ε, and which lies in a
linear subspace L ⊂ R

d . Then the orthogonal projection to L of any regular d-simplex
whose one vertex is the origin, cannot fit into S(C).

Proof The situation is illustrated in Fig. 2b. Denote by rd(a) the radius of the inscribed
sphere of a regular d-simplex of edge length a and by sd(a) the distance between its ver-
tex and the center of the inscribed sphere. By similarity, the ratio rd(a) : sd(a) depends
only on d (and not on a). We claim that the statement holds with ε = arcsin rd (a)

sd (a)
.

Suppose the contrary, i.e., that the projection to L of a d-simplex S′ having the origin
as its vertex is contained in S(C), while cone C has angle at most ε. Let a be the edge
length of S′. The projection of the inscribed ball of S′ is a ball B of the same radius
rd(a) that lies in S(C). Denote its center by p. Since ‖p‖ ≤ sd(a), the angle of the
cone generated by B is

2 arcsin
rd(a)

‖p‖ ≥ 2 arcsin
rd(a)

sd(a)
= 2ε,

which is a contradiction. 
�
Now we move on with the Proof of Theorem 1. Recall that we are given a finite set

P of points in R
d and we want to upper-bound the number of regular d-simplices of

edge length dk generated by P . We can assume that every point in P is a vertex of at
least one simplex, since otherwise we can delete non-interesting vertices.

Lemma 2.4 For any d ≥ 2, k ≥ 1, d ′ ≤ d − 1, there exists c′(d, d ′, k) such that the
total number of points of P that can lie on a d ′-sphere in R

d is at most c′.
Proof The proof is by induction on d ′. For d ′ = 0, the statement is trivially true with
c′(d, 0, k) = 2 (since “0-sphere” is a set of two points). Now let d ′ ≥ 1 and let S
be a d ′-sphere in R

d . By induction, we assume that the statement is correct for all
smaller values of d ′. Let N = (k − 1) · c′(d, d ′ − 1, k)+ 1. By Lemma 2.2, we choose
a constant c(d ′ + 1, ε, N ), where ε = ε(d) is given by Lemma 2.3. We claim that
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(a) (b)

Fig. 3 a Proof of Lemma 2.4; b a construction with many large simplices

c′(d, d ′, k) = c(d ′ + 1, ε, N ) will work. We prove this by contradiction. Suppose that
there are more than c(d ′ + 1, ε, N ) points of P on the sphere S. We can consider S as
being embedded in a (d ′ + 1)-dimensional space (the affine hull of S). By the choice
of c (Lemma 2.2), we can find a point x ∈ P ∩ S such that in a cone C with apex x and
angle ε as well as in its opposite cone, there are at least N points of P ∩ S (Fig. 3a).
Let xx1 . . . xd be a simplex with vertex x (and other vertices in P) and let x ′

1, . . . , x ′
d

be the orthogonal projections of points x1, . . . , xd to the affine hull of S. By the choice
of ε (according to Lemma 2.3), at least one of the vertices x ′

1, . . . , x ′
d lies outside the

co-cone S(C). Without loss of generality assume that x ′
1 /∈ S(C) and, moreover,

(x ′
1 − x) · (v − x) > 0 for every v ∈ C,

or, equivalently,

(x ′
1 − x) · (v − x) < 0 for every v ∈ 2x − C

(note that C ′ = 2x − C is the cone opposite to C). Let p1, . . . , pN be some points of
P ∩ S that lie in the cone C ′. Since the angles � x ′

1xpi are all obtuse, we conclude that
|x ′

1 pi | > |x ′
1x | and by the Pythagorean theorem

|x1 pi | =
√

|x1x ′
1|2 + |x ′

1 pi |2 >

√
|x1x ′

1|2 + |x ′
1x |2 = |x1x | = dk,

for all i = 1, 2, . . . , N . The distance |x1 pi | for every i can, thus, take one of the
k − 1 values d1, . . . , dk−1. However, for every j ∈ {1, . . . , k − 1} all points pi that
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satisfy |x1 pi | = d j lie at the intersection of S (which is a d ′-sphere) with the (d − 1)-
dimensional sphere with center x1 and radius d j , which is either empty or a (d ′ − 1)-
sphere. It follows that for every j there are at most c′(d, d ′ −1, k) points pi satisfying
|x1 pi | = d j . This contradicts the assumption that N > (k −1) ·c′(d, d ′ −1, k), which
completes the proof of the lemma. 
�

As an easy consequence we get the following fact.

Lemma 2.5 No more than (c′(d, d − 1, k))d simplices can share a vertex.

Proof Indeed, all simplices that have p ∈ P as their vertex have the other d vertices on
the sphere with center p and radius dk . By Lemma 2.4, there are at most c′(d, d −1, k)

such vertices and at most (c′(d, d − 1, k))d ways to choose d of them. 
�
Now we are in a position to complete the proof of Theorem 1. Let s be a d-

simplex with vertices from P (if there is no such a simplex, we are done). Let r
be the Reuleaux simplex of s, which is defined as the intersection of d + 1 balls
with centers at the vertices of s and with radius dk . Observe that any simplex s′
different from s has at least one vertex outside of r , by Theorem A. On the other
hand, any point p ∈ P that does not belong to r must lie on one of (d + 1)(k − 1)

spheres, each of them having one of the vertices of s as its center, and the radius in
{d1, . . . , dk−1}. Since any such sphere contains at most c′(d, d − 1, k) points from
P , there are at most (d + 1)(k − 1)c′(d, d − 1, k) points from P lying outside of r ,
while every simplex s′ �= s has at least one vertex among these points. Since no more
than (c′(d, d − 1, k))d simplices can share a vertex, we have that the theorem holds
with c(d, k) = (d + 1)(k − 1)(c′(d, d − 1, k))d+1 + 1. This completes the proof of
Theorem 1.

Remark Going through the proof, one can see that it produces an extremely fast-
growing function c(d, k): a tower exponential function with �(d) levels of the form
�(k).

3 A construction

In this section, we describe a finite set of points in R
d that spans d(k − 1) + 1 regular

d-simplices of edge length dk . There is a huge gap between this lower bound and the
upper bound in Theorem 1, but the construction shows that the maximum number of
k-th largest simplices indeed grows both with k and d. The construction is inspired by
the corresponding construction for maximal (d − 1)-simplices, given in Schur et al.
(2003).

Let p0, p1, . . . , pd be the vertices of a regular unit simplex S in R
d centered at

the origin (Fig. 3b). For i �= j denote by ci j the center of the (d − 2)-face of S
complementary to the edge pi p j , i.e.,

ci j = − 1

d − 1
(pi + p j ).
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It is easy to check that

|pi ci j | = |p j ci j | =
√

d

2(d − 1)

and that the vectors pi − ci j and p j − ci j are orthogonal to pk − ci j for all k �= i, j .
Denote by Ci j the circle centered at ci j that passes through pi and p j . Then pk is
equidistant from all points of Ci j for k �= i, j .

Now for all j = 1, . . . , d put on circle C0 j new points r j
i , s j

i (i = 1, . . . , k − 1)
with the following order

p j , r j
1 , r j

2 , . . . , r j
k−1, p0, s j

1 , s j
2 , . . . , s j

k−1 ,

so that

|p jr
j

1 | = |r j
1 r j

2 | = · · · = |r j
k−2r j

k−1| = |p0s j
1 | = |s j

1 s j
2 | = · · · = |s j

k−2s j
k−1| = ε ,

where ε > 0 is very small.
Thus, we have d + 1 + 2(k − 1)d points in total and we claim that the largest

distances generated by these points are

|p j p0| = 1 = dk, |p j s
j
1 | = dk−1, . . . , |p j s

j
k−1| = d1 for all j = 1, . . . , d.

To verify this, it is enough to check that |si
mr j

n | < 1 for all i �= j and all m, n. Let s
be the projection of si

m on aff (C0 j ). Then s lies in a small neighborhood of p0 and
we have that |sr i

n| < |sp j |. By the Pythagorean theorem we get

|si
mr j

n | =
√

|si
ms|2 + |sr j

n |2 <

√
|si

ms|2 + |sp j |2 = |si
m p j | = |p0 p j | = 1.

Finally, note that any two points r j
i and s j

i together with {p1, . . . , pd}\{p j } span a
regular unit d-simplex, for all i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}, which gives
d(k − 1) + 1 simplices in total (we count also the initial simplex p0 p1 . . . pd ).

4 Proof of Theorem 2

We start with some lemmas. It is shown in Schur et al. (2003) that any two triangles
in a graph of diameters in R

3 must share a vertex. We extend this result to k-th largest
triangles for k ≥ 2.

Lemma 4.1 There is a large enough constant c such that no matter how we choose
at least kck triangles in a graph of k-th largest distances in R

3, there are always two
triangles that share a vertex.

Proof We can assume that k ≥ 2. Suppose to the contrary we have m ≥ kck triangles
no two of which share a vertex, for a large constant c. Let a1b1c1 be one of these
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triangles. Then each of the remaining m − 1 triangles has a vertex on one of the
3(k −1) spheres with centers a1, b1, c1 and radii d1, . . . , dk−1 (here we used the result
from Schur et al. 2003 mentioned above). Hence, we can find at least m−1

3(k−1)
triangles

that have at least one vertex on one fixed sphere S1. Now pick one of these triangles,
say, a2b2c2. Again, each of the remaining m−1

3(k−1)
− 1 triangles has a vertex on one

of the 3(k − 1) spheres with centers a2, b2, c2 and radii d1, . . . , dk−1, and, just like
before, at least m

32(k−1)2 − 1
32(k−1)2 − 1

3(k−1)
triangles have at least one vertex on one

fixed sphere S2. Note that all these triangles also have at least one vertex on S1, and
S2 �= S1, since they have different centers. Proceeding in this manner, after t steps
(we’ll specify t shortly) we find at least

m

3t (k − 1)t
− 1

3t (k − 1)t
− · · · − 1

3(k − 1)

triangles that have at least one vertex on each of the t distinct spheres S1, . . . , St of
radii from {d1, . . . , dk−1}. We take t = 3 · 2(k − 1) + 1 and claim that

m

3t (k − 1)t
− 1

3t (k − 1)t
− · · · − 1

3(k − 1)
≤ 2

(
t

2(k − 1) + 1

)
. (1)

Indeed, each triangle has one vertex on each of the t spheres, and, therefore, each
triangle has a vertex that lies in the intersection of at least 2(k − 1) + 1 spheres.
However, any intersection of 2(k −1)+1 spheres consists of at most two points. Thus,
each triangle has a vertex that lies in a set of at most 2

( t
2(k−1)+1

)
points. However, two

different triangles never share a vertex, hence the inequality (1). On the other hand,
we have that

m

3t (k − 1)t
− 1

3t (k − 1)t
− · · · − 1

3(k − 1)
≥ kck/2 (2)

for large enough c. From (1) and (2) we have that

kck/2 ≤ 2

(
6k − 5

2k − 1

)
,

which does not hold for large enough c. 
�
Next we count the number of k-th largest distances on a sphere in R

3 under the
condition that the radius of the sphere is large enough compared to the distances.

Lemma 4.2 Among n points on a 2-sphere there can be at most 2kn pairs at distance
dk, provided that dk is the radius of the sphere as well as the k-th largest distance.

Proof Denote the sphere by S. We consider the graph of k-th largest distances on the n
given points. If all the vertices have degree at most 4k, we are done, so we can assume
that there is a vertex v of degree at least 4k + 1. Also, if there is a vertex of degree
at most 2k, we are done, since we can delete that vertex and proceed by induction.
Therefore, we assume that all vertices have degree at least 2k + 1.
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Fig. 4 Proof of Lemma 4.2

Let u1, . . . , u4k+1 be neighbors of v. Then |vu1| = · · · = |vu4k+1| = dk (Fig. 4).
The points u1, . . . , u4k+1 are cocyclic and lie on one hemisphere with point v (this
follows from the fact that the radius of S is dk). Let C be the circle that contains
u1, . . . , u4k+1 and let p be its center. It is an easy exercise to show that there exists
i such that the diameter of C that contains ui divides the rest of the points into two
parts of 2k points. From the assumption we know that ui has a neighbor w �= v. Now
we want to locate the projection w′ of point w to the plane of C . In the plane of C
consider the line � that is perpendicular to ui p and passes through p. We claim that
w′ lies on the same side of � as point ui . This follows from the fact that w lies on the
circle S(ui , dk) ∩ S, which in turn lies on the same side of the plane determined by
v and � as point ui (here S(ui , dk) denotes the sphere with center ui and radius dk).
Without loss of generality let the points lying on one side of the diameter of C through
ui be u1, . . . , u2k and let w′ lies on the other side of the diameter (or, possibly, on the
diameter). Then |w′u j | > |w′ui |, for all j = 1, . . . , 2k. By the Pythagorean theorem
it follows that |wu j | > |wui | = dk for all j , and, hence, |wu j | ∈ {d1, . . . , dk−1}.
However, each of the k − 1 possible values can be taken by |wu j | for at most two
different j’s. This is a contradiction. 
�

Now the Proof of Theorem 2 is not difficult.

Proof of Theorem 2 Consider the graph of k-th largest distances on the given set P .
Take a maximal set of triangles in which no two share a vertex. Denote by m the number
of triangles in this set and by M the total number of triangles. Then m = kO(k), by
Lemma 4.1. Each of the remaining M − m triangles shares a vertex with one of the m
triangles. Thus, we can find at least M−m

3m triangles that share a vertex v. The sphere
with center v and radius dk contains at most n − 1 points of P that generated at
least M−m

3m distances dk . Now Lemma 4.2 gives us M−m
3m ≤ 2k(n − 1), which implies

M ≤ kO(k)n. 
�
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5 Proof of Theorem 3

Here we discuss a method based on an interesting graph-theoretic lemma, from which
Theorem 3 follows immediately. We formulated the lemma recently with Alexey
Glazyrin and the following proof was given on MathOverflow by Timothy Gowers,
Sergey Norin and Fedor Petrov (MathOverflow 2010).

Lemma 5.1 Given a graph G(V, E) whose edges are colored in two colors, red and
blue. Suppose there are constants c, c′ > 0 such that the following two conditions
hold:

(1) for any S ⊆ V , there are at most c|S| red edges in G[S];
(2) for any S ⊆ V , if G[S] contains no red edges, then it contains at most c′|S| blue

edges (resp., triangles).

Then the total number of blue edges (resp., triangles) is at most c′ · 24c+1|V | (resp.,
c′ · 26c+2|V |).
Proof We will give a detailed proof just for the case of edges. The proof for triangles
can be obtained with minor changes, which we explain at the end.

First we show that we can label the vertices of G by v1, v2, . . . , vn such that vi+1
has at most 2c neighbors in {v1, . . . , vi } to which it is connected by a red edge, for
all i = 1, . . . , n − 1. Indeed, let vn be a vertex with the smallest red-degree in G (the
red-degree is the number of red edges incident to a vertex). Then degred(vn) ≤ 2c.
We proceed by induction: supposing that the vertices vn, vn−1, . . . , vk+1 are already
chosen, we pick a vertex vk ∈ V \ {vn, vn−1, . . . , vk+1} that has the smallest red-
degree in G[V \ {vn, vn−1, . . . , vk+1}]. By the assumption, the red-degree of vk in the
restricted graph will not be larger than 2c, as required.

Now we define a random subset S of V recursively, as follows: if S ∩ {v1, . . . , vi }
has already been chosen, we put vi+1 in S with probability 1

2 if it is not joined by a
red edge to any of the vertices already in S, otherwise we do not put it in S. Thus,
we obtain a random red-independent set S of vertices (where by red-independent we
mean that G[S] contains no red edges).

The next step is to give a lower bound for the probability that a fixed blue edge is
chosen. Let x and y be two vertices connected by a blue edge. Since both x and y have
at most 2c vertices preceding them, to which they are connected by a red edge, we
have that Pr[x ∈ S & y ∈ S] is at least the probability that none of their neighbors is
chosen multiplied by the probability that x and y are chosen, i.e.,

Pr[x ∈ S & y ∈ S] ≥ 1

24c+2 .

Note that we did not use that x and y are connected by a blue edge, we used just that
xy is not a red edge. Finally, for the expected number of blue edges in S we have

E[#blue edges in S] ≥ 1

24c+2 × #blue edges
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on one hand, and

E[#blue edges in S] ≤ c′ E[|S|] ≤ c′ · |V |
2

on the other hand, since each vertex of G lies in S with probability at most 1
2 . By

combining the two inequalities, we get

#blue edges ≤ c′ · 24c+1|V |,

as claimed.
To get the bound for the number of blue triangles, we proceed in the same manner,

except that we use the estimate

Pr[x ∈ S & y ∈ S & z ∈ S] ≥ 1

26c+3 ,

for any blue triangle xyz, and we consider the expected number of blue triangles
in S, instead of edges. 
�

Now Theorem 3 follows with no difficulty.

Proof of Theorem 3 Consider a graph on n points in R
3, whose red and blue edges

are, respectively, diameters and second largest distances. Then the conditions of the
edge version of Lemma 5.1 are satisfied with c = c′ = 2 (since the maximum number
of diameters is 2n −2, see Swanepoel (2008)). Hence, we conclude that the number of
second largest distances is at most 210n. Applying the lemma repeatedly k − 1 times
finishes the proof. 
�

The constant ck we get is tower exponential in k, while we expect a polynomial
dependence on k. This might possibly be achieved by improving the dependence on c
and c′ of the final constant in Lemma 5.1. So far the above graph-theoretic approach
is the only way how we can derive a linear upper bound for k-th largest distance in R

3.
Note that the triangle version of Lemma 5.1 (with c = 2 and c′ = 1, by Theorem B)
also provides an instant Proof of Theorem 2, although with a much weaker constant.
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