INTRODUCTION TO ℓ_{2}-METHODS IN TOPOLOGY: REDUCED ℓ_{2}-HOMOLOGY, HARMONIC CHAINS, ℓ_{2}-BETTI NUMBERS

BY
Beno Eckmann*
Mathematical Research Institute, ETH, 8092 Zurich, Switzerland
e-mail: eckmann@math.ethz.ch

Preface

These are notes from a mini-course at the ETH Zurich addressed to faculty and advanced students. Its purpose was to provide a first acquaintance of the Hilbert space methods in algebraic topology which were initated by Atiyah in 1976 and have become a quite general and important tool during more recent years. Prerequisites are basic algebraic topology of cell-complexes and basic concepts of Hilbert spaces. The definitions (Hilbert- G-module, von Neumann dimension, reduced (co)homology, ℓ_{2}-Betti numbers of finite complexes) are given, as well as complete proofs of main properties such as homotopy invariance, Poincaré duality, etc. Applications which cannot, or not easily, be done without ℓ_{2}-Betti numbers concern (partial) Euler characteristic, finitely presented groups, and 4manifolds; the Cheeger-Gromov lemma on amenable groups is stated and proved. The integrality conjecture known as "Atiyah conjecture" is formulated in a most general way and discussed.

A word about our systematic use of the group of harmonic chains, isomorphic to both homology and cohomology groups. To prepare the ground this is illustrated, in a preliminary chapter, by the elementary case of (co-)homology with real coefficients of a finite cell-complex X. The chain groups $C_{i}(X)$ are finite dimensional vector spaces with a natural scalar product where the cells form an orthonormal basis. Boundary d and coboundary δ are adjoint maps; C_{i} decomposes into three mutually orthogonal subspaces: $d C_{i+1}, \delta C_{i-1}$, and the kernel

[^0]\mathcal{H}_{i} of the combinatorial Laplacian $\Delta=d \delta+\delta d$ (or equivalently the intersection of the i-cycle and the i-cocycle space), as described in the intuitive picture

Interesting use of the "harmonic" chains $\in \mathcal{H}_{i}$ representing (co-)homology classes can already be made in that elementary situation.

The ℓ_{2}-methods appear if a regular covering Y of X is considered, in general an infinite cell-complex, with the covering transformation group G operating freely. The same decomposition, as above, of the Hilbert space of ℓ_{2}-chains is obtained with the only difference that one has to replace the i-boundary space and the i coboundary space by their closures. Thus \mathcal{H}_{i} is isomorphic to reduced homology: cycles modulo the closure of the boundaries, and also to reduced cohomology. All these Hilbert spaces admit isometric G-action; they are Hilbert- G-modules, and their von Neumann dimension relative to G, a real non-negative number, plays the role of the vector space dimensions in the finite complex case. In particular, the von Neumann dimension of \mathcal{H}_{i} is the i-th ℓ_{2}-Betti number β_{i} of Y relative to G. If $Y=\tilde{X}$, the universal covering, G the fundamental group of X, it is just called $\beta_{i}(X)$. For $G=1, Y=X$, one is in the elementary case above. If G is finite, $\beta_{i}(X)$ is the ordinary Betti number of Y divided by $|G|$. For infinite G the values of the ℓ_{2}-Betti numbers are more complicated but they nevertheless compute the Euler characteristic exactly as the ordinary Betti numbers do.

Many thanks to Guido Mislin for writing up these notes, very carefully and with many improvements; and to Emmanuel Dror Farjoun for asking us to publish them in this journal despite their introductory character.

Beno Eckmann

1. Finite $C W$-complexes and \mathbb{R}-homology

1.1. Let X be a finite $C W$-complex with cellular chain complex $\left(K_{*}(X), d\right)$. We write $C_{*}(X)=\mathbb{R} \otimes K_{*}(X)$ for the associated chain complex over \mathbb{R}. If α_{i} denotes the number of i-cells of X, then

$$
\operatorname{dim}_{\mathbb{R}} C_{i}(X)=\alpha_{i},
$$

and $C_{i}(X)$ has a natural basis $\sigma_{1}, \ldots, \sigma_{\alpha_{i}}$ consisting of the i-cells of X. We will consider $C_{i}(X)$ as a (real) Hilbert space with orthonormal basis $\sigma_{1}, \ldots, \sigma_{\alpha_{i}}$ and associated inner product

$$
\langle\quad, \quad\rangle: C_{i} \otimes_{\mathbb{R}} C_{i} \longrightarrow \mathbb{R}
$$

The boundary operator

$$
d_{i}: C_{i}(X) \longrightarrow C_{i-1}(X)
$$

then has an adjoint

$$
d_{i}^{*}=\delta_{i-1}: C_{i-1}(X) \longrightarrow C_{i}(X)
$$

given by $\left\langle\delta_{i-1} x, y\right\rangle=\left\langle x, d_{i} y\right\rangle$. Thus

$$
\begin{aligned}
\operatorname{ker} \delta_{i} & =\left(\operatorname{im} d_{i+1}\right)^{\perp} \subset C_{i}(X), \quad \text { and } \\
\operatorname{ker} d_{i} & =\left(\operatorname{im} \delta_{i-1}\right)^{\perp} \subset C_{i}(X)
\end{aligned}
$$

Putting $Z_{i}=\operatorname{ker} d_{i}, B_{i}=\operatorname{im} d_{i+1}, Z^{i}=\operatorname{ker} \delta_{i}, B^{i}=\operatorname{im} \delta_{i-1}$ and $C_{i}=C_{i}(X)$, one finds orthogonal decompositions

$$
C_{i}=B^{i} \perp Z_{i}=B_{i} \perp Z^{i}
$$

Since $\left\langle\delta_{i-1} x, d_{i+1} y\right\rangle=0$ for all $x, y \in C_{i}$, one has $B^{i} \perp B_{i}$ and therefore

$$
C_{i}(X)=B_{i} \perp B^{i} \perp\left(Z_{i} \cap Z^{i}\right)
$$

the Hodge-de Rham decomposition of $C_{i}(X)$. The groups

$$
\mathcal{H}_{i}(X):=Z_{i}(X) \cap Z^{i}(X)
$$

are called the harmonic i-chains of X. One defines the Laplacian by

$$
\Delta_{i}=d_{i+1} \delta_{i}+\delta_{i-1} d_{i}: C_{i} \longrightarrow C_{i}
$$

It has the property that

$$
\mathcal{H}_{i}(X)=\left\{x \in C_{i}(X) \mid \Delta_{i}(x)=0\right\}
$$

Indeed, it is plain that $Z_{i} \cap Z^{i} \subset \operatorname{ker} \Delta_{i}$. Conversely, if $\Delta_{i} x=0$ then

$$
d_{i+1} \delta_{i} x=-\delta_{i-1} d_{i} x \in B_{i} \cap B^{i}=\{0\}
$$

thus $\delta_{i} x \in B^{i+1} \cap Z_{i+1}=\{0\}$ and $d_{i} x \in B_{i-1} \cap Z^{i-1}=\{0\}$, implying that $x \in Z_{i} \cap Z^{i}$.
1.2. The Euler characteristic of X is, as usual, defined by

$$
\chi(X)=\sum_{i}(-1)^{i} \alpha_{i},
$$

and we define the Betti numbers by putting

$$
b_{i}(X)=\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{i}(X)
$$

Corollary 1.2.1: The Euler characteristic of X satisfies

$$
\chi(X)=\sum_{i}(-1)^{i} b_{i}(X)
$$

Proof: Since $C_{i}(X)=B^{i} \perp B_{i} \perp \mathcal{H}_{i}(X)$ and $Z^{i}=B^{i} \perp \mathcal{H}_{i}(X)$, we see that δ_{i} maps $\left(Z^{i}\right)^{\perp} \subset C_{i}(X)$ onto B^{i+1}, inducing an isomorphism

$$
\begin{equation*}
B_{i} \xrightarrow{\cong} B^{i+1} \tag{1}
\end{equation*}
$$

so that $\operatorname{dim}_{\mathbb{R}} B_{i}=\operatorname{dim}_{\mathbb{R}} B^{i+1}$ for all i. Since $\alpha_{i}=\operatorname{dim}_{\mathbb{R}} C_{i}(X)$, it follows then that

$$
\chi(X)=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{R}} C_{i}(X)=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{R}} \mathcal{H}_{i}(X)+r
$$

where $r=\sum_{i}(-1)^{i}\left(\operatorname{dim}_{\mathbb{R}} B_{i}+\operatorname{dim}_{\mathbb{R}} B^{i}\right)=0$.
Similarly, we obtain the following inequalities.
Corollary 1.2.1 (Morse Inequalities): Let X be a finite $C W$-complex with α_{i} i-cells and Betti numbers $b_{i}, i \in \mathbb{N}$. Then, for every $k \geq 0$,

$$
\alpha_{k}-\alpha_{k-1}+\alpha_{k-2}-\cdots(-1)^{k} \alpha_{0} \geq b_{k}-b_{k-1}+b_{k-2} \cdots(-1)^{k} b_{0}
$$

Proof: Indeed, using (1), $C_{i}=B_{i} \perp B^{i} \perp \mathcal{H}_{i} \cong B_{i} \oplus B_{i-1} \oplus \mathcal{H}_{i}$ and therefore

$$
\sum_{i=0}^{k}(-1)^{k-i} \alpha_{i}-\sum_{i=0}^{k}(-1)^{k-i} b_{i}=\operatorname{dim}_{\mathbb{R}} B_{k} \geq 0
$$

1.3. The cellular \mathbb{R}-homology groups are defined by

$$
H_{i}(X ; \mathbb{R})=Z_{i}(X) / B_{i}(X) .
$$

Because $Z_{i}(X)=B_{i}(X) \perp \mathcal{H}_{i}(X)$, the orthogonal projection $Z_{i}(X) \rightarrow \mathcal{H}_{i}(X)$ induces an isomorphism

$$
\begin{equation*}
H_{i}(X ; \mathbb{R}) \xrightarrow{\cong} \mathcal{H}_{i}(X) . \tag{2}
\end{equation*}
$$

In particular, our Betti numbers agree with the usual Betti numbers, $b_{i}(X)=$ $\operatorname{dim}_{\mathbb{R}} H_{i}(X ; \mathbb{R})$, and they are therefore homotopy invariants.

The real cellular cochain complex $C^{*}=C^{*}(X)=\operatorname{Hom}_{\mathbb{R}}\left(C_{*}(X), \mathbb{R}\right)$ has differential defined by $\delta^{i-1}=\operatorname{Hom}_{\mathbb{R}}\left(d_{i}, \mathbb{R}\right): C^{i-1} \rightarrow C^{i}$. Using the inner product of C_{*}, one obtains natural isomorphism

$$
\Lambda_{i}: C_{i} X \longrightarrow C^{i} X, \quad \sigma \mapsto\langle\sigma, \quad\rangle,
$$

σ an i-cell of X. Since

$$
\begin{aligned}
\left(\left(\Lambda_{i+1} \delta_{i}\right)(\sigma)(c)\right. & =\left\langle\delta_{i} \sigma, c\right\rangle=\left\langle\sigma, d_{i+1} c\right\rangle \\
& =\left(\Lambda_{i}(\sigma)\right)\left(d_{i+1} c\right)=\left(\left(\delta^{i} \Lambda_{i}\right)(\sigma)\right)(c)
\end{aligned}
$$

$\Lambda_{*}:\left(C_{*}, \delta\right) \rightarrow\left(C^{*}, \delta\right)$ defines an isomorphism of cochain complexes, mapping $Z^{i}(X)$ isomorphically onto $\operatorname{ker} \delta^{i}$, and $B^{i}(X)$ onto im δ^{i-1}. We may therefore refer, under that isomorphism, to the elements of $Z^{i}(X) \subset C_{i}(X)$ as cocycles, and $B^{i}(X) \subset C_{i}(X)$ as coboundaries. The harmonic chains are then those chains, which are simultaneously cycles and cocycles.
1.4. A cellular map $f: X \rightarrow Y$ induces $f_{i}: C_{i}(X) \rightarrow C_{i}(Y)$ mapping cycles to cycles, but in general, cocycles are not mapped to cocycles (of course, the adjoint f_{i}^{*} maps cocycles to cocycles). If we wish to view \mathcal{H}_{i} as a (co)functor, we may proceed as follows. Using the identification (2): $H_{i}(X ; \mathbb{R}) \rightarrow \mathcal{H}_{i}(X)$ induced by the orthogonal projection $Z_{i}(X) \rightarrow \mathcal{H}_{i}(X)$, we obtain a functor \mathcal{H}_{i} on the category of finite $C W$-complexes and cellular maps; the so induced maps

$$
f_{1}: \mathcal{H}_{i}(X) \rightarrow \mathcal{H}_{i}(Y)
$$

given by

$$
f_{!}: \mathcal{H}_{i}(X) \xrightarrow{\cong} H_{i}(X ; \mathbb{R}) \xrightarrow{H_{i}(f)} H_{i}(Y ; \mathbb{R}) \stackrel{\cong}{\stackrel{\cong}{H}} \mathcal{H}_{i}(Y)
$$

depend obviously on the homotopy class of f only, showing that \mathcal{H}_{i} is a functor on the category of finite $C W$-complexes and homotopy classes of (not necessarily cellular) maps. In a similar way, using the orthogonal projection $Z^{i}(X) \rightarrow \mathcal{H}_{i}(X)$, we obtain isomorphisms

$$
\begin{equation*}
H^{i}(X ; \mathbb{R}) \xrightarrow{\cong} \mathcal{H}_{i}(X) \tag{3}
\end{equation*}
$$

yielding cofunctors (i.e., contravariant functors) \mathcal{H}_{i} with induced maps

$$
f^{!}: \mathcal{H}_{i}(Y) \rightarrow \mathcal{H}_{i}(X)
$$

and one checks easily that $f_{!}$and $f^{!}$are adjoints of each other.
1.5. To illustrate the use of harmonic chains, we consider the following example. Let $p r: \bar{X} \rightarrow X$ be the projection of a finite, regular, connected covering space, with X a finite $C W$-complex and \bar{X} carrying the cell structure induced from the cell structure of the base space X. If $\bar{\sigma}$ denotes an i-cell over σ and $\bar{\tau}$ one over τ, the projection $p r_{i}: C_{i} \bar{X} \rightarrow C_{i} X$ satisfies

$$
\left\langle p r_{i} \bar{\sigma}, \tau\right\rangle=\delta_{\sigma, \tau}=\left\langle\bar{\sigma}, \sum_{g \in G} g \bar{\tau}\right\rangle
$$

where G denotes the covering transformation group. It follows that the adjoint $\left(p r_{i}\right)^{*}: C_{i}(X) \rightarrow C_{i}(\bar{X})$ is given by $c \mapsto \sum_{g \in G} g \bar{c}$, where $p r_{i} \bar{c}=c$. We will use the notation $\sum g \bar{c}=N \bar{c}, N \in \mathbb{Z}[G]$ the norm element, thus

$$
p r_{i}^{*} \circ p r_{i}=N, \quad p r_{i} \circ p r_{i}^{*}=|G| .
$$

Therefore, the adjoint $p r_{i}^{*}: C_{i}(X) \rightarrow C_{i}(\bar{X})$ is injective, and

$$
p r_{i}^{*}\left(p r_{i} \circ \delta_{i-1}\right)=N \delta_{i-1}=\delta_{i-1} N=p r_{i}^{*}\left(\delta_{i-1} \circ p r_{i}\right)
$$

so that, in this case, $p r_{i}$ commutes with δ and d, inducing

$$
\mathcal{H}_{i}\left(p r_{i}\right)=p r_{!}: \mathcal{H}_{i}(\bar{X}) \rightarrow \mathcal{H}_{i}(X)
$$

The adjoint $(p r!)^{*}=p r_{i}^{!}$is then induced by $p r_{i}^{*}$ and satisfies $p r_{!} \circ p r^{!}=|G|$ as well as $p r^{!} \circ p r_{!}=N$. We thus obtain isomorphisms

$$
p r_{!}: \mathcal{H}_{i}(\bar{X})^{G} \xrightarrow{\cong} \mathcal{H}_{i}(X), \quad \text { and } \quad p r^{!}: \mathcal{H}_{i}(X) \xrightarrow{\cong} \mathcal{H}_{i}(\bar{X})^{G}
$$

If one writes $\mathcal{H}_{i}(g)$ for the map $g!: \mathcal{H}_{i}(\bar{X}) \rightarrow \mathcal{H}_{i}(\bar{X})$ induced by the covering transformation $g: \bar{X} \rightarrow \bar{X},(g \in G)$, then $\mathcal{H}_{i}(\bar{X})$ is an $\mathbb{R}[G]$-module and

$$
\begin{equation*}
b_{i}(X)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left(\mathcal{H}_{i}(g)\right) \tag{4}
\end{equation*}
$$

because $\frac{1}{|G|} \sum \operatorname{tr}\left(\mathcal{H}_{i}(g)\right)$ equals the multiplicity of the trivial representation in the G-representation $\mathcal{H}_{i}(\bar{X})$.

Remark 1.5.1: The idea of using the natural inner product structure on chain groups goes back to [6], where the notion of harmonic chains for finite simplicial complexes was first introduced and discussed. Various applications, in particular of (4), can be found in [7].

2. Regular coverings of finite $C W$-complexes; ℓ_{2}-chains

Let Y be a connected $C W$-complex and G a group acting freely on Y by permuting the cells. We assume* the action on Y to be cocompact so that $X=Y / G$ is a finite $C W$-complex. Note that then G must be countable, being a factor group of the finitely generated fundamental group $\pi_{1}(X)$. We write $\ell_{2} G$ for the (real separable) Hilbert space of square summable functions** $f: G \rightarrow \mathbb{R}$; sometimes we use the notation $\sum_{x \in G} f(x) x$ for such an f, with $f(x) \in \mathbb{R}$ and $\sum f(x)^{2}<\infty$. (The general facts which follow do not depend on the condition of G being countable. If the discrete group G is not countable, $\ell_{2} G$ is defined to be the Hilbert space of real valued functions on G with countable support.) The inner product on $\ell_{2} G$ is given by

$$
\ell_{2} G \times \ell_{2} G \xrightarrow{\langle,} \mathbb{R}, \quad\langle f, g\rangle=\sum_{x \in G} f(x) g(x)
$$

Note that the group algebra $\mathbb{R} G$ can then be viewed as a dense subspace of $\ell_{2} G$, consisting of all functions $G \rightarrow \mathbb{R}$ with finite support. In this way we may consider $G \subset \ell_{2} G$ as a subset, and we write $1 \in \ell_{2} G$ for the image of $1 \in G$. We like to stress that the inclusion $\mathbb{R}[G] \subset \ell_{2} G$ is not an inclusion of rings: the multiplication in $\mathbb{R}[G]$ does in general not extend in a natural way to a multiplication in $\ell_{2} G$. The elements $y \in G$ operate then via isometries on $\ell_{2} G$, from the left and from the right: for $f \in \ell_{2} G$ one has

$$
y \cdot \sum_{x} f(x) x=\sum_{x} f\left(y^{-1} x\right) x, \quad \sum_{x} f(x) x \cdot y=\sum_{x} f\left(x y^{-1}\right) x
$$

yielding a $\mathbb{Z}[G]$-bimodule structure on $\ell_{2} G$. Note also that the associated action of $\mathbb{R} G$ is an action by bounded operators. Indeed if $\alpha=\sum r(x) x \in \mathbb{R} G$ and $f \in \ell_{2} G$, then

$$
\|\alpha \cdot f\| \leq \sum|r(x)|\|x f\|=|\alpha| \cdot\|f\|
$$

where $|\alpha|=\left(\sum|r(x)|\right) ;$ similarly for $\|f \cdot \alpha\|$.
2.2. Because G acts cocompactly on Y, the cellular chain group $K_{i} Y$ is a finitely generated free $\mathbb{Z}[G]$-module of rank equal to the number of i-cells of $X=Y / G$. We put

$$
C_{i}(Y, G)=\ell_{2} G \otimes_{G} K_{i}(Y)
$$

* Cf. Remark 2.6.3.
** For simplicity we work throughout over \mathbb{R}. Everything could be done over \mathbb{C} (which is relevant in a more general context, but not here).

If the G-action on Y is clear from the context, we write just $C_{i}(Y)$ for $C_{i}(Y, G)$. Note that $C_{i}(Y)$ is a (left) $\mathbb{R} G$-module. We define a Hilbert space structure on $C_{i}(Y)$ by exhibiting an orthonormal Hilbert basis. For this we choose from each G-orbit of i-cells a representative $\bar{\tau}_{i}^{\mu}, \mu \in\left\{1, \ldots, \alpha_{i}\right\}$, with α_{i} the number of i-cells of X. Then

$$
\left\{x \otimes \bar{\tau}_{i}^{\mu} \mid x \in G, \mu \in\left\{1, \ldots, \alpha_{i}\right\}\right\}
$$

constitutes an orthonormal Hilbert basis for $C_{i}(Y)$; obviously, the Hilbert space structure on $C_{i}(Y)$ does not depend on the choice of the representatives $\bar{\tau}_{i}^{\mu}$. (As a matter of fact, $C_{i}(Y)$ is naturally isomorphic as a Hilbert space to the space of square summable chains

$$
C_{i}^{(2)}(Y):=\left\{\sum_{\sigma \in J_{i}} f(\sigma) \sigma \mid f(\sigma) \in \mathbb{R}, \sum_{\sigma \in J_{i}} f(\sigma)^{2}<\infty\right\}
$$

with orthonormal Hilbert basis $\{\sigma\}_{\sigma \in J_{i}}, J_{i}$ denoting the set of i-cells of Y.) Note also that for $f \in \ell_{2} G$, the elements $f \otimes \bar{\tau}_{i}^{\mu} \in C_{i}(Y)$ satisfy $\left\|f \otimes \bar{\tau}_{i}^{\mu}\right\|=$ $\left\|\sum f(x) x \otimes \bar{\tau}_{i}^{\mu}\right\|=\|f\|$ and therefore

$$
\begin{aligned}
\left(\ell_{2} G\right)^{\alpha_{i}} & \rightarrow C_{i}(Y) \\
\left(f_{1}, \ldots, f_{\alpha_{i}}\right) & \mapsto \sum_{\mu=1}^{\alpha_{i}} f_{\mu} \otimes \bar{\tau}_{i}^{\mu}
\end{aligned}
$$

defines an isometric G-equivariant isomorphism of Hilbert spaces (here $\left(\ell_{2} G\right)^{\alpha_{i}}$ is considered as a Hilbert-space in the usual way, with

$$
\left\|\left(f_{1}, \ldots, f_{\alpha_{i}}\right)\right\|^{2}=\sum_{\mu=1}^{\alpha_{i}}\left\|f_{\mu}\right\|^{2}
$$

so that the inclusions $\ell_{2} G \rightarrow\left(\ell_{2} G\right)^{\alpha_{i}}$ are isometric G-equivariant embeddings). The induced boundary maps

$$
\ell_{2} G \otimes_{G} d_{i}: C_{i}(Y) \rightarrow C_{i-1}(Y)
$$

which we denote by d_{i} too, if no confusion can arise, are bounded operators. Indeed, the following more general result is easy to prove.

Lemma 2.2.1: Let $\varphi:(\mathbb{R} G)^{n} \rightarrow(\mathbb{R} G)^{m}$ be a morphism of $\mathbb{R} G$-modules. Then the induced operator $\tilde{\varphi}:=\ell_{2} G \otimes_{\mathbb{R} G} \varphi:\left(\ell_{2} G\right)^{n} \rightarrow\left(\ell_{2} G\right)^{m}$ is bounded.

Proof: Let $\left[\varphi_{i j}\right]$ denote the matrix of φ so that

$$
\varphi\left(a_{1}, \ldots, a_{n}\right)=\left(\sum a_{i} \varphi_{i 1}, \ldots, \sum a_{i} \varphi_{i m}\right), \quad\left(a_{1}, \ldots, a_{n}\right) \in(\mathbb{R} G)^{n}
$$

with $\varphi_{i j} \in \mathbb{R} G$. Each $\varphi_{i j}$ has the form $\sum_{x} c_{i j}(x) x$, with $c_{i j}(x) \in \mathbb{R}$ and $x \in G$. We write as before

$$
\left|\varphi_{i j}\right|=\sum_{x}\left|c_{i j}(x)\right|
$$

Then for $f \in \ell_{2} G$ one has $\left\|f \cdot \varphi_{i j}\right\| \leq\left|\varphi_{i j}\right| \cdot\|f\|$, and

$$
\begin{aligned}
\left\|\tilde{\varphi}\left(f_{1}, \ldots, f_{n}\right)\right\|^{2} & =\sum_{j}\left\|\sum_{i} f_{i} \varphi_{i j}\right\|^{2} \\
& \leq \sum_{i, j}\left|\varphi_{i j}\right|^{2}\left\|f_{i}\right\|^{2} \\
& \leq\left(\sum_{i, j}\left|\varphi_{i j}\right|^{2}\right)\left\|\left(f_{1}, \ldots, f_{n}\right)\right\|^{2}
\end{aligned}
$$

Thus $\tilde{\varphi}$ is bounded.
2.3. In particular, the operators $d_{i}: C_{i}(Y) \rightarrow C_{i-1}(Y)$ and their adjoints $\delta_{i-1}=$ d_{i}^{*} are continuous. We put $\operatorname{ker} d_{i}=Z_{i}(Y)$, and $\operatorname{ker} \delta_{i}=Z^{i}(Y)$; these are thus closed subspaces of $C_{i}(Y)$ so that

$$
\mathcal{H}_{i}(Y, G):=Z_{i}(Y) \cap Z^{i}(Y)
$$

is a Hilbert subspace (i.e., a closed linear G-subspace) of $C_{i}(Y)$. The images $B_{i}(Y):=\operatorname{im}\left(d_{i+1}: C_{i+1}(Y) \rightarrow C_{i}(Y)\right)$ and $B^{i}(Y)=\operatorname{im}\left(\delta_{i-1}: C_{i-1}(Y) \rightarrow C_{i}(Y)\right)$ need not be closed; we write \bar{B}_{i} and \bar{B}^{i} for their closures, respectively. One finds then, as in 1.2 , orthogonal decompositions

$$
C_{i}(Y)=\bar{B}^{i} \perp Z_{i}=\bar{B}_{i} \perp Z^{i}=\bar{B}^{i} \perp \bar{B}_{i} \perp \mathcal{H}_{i}
$$

(ℓ_{2}-Hodge-de Rham decomposition). As in the first section, we define the Laplacian by

$$
\Delta_{i}=d_{i+1} \delta_{i}+\delta_{i-1} d_{i}: C_{i}(Y) \rightarrow C_{i}(Y)
$$

and

$$
\mathcal{H}_{i}(Y, G)=\left\{c \in C_{i}(Y) \mid \Delta_{i} c=0\right\}
$$

The proof is essentially the same as in the situation described in section 1. One refers to $\mathcal{H}_{i}(Y, G)$ as the space of harmonic ℓ_{2}-chains on Y, and we will often just write $\mathcal{H}_{i}(Y)$, if the G-action is plain from the context.

By analogy with 1.3 it is now natural to introduce reduced ℓ_{2}-homology groups of Y by

$$
{ }^{r e d} H_{i}(Y)=Z_{i}(Y) / \bar{B}_{i}(Y)
$$

Then the projection $Z_{i} \rightarrow{ }^{r e d} H_{i}(Y)$ induces an isomorphism $\mathcal{H}_{i}(Y) \cong{ }^{r e d} H_{i}(Y)$ as Hilbert spaces. Similarly reduced cohomology groups are defined by

$$
\operatorname{red}^{i}(Y)=Z^{i}(Y) / \bar{B}^{i}(Y)
$$

and one has an isomorphism $\mathcal{H}_{i}(Y) \cong{ }^{r e d} H^{i}(Y)$. In case of a finite group G it is clear from section 1 that

$$
\mathcal{H}_{i}(Y) \cong H_{i}(Y ; \mathbb{R}) \cong H^{i}(Y ; \mathbb{R})
$$

2.4. One might also look at non-reduced (co)-homology groups Z_{i} / B_{i} and Z^{i} / B^{i}. As for the homology groups,

$$
Z_{i} / B_{i} \cong H_{i}\left(\ell_{2} G \otimes_{G} K_{*}(Y)\right)=: H_{i}^{G}\left(Y ; \ell_{2} G\right)
$$

the equivariant homology of Y with coefficients the G-module $\ell_{2} G$. There is thus a natural surjection

$$
H_{i}^{G}\left(Y ; \ell_{2} G\right) \rightarrow^{r e d} H_{i}(Y)
$$

In a similar way, using the cochain complex

$$
C^{i}(Y):=\operatorname{Hom}_{G}\left(K_{i}(Y), \ell_{2} G\right)
$$

one defines equivariant cohomology groups

$$
H_{G}^{i}\left(Y ; \ell_{2} G\right):=H^{i}\left(C^{*}(Y)\right)=H^{i}\left(\operatorname{Hom}_{G}\left(K_{*}(Y), \ell_{2} G\right)\right)
$$

Because $K_{i}(Y)$ is finitely generated and free as a $\mathbb{Z}[G]$-module, $K_{i}(Y)$ is isomorphic to its dual $\operatorname{Hom}_{G}\left(K_{i}(Y), \mathbb{Z}[G]\right)$. Similarly, using the Hilbert basis of $C_{i}(Y)$ corresponding to the i-cells of Y, we can identify the Hilbert spaces $C_{i}(Y)$ and $C^{i}(Y)=\operatorname{Hom}_{G}\left(K_{i}(Y), \ell_{2} G\right)$. This leads to isomorphisms

$$
Z^{i} / B^{i} \cong H^{i}\left(\operatorname{Hom}_{G}\left(K_{i}(Y), \ell_{2} G\right)\right)=: H_{G}^{i}\left(Y ; \ell_{2} G\right)
$$

and a natural surjection

$$
H_{G}^{i}\left(Y ; \ell_{2} G\right) \rightarrow^{r e d} H^{i}(Y)
$$

We also point out that, analogous to the isomorphism $C_{i}^{(2)}(Y) \cong C_{i}(Y)$, the cochains $C^{i}(Y)$ can be identified with the ℓ_{2}-cochains $C_{(2)}^{i}(Y)$ (defined as those real cochains $\phi: K_{i}(Y) \rightarrow \mathbb{R}$, which are square summable, $\sum|\phi(\sigma)|^{2}<\infty$, the sum being taken over all i-cells of Y). Clearly, $C_{(2)}^{i}(Y)$ is naturally isomorphic to
the Hilbert space dual $\operatorname{Hom}_{\text {cont }}\left(C_{i}^{(2)}(Y), \mathbb{R}\right)$, and one has isomorphisms of Hilbert spaces

$$
{ }^{r e d} H_{i}(Y) \cong \operatorname{Hom}_{c o n t}\left({ }^{r e d} H_{i}(Y), \mathbb{R}\right) \cong{ }^{r e d} H^{i}(Y), \quad h \mapsto\langle h, \quad\rangle
$$

Finally, we observe that there are obvious maps

$$
\operatorname{can}_{i}: H_{i}(Y ; \mathbb{R}) \longrightarrow{ }^{r e d} H_{i}(Y)
$$

given by considering an ordinary real cycle as an ℓ_{2}-cycle, and

$$
\operatorname{can}^{i}:{ }^{\operatorname{red}} H^{i}(Y) \longrightarrow H^{i}(Y ; \mathbb{R})
$$

which can be described as follows: $\operatorname{can}^{i}(x)=[\tilde{x}]$, where \tilde{x} denotes the unique harmonic cocycle in $C_{(2)}^{i}$ representing x, and $[\tilde{x}]$ is its ordinary \mathbb{R}-cohomology class.

As is clear from examples (see 2.7.3), the unreduced groups are indeed different from the reduced ones, and they do not easily yield numerical invariants. The advantage of the reduced groups is that they are Hilbert G-modules, as explained in the next section.
2.5. If M is a Hilbert space, we call $V \subset M$ a Hilbert subspace, if V is a closed linear subspace with induced Hilbert space structure.

Definition 2.5.1: A Hilbert G-module is a left G-module M, which is a Hilbert space on which G acts by isometries such that M is isometrically G-isomorphic to a G-stable Hilbert subspace of $\left(\ell_{2} G\right)^{n}$ for some n.

It follows that $C_{i}(Y), Z_{i}(Y), Z^{i}(Y), \bar{B}_{i}(Y), \bar{B}^{i}(Y)$ and $\mathcal{H}_{i}(Y)$ are all Hilbert G-modules. If M is a Hilbert G-module and $V \subset M$ a G-stable linear subspace, then $M / \bar{V}, \bar{V}$ the closure of V, has a natural Hilbert G-module structure, with norm given by

$$
\|w\|=\min \{\|\tilde{w}\| \pi(\tilde{w})=w\}
$$

where $\pi: M \rightarrow M / \bar{V}$ denotes the projection. Note that π induces a G-equivariant isometric isomorphism of Hilbert G-modules

$$
V^{\perp} \xrightarrow{\cong} M / \bar{V} .
$$

Definition 2.5.2: A map $f: M_{1} \rightarrow M_{2}$ of Hilbert- G-modules is a

- weak isomorphism, if f is an injective, bounded G-equivariant operator, with $\operatorname{im}(f)$ dense in M_{2};
- strong isomorphism, if f is an isometric G-equivariant isomorphism of Hilbert spaces.

Using the polar decomposition of bounded operators, one easily deduces the following crucial fact.

LEMMA 2.5.3: Suppose there exists a weak isomorphism $M_{1} \rightarrow M_{2}$ of Hilbert G-modules. Then there exists also a strong isomorphism.

Proof: Let $f: M_{1} \rightarrow M_{2}$ be a weak isomorphism. Then $\left\langle f^{*} f v, v\right\rangle$ is >0 for all $v \in M_{1} \backslash\{0\}$ and $f^{*} f: M_{1} \rightarrow M_{1}$ is a positive operator with $\operatorname{im}\left(f^{*} f\right)$ dense. It follows that there exists a unique positive self-adjoint operator $g: M_{1} \rightarrow M_{1}$ with $g^{2}=f^{*} f$, and $\operatorname{im}(g) \supset \operatorname{im}\left(g^{2}\right)$ is dense in M_{1}. Put $\bar{h}=f \circ g^{-1}: \operatorname{im}(g) \rightarrow M_{2}$ (g^{-1} exists since g is injective). Then $\operatorname{im}(\bar{h})=\operatorname{im}(f) \subset M_{2}$ is dense, and for $x, y \in \operatorname{im}(g)$

$$
\begin{aligned}
& \langle\bar{h} x, \bar{h} y\rangle=\left\langle f^{*} f \circ g^{-1} x, g^{-1} y\right\rangle \\
& =\left\langle g^{2} \circ g^{-1} x, g^{-1} y\right\rangle=\left\langle g \circ g^{-1} x, g^{*} \circ g^{-1} y\right\rangle \\
& =\langle x, y\rangle
\end{aligned}
$$

where we used the fact that $g^{*}=g$. It follows that \bar{h} is an isometric isomorphism $\operatorname{im}(g) \rightarrow \operatorname{im}(f)$. Since $\operatorname{im}(g)$ is dense in M_{1} and $\operatorname{im}(f)$ is dense in M_{2}, \bar{h} extends by continuity to an isometric isomorphism $h: M_{1} \rightarrow M_{2}$. Since f and f^{*} are G-equivariant, g is G-equivariant too and so is \bar{h}. It follows that h is a strong isomorphism of Hilbert G-modules.

Definition 2.5.4: Two Hilbert G-modules M_{1} and M_{2} will be called isomorphic, and we will write $M_{1} \cong M_{2}$, if there exists a weak and therefore also a strong isomorphism $M_{1} \rightarrow M_{2}$.

Corollary 2.5.5: Let $\varphi: M_{1} \rightarrow M_{2}$ be a bounded G-equivariant operator of Hilbert G-modules. Then

$$
(\operatorname{ker} \varphi)^{\perp} \cong M_{1} / \operatorname{ker} \varphi \cong \overline{\operatorname{im} \varphi}
$$

as Hilbert G-modules.

Proof: We have already seen that the projection $M_{1} \rightarrow M_{1} / \operatorname{ker} \varphi$ defines a strong isomorphism $(\operatorname{ker} \varphi)^{\perp} \rightarrow M_{1} / \operatorname{ker} \varphi$. The canonical map $M_{1} / \operatorname{ker} \varphi \rightarrow \overline{\operatorname{im} \varphi}$ is a weak isomorphism. Thus $M_{1} / \operatorname{ker} \varphi \cong \overline{\operatorname{im} \varphi}$.
2.6. Our next goal is to show that the isomorphism type of the Hilbert G module $\mathcal{H}_{i}(Y)$ depends only upon the G-homotopy type of Y. It is plain that the projection $Z_{i}(Y) \rightarrow{ }^{r e d} H_{i}(Y)$ induces a strong isomorphism of Hilbert G modules

$$
\mathcal{H}_{i}(Y) \xrightarrow{\cong}{ }^{r e d} H_{i}(Y)
$$

Lemma 2.6.1: ${ }^{\text {red }} H_{i}(\quad)$ defines a functor from the category of free cocompact G-CW -complexes and G-homotopy classes of maps, to the category of Hilbert G-modules and bounded G-equivariant operators.

In particular, the Hilbert G-modules $\mathcal{H}_{i}(Y)$ of harmonic ℓ_{2}-chains give rise to G-homotopy invariants.

Corollary 2.6.2: If $f: Y \rightarrow Z$ is a G-map between free cocompact G - $C W$ complexes and f is a homotopy equivalence, then the Hilbert G-modules $\mathcal{H}_{i}(Y)$ and $\mathcal{H}_{i}(Z)$ are isomorphic.

Indeed, f induces a weak equivalence ${ }^{\text {red }} H_{i}(Y) \rightarrow{ }^{\text {red }} H_{i}(Z)$ and therefore ${ }^{\text {red }} H_{i}(Y) \cong{ }^{\text {red }} H_{i}(Z)$, thus $\mathcal{H}_{i}(Y) \cong \mathcal{H}_{i}(Z)$ as Hilbert G-modules. (There is no need to assume that the map f in the corollary is a G-homotopy equivalence; as a matter of fact, it is well known that any G-map between free G - $C W$-complexes, which is a homotopy equivalence, is also a G-homotopy equivalence.)

Proof of the Lemma: Let $f: Y \rightarrow Z$ be a G-map of free cocompact G - $C W$ complexes. Then, by the G-cellular approximation theorem, f is G-homotopic to a cellular G-map $\tilde{f}: Y \rightarrow Z$, inducing bounded operators (cf. 2.2.1) and chain maps

$$
\tilde{f}_{i}: C_{i}(Y) \rightarrow C_{i}(Z)
$$

Since \tilde{f}_{i} is continuous, it maps $\bar{B}_{i}(Y)$ to $\bar{B}_{i}(Z)$ and induces therefore ${ }^{\text {red }} H_{i}(\tilde{f})$: ${ }^{r e d} H_{i}(Y) \rightarrow{ }^{\text {red }} H_{i}(Z)$. If $\tilde{\tilde{f}}: Y \rightarrow Z$ is a cellular G-map G-homotopic to \tilde{f}, then

$$
K_{i} \tilde{f}, K_{i} \tilde{\tilde{f}}: K_{i} Y \rightarrow K_{i} Z
$$

are chain homotopic morphisms of G-chain complexes. It follows that $\ell_{2} G \otimes_{\mathbb{R} G} K_{*} \tilde{f}=: \tilde{f}_{*}$ and $\ell_{2} G \otimes_{\mathbb{R} G} K_{*} \tilde{\tilde{f}}^{\prime}=: \tilde{\tilde{f}}_{*}$ are chain homotopic too. Thus $\left(\tilde{f}_{*}-\tilde{\tilde{f}}_{*}\right)\left(Z_{i}(Y)\right) \subset B_{i}(Y) \subset \bar{B}_{i}(Y)$ and, therefore, ${ }^{r e d} H_{i}\left(\tilde{f}_{*}\right)={ }^{\text {red }} H_{i}\left(\tilde{\tilde{f}}_{*}\right)$ for all i, showing that ${ }^{r e d} H_{i}\left(\tilde{f}_{*}\right)$ depends on the G-homotopy class of f only.

Similarly the reduced ℓ_{2}-cohomology groups,

$$
{ }^{r e d} H^{i}(Y)=Z^{i}(Y) / \bar{B}^{i}(Y)
$$

define cofunctors from free cocompact G - $C W$-complexes (and G-homotopy classes of G-maps) to the category of Hilbert G-modules (and bounded G-equivariant operators), with $f: Y \rightarrow Z$ inducing

$$
{ }^{r e d} H^{i}(f):{ }^{r e d} H^{i}(Z) \rightarrow{ }^{r e d} H^{i}(Y)
$$

via the adjoint $f_{i}^{*}: C_{i}(Z) \rightarrow C_{i}(Y)$. The reader should be careful to notice that the left G-module structure on ${ }^{r e d} H^{i}(Y)$, which we are considering, is the one induced from considering the Hilbert G-module ${ }^{r e d} H^{i}(Y)$ as a G-subspace of $C_{i}(Y)$. We could also let $g \in G$ act via ${ }^{r e d} H^{i}(g)$, which would define a right G-action on ${ }^{r e d} H^{i}(Y)$. Passing to the associated left G-action using the inverse, would result in the left G-action considered first, because G acts by isometries on ${ }^{r e d} H^{i}(Y)$ and therefore the adjoint of ${ }^{r e d} H^{i}(g)$ equals its inverse. In any case, the left G-spaces ${ }^{\text {red }} H_{i}(Y), \mathcal{H}_{i}(Y)$, and ${ }^{\text {red }} H^{i}(Y)$ are all isomorphic as Hilbert G-modules.

Remark 2.6.3: One can extend the definitions of the previous sections in the following obvious way. If Y is a $G-C W$-complex such that for a given $k \in \mathbb{N}$ the k-skeleton Y^{k} is a free cocompact G - $C W$-complex, then we define for $i<k$ the i-th (co)-homology groups (with all variations considered above), to be those of Y^{k}. In particular, for any finitely presented group G, the groups $\mathcal{H}_{0}(E G)$ and $\mathcal{H}_{1}(E G)$ are well defined, by choosing a model for $E G$ with cocompact 2-skeleton.
2.7. The following examples serve as an illustration. But first we need an elementary fact.

Lemma 2.7.1: If G is an infinite group, then for $n \geq 1$ the left G-module $\left(\ell_{2} G\right)^{n}$ contains no G-invariant element $\neq 0$.

Proof: If $\sum_{x \in G} f(x) x \in \ell_{2} G$ is G-invariant, then $f(x)$ must be independent of x and, since G is infinite, $f(x)$ must be zero for all x; similarly for the case $n>1$.

Example 2.7.2: Let Y be a connected G - $C W$-complex with cocompact 1-skeleton and G an infinite group. Then ${ }^{\text {red }} H_{0}(Y)=\mathcal{H}_{0}(Y)={ }^{\text {red }} H^{0}(Y)=0$. To see this, we consider the right-exact sequence

$$
C_{1}(Y) \xrightarrow{d_{1}} C_{0}(Y) \longrightarrow \ell_{2} G \otimes_{G} \mathbb{Z} \longrightarrow 0
$$

It shows that $\operatorname{ker} \delta_{0}=\left(\operatorname{im} d_{1}\right)^{\perp}$ gets mapped injectively into the coinvariants $\ell_{2} G \otimes_{G} \mathbb{Z}$, showing that ker δ_{0} consists of G-invariant elements and is therefore
trivial. Whence, ${ }^{\text {red }} H^{0}(Y)=0$. In particular, for any finitely generated infinite group G one has $\mathcal{H}_{0}(E G)=0$ (for G finite, $\mathcal{H}_{0}(E G)=\mathbb{R}$).

But the unreduced H_{0} need not be zero, as the following example shows.
Example 2.7.3: Let $Y=\mathbb{R}$, the universal cover of S^{1}, where $G=\mathbb{Z}$ acts by covering transformations on \mathbb{R} and Y / G is considered as a $C W$-complex with 2 cells: $S^{1}=e^{0} \cup e^{1}$. The complex of ℓ_{2}-chains $C_{*}(Y)$ then takes the form

$$
0 \longrightarrow \ell_{2}(\mathbb{Z}) \xrightarrow{d_{1}} \ell_{2}(\mathbb{Z}) \longrightarrow 0
$$

If x denotes a generator of \mathbb{Z} we can write $f \in \ell_{2}(\mathbb{Z})$ as $f=\sum_{n \in \mathbb{Z}} a_{n} x^{n}$, and d_{1} is given by

$$
d_{1}(f)=(1-x) \sum_{n \in \mathbb{Z}} a_{n} x^{n} \in \ell_{2}(\mathbb{Z})
$$

Clearly, d_{1} is injective, and $\operatorname{im} d_{1}$ is dense in $\ell_{2}(\mathbb{Z})$ by 2.7.2. However, d_{1} is not surjective. For instance, $1 \in \ell_{2}(\mathbb{Z})$ is not in the image of d_{1}, because $1=$ $(1-x) \sum_{i \in \mathbb{Z}} a_{i} x^{i}$ would imply that all $a_{j}, j<0$, are equal whence 0 , and all $a_{j}, j \geq 0$ are equal whence 0 , which is not possible. Therefore ${ }^{r e d} H_{*}(Y)=0$ whereas

$$
Z_{0}(Y) / B_{0}(Y)=H_{0}^{G}\left(Y ; \ell_{2} G\right) \neq 0
$$

Expressed in another way, the example shows that $\mathcal{H}_{i}(E \mathbb{Z})=0$ for all $i \geq 0$, whereas $H_{i}^{\mathbb{Z}}\left(E \mathbb{Z} ; \ell_{2} \mathbb{Z}\right)=H_{i}\left(\mathbb{Z} ; \ell_{2} \mathbb{Z}\right)=0$ for $i>0$, and $H_{0}\left(\mathbb{Z} ; \ell_{2} \mathbb{Z}\right) \neq 0$ (and $H^{i}\left(\mathbb{Z} ; \ell_{2} \mathbb{Z}\right)=0$ for $\left.i \neq 1, H^{1}\left(\mathbb{Z} ; \ell_{2} \mathbb{Z}\right) \neq 0\right)$.

Remark 2.7.4: A systematic study of the difference between reduced and unreduced ℓ_{2}-homology leads to the notion of torsion Hilbert modules, with associated Novikov-Shubin invariants (cf. [21]). For a systematic treatment of these matters the reader is referred to [13, 19].

3. Von Neumann dimension; ℓ_{2}-Betti numbers

The goal of this section is to define a real valued function "dim ${ }_{G}$ " (von Neumann dimension) on Hilbert G-modules satisfying the following basic properties:

- $\operatorname{dim}_{G} M \geq 0$,
- $\operatorname{dim}_{G} M=0 \Longleftrightarrow M=0$,
- $\operatorname{dim}_{G} M=\operatorname{dim}_{G} N$ if $M \cong N$,
- $\operatorname{dim}_{G} M \oplus N=\operatorname{dim}_{G} M+\operatorname{dim}_{G} N$,
- $\operatorname{dim}_{G} M \leq \operatorname{dim}_{G} N$ if $M \subset N$,
- $\operatorname{dim}_{G} \ell_{2} G=1$,
- $\operatorname{dim}_{G} M=\frac{1}{|G|} \operatorname{dim}_{\mathbb{R}} M$, if G is finite,
- $\operatorname{dim}_{G} M=\frac{1}{[G: S]} \operatorname{dim}_{S} M$, if $S<G$ has finite index.

The function dim_{G} will be derived from a generalization of the standard Kaplansky trace map

$$
\rho: \mathbb{R} G \longrightarrow \mathbb{R}, \quad \sum_{x \in G} r(x) x \longmapsto r(1)
$$

with $I \in G$ the neutral element.
Definition 3.1.1: The von Neumann algebra $N(G)$ is the algebra of bounded (left) G-equivariant operators $\ell_{2} G \rightarrow \ell_{2} G$.

Recall that $\ell_{2} G$ is an $\mathbb{R} G$-bimodule. Since the right action of $\mathbb{R} G$ on $\ell_{2} G$ is an action by bounded left G-equivariant operators, we may consider $\mathbb{R} G$ as a subalgebra of the von Neumann algebra $N(G)$. Mapping an operator ϕ to its adjoint ϕ^{*} defines an involution on $N(G)$ (turning it into a real C^{*}-algebra). Because the adjoint of the right action of $x \in G$ on $\ell_{2} G$ is right multiplication by x^{-1}, passing to the adjoint in $N(G)$ corresponds under the inclusion $\mathbb{R} G \subset N(G)$ to conjugation in $\mathbb{R} G$. By conjugation on $\mathbb{R} G$ (or $\ell_{2} G$) we mean the map

$$
f=\sum f(x) x \longmapsto \bar{f}=\sum f(x) x^{-1}
$$

The Kaplansky trace on $\mathbb{R} G$ can now be extended to a trace on $N(G)$ as follows.
Definition 3.1.2: Let $\varphi \in N(G)$ and $1 \in \mathbb{R} G \subset \ell_{2} G$. Then

$$
\operatorname{trace}_{G}(\varphi)=\langle\varphi(1), 1\rangle \in \mathbb{R}
$$

It follows that if we consider $w=\Sigma r(x) x \in \mathbb{R} G$ as an element of $N(G)$,

$$
\operatorname{trace}_{G}(w)=\langle 1 \cdot \Sigma r(x) x, 1\rangle=\langle\Sigma r(x) x, 1\rangle=r(1)=\rho(w)
$$

where, as before, $\rho(w)$ stands for the Kaplansky trace of w. We also observe that the trace of $\varphi \in N(G)$ satisfies

$$
\operatorname{trace}_{G}(\varphi)=\langle\varphi(1), 1\rangle=\left\langle 1, \varphi^{*}(1)\right\rangle=\operatorname{trace}_{G}\left(\varphi^{*}\right)
$$

The following lemma shows that the inclusion $\mathbb{R} G \subset \ell_{2} G$ extends to an embedding of G-modules $N(G) \subset \ell_{2} G\left(\ell_{2} G\right.$ is not a ring!) under which the *-involution of $N(G)$ corresponds to conjugation in $\ell_{2} G$; in the course of its proof we will make use of the obvious fact that for $f, g \in \ell_{2} G$ conjugation satisfies $\langle f, g\rangle=\langle\bar{f}, \bar{g}\rangle$.

Lemma 3.1.3: The \mathbb{R}-linear map

$$
\theta: N(G) \rightarrow \ell_{2}(G), \quad \varphi \longmapsto \varphi(1)
$$

is injective and satisfies $\theta\left(\varphi^{*}\right)=\overline{\varphi(1)}$.
Proof: Let $\varphi \in N(G)$ be such that $\varphi(1)=0$. Then, for all $x \in G \subset \ell_{2} G$ one has $\varphi(x)=x \varphi(1)=0$, showing that θ is injective. Furthermore, for all $x \in G$

$$
\begin{aligned}
\left\langle\varphi^{*}(1), x\right\rangle & =\langle 1, \varphi(x)\rangle=\langle 1, x \varphi(1)\rangle \\
& =\left\langle x^{-1}, \varphi(1)\right\rangle=\langle\bar{x}, \varphi(1)\rangle=\langle\varphi(1), \bar{x}\rangle \\
& =\langle\overline{\varphi(1)}, x\rangle
\end{aligned}
$$

and it follows that $\varphi^{*}(1)=\overline{\varphi(1)}$.
Our "trace ${ }_{G}$ " has indeed the basic property one requires of a trace:
Corollary 3.1.4: Let $\varphi, \psi \in N(G)$. Then

$$
\operatorname{trace}_{G}(\varphi \psi)=\operatorname{trace}_{G}(\psi \varphi)
$$

Proof: We have

$$
\begin{aligned}
\operatorname{trace}_{G}(\varphi \psi) & =\langle\varphi(\psi(1)), 1\rangle=\left\langle\psi(1), \varphi^{*}(1)\right\rangle \\
& =\langle\psi(1), \overline{\varphi(1)}\rangle=\langle\overline{\psi(1)}, \varphi(1)\rangle \\
& =\left\langle\psi^{*}(1), \varphi(1)\right\rangle=\langle 1, \psi(\varphi(1))\rangle \\
& =\operatorname{trace}_{G}(\psi \varphi) .
\end{aligned}
$$

3.2. Let $\mathrm{M}_{n}(N(G))$ denote the algebra of bounded (left) G-equivariant operators $\left(\ell_{2} G\right)^{n} \rightarrow\left(\ell_{2} G\right)^{n}$. An operator $F \in \mathrm{M}_{n}(N(G))$ is determined in the usual way by a matrix $\left[F_{i, j}\right.$] of operators $F_{i, j}$ in $N(G)$ satisfying

$$
F\left(a_{1}, \ldots, a_{n}\right)=\left(\sum F_{1, k} a_{k}, \ldots, \sum F_{n, k} a_{k}\right) \in\left(\ell_{2} G\right)^{n}
$$

Note that the adjoint F^{*} corresponds to the matrix of operators $\left[\left(F^{*}\right)_{i, j}\right]=\left[F_{j, i}^{*}\right]$. We extend the definition of the trace to operators F in $\mathrm{M}_{n}(N(G))$ by putting

$$
\operatorname{trace}_{G}(F):=\sum_{i=1}^{n} \operatorname{trace}_{G}\left(F_{i, i}\right)
$$

Clearly $\operatorname{trace}_{G}(F)=\operatorname{trace}_{G}\left(F^{*}\right)$ and, using Corollary 3.1.4, we see that for all $F_{1}, F_{2} \in \mathrm{M}_{n}(N(G))$

$$
\operatorname{trace}_{G}\left(F_{1} \circ F_{2}\right)=\operatorname{trace}_{G}\left(F_{2} \circ F_{1}\right)
$$

Lemma 3.2.1: If $F \in \mathrm{M}_{n}(N(G))$ is self-adjoint and idempotent, then

$$
\operatorname{trace}_{G}(F)=\sum_{i, j}\left\|F_{i, j}(1)\right\|^{2}
$$

Proof: It follows from the definitions that

$$
\begin{aligned}
\operatorname{trace}_{G}(F) & =\sum_{j}\left\langle F_{j, j}(1), 1\right\rangle=\sum_{j}\left\langle\left(F^{2}\right)_{j, j}(1), 1\right\rangle \\
& =\sum_{i, j}\left\langle F_{j, i} F_{i, j}(1), 1\right\rangle=\sum_{i, j}\left\langle F_{i, j}(1), F_{j, i}^{*}(1)\right\rangle \\
& =\sum_{i, j}\left\langle F_{i, j}(1), F_{i, j}(1)\right\rangle=\sum_{i, j}\left\|F_{i, j}(1)\right\|^{2}
\end{aligned}
$$

The following is a simple but important consequence.
Corollary 3.2.2: Let $F \in \mathrm{M}_{n}(N(G))$ be self-adjoint and idempotent. Then $\operatorname{trace}_{G} F$ is non-negative and $\operatorname{trace}_{G} F=0$ implies $F=0$.

Remark 3.2.3: The corollary holds too if F is only assumed to be an idempotent. This is easily seen by using the orthogonal projection $\pi \in \mathrm{M}_{n}(N(G))$ onto im F, observing that $F \circ \pi=\pi$ and $\pi \circ F=F$ so that $\operatorname{trace}_{G} \pi=\operatorname{trace}_{G} F$. If $e \in N(G)$ is an idempotent, then $\operatorname{trace}_{G}(e)+\operatorname{trace}_{G}(1-e)=1$ so that

$$
\operatorname{trace}_{G} e \leq 1, \quad \text { and } \quad \operatorname{trace}_{G} e=1 \Rightarrow e=1
$$

Thus, if $e \in \mathbb{Z}[G]$ is an idempotent then, since in that case trace ${ }_{G} e$ must be an integer, one has $e=0$ or $e=1$, yielding the following classical result:

- the only idempotents in $\mathbb{Z}[G]$ are 0 and 1 ; or, equivalently, the integral group ring $\mathbb{Z}[G]$ does not admit a non-trivial decomposition into a direct sum of two left ideals.
The Kaplansky Conjecture states that the same conclusion holds for $\mathbb{R}[G]$ too, if one assumes G to be torsion free. This would follow, if one could prove that in the torsion free case trace $_{G} e$ is an integer for any idempotent $e \in \mathbb{R}[G]$. It is known (Zalesskii [23], see also [2]) that for an arbitrary group G and idempotent $e \in \mathbb{R}[G]$ the value trace ${ }_{G} e$ is a rational number.
3.3. We are now ready to define the function dim_{G}. First we consider a special case. Let $V \subset\left(\ell_{2} G\right)^{n}$ be a G-invariant Hilbert subspace and let π_{V} denote the orthogonal projection onto V. Because for all $a \in\left(\ell_{2}\right)^{n}$ and $x \in G$

$$
x a=\pi_{V}(x a)+\left(x a-\pi_{V}(x a)\right)=x \pi_{V}(a)+\left(x a-x \pi_{V}(a)\right)
$$

with $\pi_{V}(x a), x \pi_{V}(a) \in V$ and $x a-\pi_{V}(x a), x a-x \pi_{V}(a) \in V^{\perp}$, it follows that $\pi_{V}(x a)=x \pi_{V}(a)$ and therefore $\pi_{V} \in \mathrm{M}_{n}(N(G))$. The von Neumann dimension of V is now defined by

$$
\operatorname{dim}_{G} V:=\operatorname{trace}_{G} \pi_{V} \in \mathbb{R}
$$

Because π_{V} is a self-adjoint idempotent, we infer from Corollary 3.2.2 that $\operatorname{dim}_{G} V \geq 0$ and that $\operatorname{dim}_{G} V=0$ implies $V=0$.

For the general case we proceed as follows. Let M be an arbitrary Hilbert G-module and choose a G-equivariant isometric isomorphism

$$
\alpha: M \stackrel{\cong}{\cong} V \subset\left(\ell_{2} G\right)^{n} .
$$

Define the von Neumann dimension of M by

$$
\operatorname{dim}_{G} M:=\operatorname{dim}_{G} V
$$

We need to check that $\operatorname{dim}_{G} M$ does not depend on the choice of α. Suppose

$$
\beta: M \xrightarrow{\cong} W \subset\left(\ell_{2} G\right)^{m}
$$

is another G-equivariant isometric isomorphism, with $m=n+k \geq n$. If V^{\prime} denotes V considered as a subspace of $\left(\ell_{2} G\right)^{n+k}$ using the inclusion

$$
\left(\ell_{2} G^{n}\right) \subset\left(\ell_{2} G\right)^{n} \oplus\left(\ell_{2} G\right)^{k}, \quad z \mapsto(z, 0)
$$

one sees from the definition that $\operatorname{dim}_{G} V^{\prime}=\operatorname{dim}_{G} V$. Therefore we may assume without loss of generality that $m=n$. Define then $h:=\beta \circ \alpha^{-1}: V \rightarrow W$ and extend h to an operator $H \in \mathrm{M}_{n}(N(G))$ by putting $H \mid V=h$ and $H \mid V^{\perp}=0$, so H is a partial isometry $V \rightarrow W$. The composition $H^{*} H$ is, by construction, the orthogonal projection onto V, and $H H^{*}$ is the orthogonal projection onto W. It follows that

$$
\operatorname{dim}_{G} V=\operatorname{trace}_{G}\left(H^{*} H\right)=\operatorname{trace}_{G}\left(H H^{*}\right)=\operatorname{dim}_{G} W
$$

showing that $\operatorname{dim}_{G} M$ is well-defined indeed.
An immediate consequence of the definition is that

- $\operatorname{dim}_{G} M \geq 0$, and $\left(\operatorname{dim}_{G} M=0 \Longleftrightarrow M=0\right)$,
- $\operatorname{dim}_{G} M \oplus N=\operatorname{dim}_{G} M+\operatorname{dim}_{G} N$.

If $S<G$ has finite index m, then $G=\coprod_{i=1}^{m} S x_{i}$, and $\ell_{2} G$ decomposes as a Hilbert S-module into $\perp_{i=1}^{m} \ell_{2} S \cdot x_{i} \cong\left(\ell_{2} S\right)^{m}$. Thus if $F \in N(G)$ then

$$
\operatorname{trace}_{S} F=\sum_{i=1}^{m}\left\langle F\left(x_{i}\right), x_{i}\right\rangle=\sum_{i=1}^{m}\langle F(1), 1\rangle=m \cdot \operatorname{trace}_{G} F
$$

Similarly for $F \in \mathrm{M}_{n}(N(G))$, so that for any Hilbert G-module, $\operatorname{dim}_{S} M=$ $m \operatorname{dim}_{G} M$. The other properties stated in 3.1 are readily checked too and are left to the reader.

Remark 3.3.1: The general dimension theory in (complex, finite) von Neumann algebras goes back to the fundamental paper [20]. The dimension dim_{G} is closely related to the universal center-valued trace, and all our properties could be derived from it. The center-valued trace, however, is a rather difficult and deep concept while our treatment of dim_{G} is direct and elementary.
3.4. In applications, we will be dealing with chain complexes of Hilbert G-modules.

Definition 3.4.1: A chain complex

$$
V_{*}: \cdots \rightarrow V_{i+1} \rightarrow V_{i} \rightarrow V_{i-1} \rightarrow \cdots
$$

of Hilbert G-modules is called an $\ell_{2} G$-chain complex if each $V_{i} \rightarrow V_{i-1}$ is a bounded G-equivariant operator.

Definition 3.4.2: Let

$$
V_{*}: \cdots \rightarrow V_{i+1} \rightarrow V_{i} \rightarrow V_{i-1} \cdots
$$

be an $\ell_{2} G$-chain complex. Then

- the reduced homology modules of V_{*} are the Hilbert G-modules

$$
{ }^{\text {red }} H_{i}\left(V_{*}\right)=\operatorname{ker}\left(V_{i} \rightarrow V_{i-1}\right) / \overline{\operatorname{im}\left(V_{i+1} \rightarrow V_{i}\right)} ;
$$

- the complex V_{*} is called weak-exact, if ${ }^{\text {red }} H_{i}\left(V_{*}\right)=0$ for all i.

Definition 3.4.3: Let V_{*} and W_{*} be two $\ell_{2} G$-chain complexes.

- A morphism $\phi_{*}: V_{*} \rightarrow W_{*}$ is an ordinary morphism of chain complexes consisting of bounded G-equivariant operators.
- Two morphisms $\phi_{*}, \psi_{*}: V_{*} \rightarrow W_{*}$ are $\ell_{2} G$-homotopic if they are chain homotopic by a chain homotopy consisting of bounded G-equivariant operators.
- The complexes V_{*} and W_{*} are $\ell_{2} G$-homotopy equivalent if there are morphisms $\phi_{*}: V_{*} \rightarrow W_{*}$ and $\psi_{*}: W_{*} \rightarrow V_{*}$ such that $\phi_{*} \circ \psi_{*}$ and $\psi_{*} \circ \phi_{*}$ are $\ell_{2} G$-homotopic to the identity.

Clearly, a morphism $\phi_{*}: V_{*} \rightarrow W_{*}$ induces bounded G-equivariant operators ${ }^{\text {red }} H_{i}\left(V_{*}\right) \rightarrow{ }^{r e d} H_{i}\left(W_{*}\right)$, depending on the $\ell_{2} G$-homotopy class of ϕ_{*} only. Indeed, the components of ϕ_{*} map cycles to cycles and, because of continuity,
the closure of boundaries to the closure of boundaries; if ϕ_{*} is $\ell_{2} G$-homotopic to $\tilde{\phi}_{*}$ then $\phi_{i}-\tilde{\phi}_{i}$ maps cycles to boundaries and thus they agree on reduced cohomology.

Corollary 3.4.4: If the $\ell_{2} G$-chain complexes V_{*} and W_{*} are $\ell_{2} G$-homotopic, then the Hilbert G-modules ${ }^{\text {red }} H_{i}\left(V_{*}\right)$ and ${ }^{\text {red }} H_{i}\left(W_{*}\right)$ are isomorphic for all i.

Definiton 3.4.5: A sequence $U \rightarrow V \rightarrow W$ of Hilbert G-modules is called short weak-exact, if

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

is a weak-exact $\ell_{2} G$-chain complex.
Recall that for a G-equivariant bounded operator $\alpha: V \rightarrow W$ of Hilbert G modules, the Hilbert G-modules $\overline{\alpha(V)}$ and $(\operatorname{ker} \alpha)^{\perp} \subset V$ are isomorphic, and the latter is isomorphic to $V / \operatorname{ker} \alpha$. It follows that

$$
\operatorname{dim}_{G} V=\operatorname{dim}_{G}(\operatorname{ker} \alpha)+\operatorname{dim}_{G}(\overline{\alpha(V)})=\operatorname{dim}_{G}(\operatorname{ker} \alpha)+\operatorname{dim}_{G}(V / \operatorname{ker} \alpha)
$$

In particular, if $U \rightarrow V \rightarrow W$ is a short weak-exact sequence of Hilbert G modules, then

$$
\operatorname{dim}_{G} V=\operatorname{dim}_{G} U+\operatorname{dim}_{G} W
$$

Corollary 3.4.6: Let

$$
V_{*}: 0 \rightarrow V_{n} \rightarrow V_{n-1} \rightarrow \cdots \rightarrow V_{0} \rightarrow 0
$$

be a chain complex of Hilbert G-Modules. Then

$$
\sum_{i}(-1)^{i} \operatorname{dim}_{G} V_{i}=\sum_{i}(-1)^{i} \operatorname{dim}_{G}^{r e d} H_{i}\left(V_{*}\right)
$$

Proof: Let $K_{i}=\operatorname{ker}\left(V_{i} \rightarrow V_{i-1}\right)$ and $I_{i}=\overline{\operatorname{im}\left(\overline{V_{i+1}} \rightarrow \overline{V_{i}}\right)}$. Then there are short weak-exact sequences of Hilbert G-modules

$$
K_{i} \rightarrow V_{i} \rightarrow I_{i-1}, \quad I_{i} \rightarrow K_{i} \rightarrow{ }^{r e d} H_{i}\left(V_{*}\right)
$$

yielding the equations

$$
\operatorname{dim}_{G} V_{i}=\operatorname{dim}_{G} K_{i}+\operatorname{dim}_{G} I_{i-1}, \quad \operatorname{dim}_{G}^{r e d} H_{i}=\operatorname{dim}_{G} K_{i}-\operatorname{dim}_{G} I_{i}
$$

The result now follows readily.
3.5. Let Y be a free cocompact G-CW-complex with cellular chain complex $K_{*}(Y)$. Then $C_{*}(Y)=\ell_{2} G \otimes_{G} K_{*}(Y)$ is an $\ell_{2} G$-chain complex in the sense of Definition 3.4.1. The i-th ℓ_{2}-Betti number of Y (with respect to G) is defined by

$$
\beta_{i}(Y ; G):=\operatorname{dim}_{G}{ }^{r e d} H_{i}(Y)
$$

It is plain from the results proved earlier that the ℓ_{2}-Betti numbers enjoy the following properties:

- $\beta_{i}(Y ; G)$ is a G-homotopy invariant of Y (and therefore a homotopy invariant of the orbit space Y / G; cf. 3.4.4);
- if $S<G$ is a subgroup of index m, then $\beta_{i}(Y ; S)=m \cdot \beta_{i}(Y ; G)$ (in this case Y / S is an m-sheeted finite covering space of $Y / G)$;
- if G is finite, then $\beta_{i}(Y ; G)=\frac{1}{|G|} b_{i}(Y)$, where $b_{i}(Y)$ stands for the ordinary i th Betti number of Y (in this case, $\operatorname{dim}_{G}{ }^{\text {red }} H_{i}(Y)=\frac{1}{|G|} \operatorname{dim}_{\mathbb{R}} H_{i}(Y ; \mathbb{R})$); in particular if Y is connected, $\beta_{0}(Y ; G)=\frac{1}{|G|}$;
- if G is infinite and Y is connected, then $\beta_{0}(Y ; G)=0$ (cf. 2.7.2).

Definition 3.5.1: Let X be a connected finite $C W$-complex. The ℓ_{2}-Betti number $\beta_{i}(X)$ of X is $\beta_{i}(\tilde{X} ; G)$, where \tilde{X} denotes the universal covering space of X and $G=\pi_{1}(X)$.

Note that if α_{i} denotes the number of i-cells of X, the Hilbert G-module ${ }^{\text {red }} H_{i}(\tilde{X})$ is isomorphic to a Hilbert submodule of $C_{i}(\tilde{X}) \cong\left(\ell_{2} G\right)^{\alpha_{i}}$. Therefore the ℓ_{2}-Betti numbers satisfy

$$
0 \leq \beta_{i}(X) \leq \alpha_{i}
$$

Furthermore, if \bar{X} is a connected m-sheeted covering space of the finite complex X and $S<G$ denotes the fundamental group of \bar{X}, then

$$
\beta_{i}(\bar{X})=\operatorname{dim}_{S}^{r e d} H_{i}(\tilde{X})=m \cdot \operatorname{dim}_{G}^{r e d} H_{i}(\tilde{X})=m \cdot \beta_{i}(X)
$$

which is quite different from the way the ordinary Betti numbers behave.
Example 3.5.2: If $X=S^{1}$, then $\beta_{i}(X)=0$ for all $i \geq 0$ (cf. 2.7.3). More generally, if X is a connected finite $C W$-complex which possesses a regular finite covering space $\bar{X} \rightarrow X$ of degree $m>1$ with \bar{X} homotopy equivalent to X, then the ℓ_{2}-Betti numbers of X all vanish, because in this case $\beta_{i}(X)=\beta_{i}(\bar{X})=$ $m \cdot \beta_{i}(X)$.
3.6. Let X be a finite connected $C W$-complex with ordinary Betti numbers $b_{i}(X)$ and Euler characteristic $\chi(X)=\sum_{i}(-1)^{i} \alpha_{i}=\sum_{i}(-1)^{i} b_{i}(X), \alpha_{i}$ the number of i-cells of X. It is an interesting fact that $\chi(X)$ can also be computed using the ℓ_{2}-Betti numbers.

Theorem 3.6.1: The Euler characteristic $\chi(X)$ of a finite connected $C W$-complex satisfies

$$
\chi(X)=\sum_{i}(-1)^{i} \beta_{i}(X)
$$

Proof: We consider the ℓ_{2}-chain complex $C_{*}(\tilde{X})=\ell_{2} G \otimes_{G} K_{*}(\tilde{X})$, where G denotes the fundamental group of X. Since $C_{i}(\tilde{X}) \cong\left(\ell_{2} G\right)^{\alpha_{i}}$ with α_{i} the number of i-cells of X,

$$
\sum_{i}(-1)^{i} \operatorname{dim}_{G} C_{i}(\tilde{X})=\sum_{i}(-1)^{i} \alpha_{i}=\chi(X)
$$

On the other hand (cf. 3.4.6)

$$
\sum_{i}(-1)^{i} \operatorname{dim}_{G} C_{i}(\tilde{X})=\sum_{i}(-1)^{i} \operatorname{dim}_{G}^{r e d} H_{i}(\tilde{X})
$$

which proves the claim.
The following is a slight generalization.
Theorem 3.6.2: Let X be a finite connected $C W$-complex and N a normal subgroup of $\pi_{1} X$ with quotient group Q. Let X_{N} denote the covering space of X associated with N. Then

$$
\chi(X)=\sum(-1)^{i} \beta_{i}\left(X_{N} ; Q\right)
$$

Along the lines of 3.6 .1 one can also establish the following Morse Inequalities (cf. 1.2.2).

Corollary 3.6.3: Let X be a connected $C W$-complex with finite $(k+1)$ skeleton. Denote by α_{i} the number of i-cells and by β_{i} the ℓ_{2}-Betti numbers of X. Then

$$
\alpha_{k}-\alpha_{k-1}+\cdots+(-1)^{k} \alpha_{0} \geq \beta_{k}-\beta_{k-1}+\cdots+(-1)^{k} \beta_{0}
$$

Remark 3.6.4: We also like to mention (without proof) the following Künneth Formula for ℓ_{2}-Betti numbers. Let X be a free cocompact G-CW-complex, and Y a free cocompact H-CW-complex. Then, using the fact that $X \times Y$ is
a free cocompact $(G \times H)$-CW-complex with $K_{*}(X \times Y)$ and $K(X) \otimes_{\mathbb{Z}} K_{*}(Y)$ isomorphic as $G \times H$-complexes, one can show that

$$
\beta_{j}(X \times Y ; G \times H)=\sum_{s+t=j} \beta_{s}(X ; G) \cdot \beta_{t}(Y ; H)
$$

(Question: If $F \rightarrow E \rightarrow B$ is a fibration, under what condition is $\beta_{j} E=$ $\sum_{s+t=j} \beta_{s} F \cdot \beta_{t} B$? For the case of $\beta_{1} E$, see [18].)
3.7. Let X be a connected $C W$-complex with fundamental group $\pi_{1}(X)=: G$. As earlier, we denote by $K_{*}(\tilde{X})$ the cellular chain complex of the universal cover \tilde{X} of X. The associated n-dual ${ }^{n} D K_{*}(\tilde{X})$ is defined by

$$
{ }^{n} D K_{j}(\tilde{X})=\operatorname{Hom}_{G}\left(K_{n-j}(\tilde{X}), \mathbb{Z}[G]\right)
$$

which we consider as (left) G-modules via $(x f)(c):=f(c) x^{-1}$, where $x \in G$ and $f \in \operatorname{Hom}_{G}\left(K_{n-j}(\tilde{X}), \mathbb{Z}[G]\right)$; the differential is the one induced from $K_{*}(\tilde{X})$.

Definiton 3.7.1: We call a connected $C W$-complex X a virtual $P D^{n}$-complex, if there is a subgroup S of finite index in $\pi_{1}(X)$ such that $K_{*}(\tilde{X})$ is chain homotopy equivalent as a $\mathbb{Z}[S]$-complex to its n-dual ${ }^{n} D K_{*}(\tilde{X})$. A group G is called a virtual $P D^{n}$-group, if $K(G, 1)$ is a virtual $P D^{n}$-complex.

For instance, a closed (not necessarily orientable) topological n-manifold is homotopy equivalent to a virtual $P D^{n}$-complex in the above sense. Also, the reader checks easily that a group G of type $F P_{\infty}$ is a virtual $P D^{n}$-group in the sense of (3.7.1) if and only if it possesses a subgroup of finite index which is a $P D^{n}$-group in the "usual" sense (as defined for instance in [12]).

Theorem 3.7.2: Let X be a finite virtual $P D^{n}$-complex. Then there exists a subgroup of finite index $S<\pi_{1}(X)$ such that the Hilbert S-modules ${ }^{r e d} H_{i}(\tilde{X})$ and ${ }^{\text {red }} H_{n-i}(\tilde{X})$ are isomorphic; in particular $\beta_{i}(X)=\beta_{n-i}(X)$ for all i and if $\pi_{1}(X)$ is infinite $\beta_{n}(X)=\beta_{0}(X)=0$.

Proof: Let $S<G$ be a subgroup of finite index such that the $\mathbb{Z}[S]$-complexes $K_{*}(\tilde{X})$ and ${ }^{n} D K_{*}(\tilde{X})$ are chain homotopic. As in Section 2 we put $C_{*}(\tilde{X})=$ $\ell_{2} S \otimes_{S} K_{*}(\tilde{X})$; define furthermore the $\ell_{2} S$-chain complex ${ }^{n} D C_{*}(\tilde{X})$ by

$$
{ }^{n} D C_{j}(\tilde{X})=\operatorname{Hom}_{S}\left(K_{n-j}(\tilde{X}), \ell_{2} S\right)
$$

with S-action on $f \in \operatorname{Hom}_{S}\left(K_{n-j}\left(\tilde{X}, \ell_{2} S\right)\right.$ given by $(x f)(c)=f(c) x^{-1}$ for $x \in S$ and $c \in K_{n-j}(\tilde{X})$, and obvious differential. Since $K_{*}(\tilde{X})$ is chain homotopy equivalent to ${ }^{n} D K_{*}(\tilde{X})$ as $\mathbb{Z}[S]$-complex, the $\ell_{2} S$-chain complexes $C_{*}(\tilde{X})$ and
${ }^{n} D C_{*}(\tilde{X})$ are $\ell_{2} S$-homotopic (cf. (3.4.3)). Thus by (2.6.2), the Hilbert S-modules ${ }^{\text {red }} H_{i}(\tilde{X})$ and ${ }^{\text {red }} H_{i}\left({ }^{n} D C_{*}(\tilde{X})\right)$ are isomorphic. But

$$
{ }^{r e d} H_{i}\left({ }^{n} D C_{*}(\tilde{X})\right) \cong{ }^{r e d} H^{n-i}(\tilde{X}) \cong{ }^{r e d} H_{n-i}(\tilde{X})
$$

with the first isomorphism following from the definition of the n-dual complex, and the second one was discussed at the end of (2.6). Since

$$
\beta_{j}(X)=\operatorname{dim}_{G}^{r e d} H_{j}(\tilde{X})=\frac{1}{[G: S]} \operatorname{dim}_{S}^{r e d} H_{j}(\tilde{X}),
$$

the assertion concerning the ℓ_{2}-Betti numbers follows.
3.8. If G is a group with a finite $C W$-model $K(G, 1)$, we define its ℓ_{2}-Betti numbers by

$$
\beta_{i}(G)=\beta_{i}(K(G, 1))
$$

According to 2.6 .3 we can extend this definition as follows. Suppose G has a $C W$-model with finite n-skeleton for some $n \geq 2$ (i.e., G is of type F_{n}). Then we put

$$
\beta_{i}(G)=\beta_{i}\left(K(G, 1)^{n}\right), \quad i<n .
$$

In particular, $\beta_{1}(G)$ is defined for any finitely presented group G.
Example 3.8.1: Let $X=\vee_{k} S^{1}$ be a wedge of k circles. Then $\chi(X)=k-1$ and $X=K\left(*_{k} \mathbb{Z}, 1\right)$ so that

$$
\beta_{i}\left(\vee_{k} S^{1}\right)=\beta_{i}\left(*_{k} \mathbb{Z}\right)= \begin{cases}k-1, & \text { for } i=1 \\ 0, & \text { else }\end{cases}
$$

In particular, $\beta_{i}\left(S^{1}\right)=\beta_{i}(\mathbb{Z})=0$ for all i. Using the Künneth formula we conclude that for any group G of type F_{n}

$$
\beta_{i}(\mathbb{Z} \times G)=0 \quad \text { for } i<n
$$

Example 3.8.2: Let Σ_{g} be an orientable surface of genus $g \geq 0$, with fundamental group σ_{g}. Because $\Sigma_{g}=K\left(\sigma_{g}, 1\right)$ is a $P D^{2}$-complex of Euler characteristic 2-2g,

$$
\beta_{i}\left(\Sigma_{g}\right)=\beta_{i}\left(\sigma_{g}\right)= \begin{cases}2 g-2, & \text { for } i=1 \\ 0, & \text { else }\end{cases}
$$

Example 3.8.3: Let X be a finite $P D^{2}$-complex with infinite fundamental group. Then $b_{1}(X)>\beta_{1}(X) \geq 0$. In particular, $b_{1}(X)>0$. Indeed, one has

$$
\chi(X)=1-b_{1}(X)+b_{2}(X)=-\beta_{1}(X)>-b_{1}(X)
$$

(Actually, finite $P D^{2}$-complexes are homotopy equivalent to closed surfaces, see [12]; the result holds even for an arbitrary finitely dominated $P D^{2}$-complex, see [11].)
3.9. We can extend the definition of our ℓ_{2}-Betti numbers as in (2.6.3). If Y is a G-CW-complex with cocompact j-skeleton, we put

$$
\beta_{i}(Y ; G):=\beta_{i}\left(Y^{j} ; G\right), \quad i<j
$$

Similarly the ℓ_{2}-Betti numbers $\beta_{i}(X)$ are defined for $i<j$ if X^{j} is a finite connected complex. Note that if X^{j+1} is finite too, $\beta_{j}(X)$ is defined and it is obvious from the definition that it satisfies

$$
\beta_{j}(X) \leq \beta_{j}\left(X^{j}\right)
$$

Corollary 3.9.1: Let X be a connected $C W$-complex with finite j-skeleton and $(j-1)$-connected universal cover. Then for all $i<j$

$$
\beta_{i}(X)=\beta_{i}\left(\pi_{1}(X)\right)
$$

Proof: The assumptions on X imply that one can construct a model Y for $K\left(\pi_{1}(X), 1\right)$ by attaching cells of dimension $>j$ to X^{j}. Thus for all $i<j$

$$
\beta_{i}(X)=\beta_{i}\left(X^{j}\right)=\beta_{i}(Y)=\beta_{i}\left(\pi_{1}(X)\right)
$$

In particular, for any connected space X with finite 2 -skeleton one has

$$
\beta_{1}(X)=\beta_{1}\left(\pi_{1}(X)\right) .
$$

Remark 3.9.2: Let $Y \rightarrow Y / G=X$ be a regular covering of a compact oriented Riemannian manifold X. The L^{2}-harmonic forms ${ }^{d R_{\mathcal{H}}}{ }^{p}(Y)$ form a Hilbert G submodule of the de Rham complex of L^{2}-forms on Y and integration of forms over cochains (with respect to a suitable triangulation of Y) defines a morphism of Hilbert G-modules

$$
\int:{ }^{d R_{\mathcal{H}}}{ }^{p}(Y) \rightarrow{ }^{r e d} H^{p}(Y)
$$

Dodziuk proved in [4] that this is an isomorphism of \mathbb{R}-vector spaces. In particular the Betti numbers $\beta_{p}(Y ; G)$ agree with the corresponding de Rham ℓ_{2}-Betti numbers $\operatorname{dim}_{G}{ }^{d R} \mathcal{H}^{p}(Y)$.

Atiyah asked in [1] whether these numbers are rational (resp. integers, in the case of a torsion-free group G). The question is related to the conjectures below and also to a question concerning zero divisors in $\mathbb{Q}[G]$.
3.10. The following two statements are variations of what sometimes is referred to as Atiyah's Conjecture.

Conjecture A: Let Y be a connected free cocompact G-CW-complex. Then all $\beta_{i}(Y ; G)$ are rational numbers. If k is a positive integer such that the order of any finite subgroup of G divides k, then $k \cdot \beta_{i}(G)$ is an integer.

Note that the group G in the conjecture is necessarily finitely generated, being a factor group of $\pi_{1}(Y / G)$.
Conjecture B: Let $\phi: \mathbb{Z}[G]^{m} \rightarrow \mathbb{Z}[G]^{n}$ be a morphism of $\mathbb{Z}[G]$-modules, $\tilde{\phi}$ the induced bounded operator $\ell_{2}(G)^{m} \rightarrow \ell_{2}(G)^{n}$. Then $\operatorname{dim}_{G} \operatorname{ker} \tilde{\phi}$ is rational. If k is as above in \mathbf{A} then $k \cdot \operatorname{dim}_{G} \operatorname{ker} \tilde{\phi}$ is an integer.

Since the ϕ in the conjecture is induced by some $\bar{\phi}: \mathbb{Z}[\bar{G}]^{m} \rightarrow \mathbb{Z}[\bar{G}]^{n}$ for a suitable finitely generated subgroup $\bar{G}<G$, the conjecture holds if it holds for all finitely generated groups.

Proposition 3.10.1: For a finitely generated group G the two conjectures are equivalent.

Proof: Assuming \mathbf{A} and given ϕ as in \mathbf{B}, it is easy to construct a Y as in \mathbf{A} such that $\operatorname{ker} \tilde{\phi}$ is isomorphic to ${ }^{r e d} H_{3}(Y)$. (Choose a surjection $F \rightarrow G$ with F finitely presented and choose a $K(F, 1)=Z$ with finite 2-skeleton Z^{2}. Let $\vee_{n} S^{2}$ be a wedge of n two-spheres and define Y^{2} to be the covering space of $Z^{2} \bigvee\left(\vee_{n} S^{2}\right)$ associated with the kernel of $F \rightarrow G$. It is a free cocompact G-space; attach m free G-cells of dimension 3 to Y^{2} to obtain Y with $\operatorname{ker}\left(K_{3}(Y) \rightarrow K_{2}(Y)\right)=\operatorname{ker} \phi$.) Conversely, assuming \mathbf{B} one obtains \mathbf{A} by observing that ${ }^{\text {red }} H_{i}(Y)=\operatorname{ker} \tilde{\Delta}$, where the combinatorial Laplacian $\Delta: K_{i}(Y) \rightarrow K_{i}(Y)$ is defined in the obvious way (using the identification $K_{j}(Y)=\mathbb{Z}[G]^{\alpha_{j}}, \alpha_{j}$ the number of j-cells of $Y / G)$.

The Zero Divisor Conjecture states that for a torsion-free group G the group ring $\mathbb{Q}[G]$ does not contain any zero divisors $\neq 0$. Clearly the conjecture holds, if it holds for finitely generated groups. It is known to hold for a large class of groups (cf. [17]).

Theorem 3.10.2: The conjectures A and Bimply the Zero Divisor Conjecture.
Proof: Let G be a finitely generated torsion-free group and let $a, b \in \mathbb{Q}[G]$ with $a \neq 0$ and $a b=0$; we need to show that $b=0$. Consider the bounded G-equivariant operator

$$
L_{b}: \ell_{2} G \rightarrow \ell_{2} G, \quad z \mapsto z b
$$

and write M for its kernel. Since $a \in M, M \neq 0$ and therefore $0<\operatorname{dim}_{G} M \leq 1$. Replacing b by $n b$ for some $n>0$ if necessary, we may assume $b \in \mathbb{Z}[G]$ so that $L_{b}=\tilde{\phi}$ for $\phi: \mathbb{Z}[G] \rightarrow \mathbb{Z}[G]$ the right multiplication by b. Conjecture B now implies $\operatorname{dim}_{G} M=1$, and therefore $M=\ell_{2} G$ whence $b=0$.

4. Applications (deficiency, amenable groups)

Suppose that the group G possesses a presentation with g generators and r relators. Then obviously

$$
g-r \leq \operatorname{rank}\left(G_{a b}\right)=b_{1}(G)
$$

The maximal value $\operatorname{def}(G)$ of the differences $g-r$ over all finite presentations of G is called the deficiency of G. For example, a finite group G has $\operatorname{def}(G) \leq 0$. In the following we want to get some estimates for the deficiency of infinite groups.

If G is a finitely presented group with g generators and r relators we can construct a $K(G, 1)$ with 2 -skeleton $K(G, 1)^{2}$ possessing 1 zero-cell, g one-cells and r two-cells. Taking Euler characteristics yields

$$
r-g+1=b_{2}\left(K(G, 1)^{2}\right)-b_{1}\left(K(G, 1)^{2}\right)+1
$$

But $b_{1}\left(K(G, 1)^{2}\right)=b_{1}(G)$ and $b_{2}\left(K(G, 1)^{2}\right) \geq b_{2}(G)$ so that in general

$$
\operatorname{def}(G) \leq b_{1}(G)-b_{2}(G)
$$

For ℓ_{2}-Betti numbers we get

$$
\operatorname{def}(G)=1-\beta_{0}(G)+\beta_{1}(G)-\beta_{2}\left(K(G, 1)^{2}\right)
$$

Whence
Theorem 4.1.1: Let G be a finitely presented group. Then

$$
\operatorname{def}(G) \leq 1+\beta_{1}(G)
$$

In particular $\beta_{1}(G)=0$ implies $\operatorname{def}(G) \leq 1$.
In case $K(G, 1)$ has a finite 3 -skeleton the Morse inequality (3.6.3, case $k=2$) for the ℓ_{2}-Betti numbers of $K(G, 1)^{3}$ yields

$$
r-g+1 \geq \beta_{2}(G)-\beta_{1}(G)+\beta_{0}(G)
$$

Recall that a group G is of type F_{n} if and only if there is a $K(G, 1)$ with finite n-skeleton.

Theorem 4.1.2: Let G be a group of type F_{3}. Then

$$
\operatorname{def}(G) \leq 1+\beta_{1}(G)-\beta_{2}(G)
$$

Example 4.1.3: If $G=*_{n} \mathbb{Z}$ is a free group of rank n, then using 3.8.1 we obtain

$$
\operatorname{def}\left(*_{n} \mathbb{Z}\right)=n=1+\beta_{1}\left(*_{n} \mathbb{Z}\right)
$$

Example 4.1.4: Let $G=\sigma_{g}$ be the fundamental group of an orientable surface of genus $g \geq 0$. The well known presentation for σ_{g} yields $\operatorname{def}\left(\sigma_{g}\right) \geq 2 g-1$ so that from 3.8 .2 we obtain

$$
\operatorname{def}\left(\sigma_{g}\right)=2 g-1=1+\beta_{1}\left(\sigma_{g}\right)
$$

The next example is due to Lück [19].
Example 4.1.5: Let G be a finitely presented group possessing a finitely generated infinite normal subgroup N such that $\mathbb{Z}<G / N$. Then $\beta_{1}(G)=0$ ([19], Theorem 0.7) and thus

$$
\operatorname{def}(G) \leq 1
$$

The following variation of 4.1.2 is a consequence of 3.6.2.
Theorem 4.1.6: Let X be a connected finite $C W$-complex with fundamental group G, normal subgroup $N<G$ and $Q=G / N$. Let X_{N}^{2} be the covering space of the 2-skeleton of X associated with N. Then

$$
\operatorname{def}(G) \leq 1-\chi\left(X^{2}\right) \leq 1+\beta_{1}\left(X_{N}^{2} ; Q\right)-\beta_{2}\left(X_{N}^{2} ; Q\right)
$$

4.2. Let G be a group and B the space of bounded \mathbb{R}-valued functions on G. We consider B as a G-module by putting $(x f)(y):=f(y x)$ for all $x, y \in G$ and $f \in B$. A mean on G is a linear map $M: B \rightarrow \mathbb{R}$ such that for all $x \in G$ and $f \in B$

- $M(1)=1 \quad(1: G \rightarrow \mathbb{R}$ the constant function 1$)$,
- $M(x f)=M(f)$,
- $f \geq 0 \Longrightarrow M(f) \geq 0$.

The following notion goes back to von Neumann.
Definition 4.2.1: A group G is called amenable if it admits a mean.
Example 4.2.2: A finite group G is amenable: it has a unique mean, given by

$$
M(f)=\frac{1}{|G|} \sum_{x \in G} f(x)
$$

It is known that the infinite cyclic group \mathbb{Z} is amenable and that the class of amenable groups is
(i) extension closed, closed with respect to passing to subgroups and factor groups,
(ii) closed with respect to taking directed unions.

In particular all abelian and all solvable groups are amenable. The smallest class of groups containing all finite and all abelian groups, and which satisfies the closure properties (i) and (ii), is the class of elementary amenable groups. There do exist examples (even finitely presented ones) of amenable groups which are not elementary amenable (cf. [15]). On the other hand, it is a classical result that a group which contains a non-abelian free group cannot be amenable. For more information on amenability the reader is referred to [22].
4.3. Let Y be a free cocompact connected G - $C W$-complex. For results concerning the ℓ_{2}-Betti numbers $\beta_{i}(Y ; G)$ for infinite amenable G, the following construction is most useful. Choose an (open) cell from each G-orbit of cells in Y and write $D \subset Y$ for their union and \bar{D} for the closure of D in Y (\bar{D} will not be a subcomplex of Y in general!). Since G is a factor group of $\pi_{1}(Y / G)$ it is countable: $G=\left\{g_{\nu} \mid \nu \in \mathbb{N}\right\}$. Construct an increasing family $\left\{Y_{j}\right\}_{j \in \mathbb{N}}$ of subspaces of Y as follows. Let $\left\{N_{j}\right\}$ be a strictly increasing sequence of natural numbers. Each Y_{j} is the union of N_{j} distinct translates $g_{\nu} D, \nu=1, \ldots, N_{j}$, $g_{\nu} \in G$ and $Y=\bigcup Y_{j}$. Let \dot{N}_{j} be the the number of translates of \bar{D} which meet the topological boundary \dot{Y}_{j} of $Y_{j} \subset Y$. Using the combinatorial Følner criterion for amenability of G [14] it follows that the sequences $\left\{N_{j}, Y_{j}\right\}$ can be chosen such that $\dot{N}_{j} / N_{j} \rightarrow 0$ for $j \rightarrow \infty(c f .[5,8])$; we will call such a family a Følner exhaustion.

Recall that there is a canonical map

$$
\operatorname{can}^{i}:{ }^{\text {red }} H^{i}(Y) \rightarrow H^{i}(Y ; \mathbb{R})
$$

induced by considering a harmonic ℓ_{2}-cocycle as an ordinary one. The following lemma is very useful.
Lemma 4.3.1 (Cheeger-Gromov [3]): Let Y be a connected free cocompact G-CW-complex, G an (infinite) amenable group. Then

$$
\operatorname{can}^{i}:{ }^{r e d} H^{i}(Y) \rightarrow H^{i}(Y ; \mathbb{R})
$$

is injective for all $i \geq 0$.
Proof: Choose a Følner exhaustion $\left\{N_{j}, Y_{j} \mid j \in \mathbb{N}\right\}$ for Y. View the kernel \mathcal{K} of ${ }^{\text {red }} H^{i}(Y) \rightarrow H^{i}(Y ; \mathbb{R})$ as a Hilbert G-submodule of $\mathcal{H}_{i}(Y) \subset C_{i}(Y)=: C_{i}$. Thus
$c \in \mathcal{K}$ is a harmonic chain $c=\sum c(\sigma) \sigma$ which, when considered as a cocycle $c(): K_{i}(Y) \rightarrow \mathbb{R}$, is of the form $\delta^{i-1} b$ for some cochain $b: K_{i-1} \rightarrow \mathbb{R}$. Recall that C_{i} has a Hilbert basis which corresponds bijectively to the (open or closed) cells of Y and we will sometimes identify a cell of Y with the corresponding element in C_{i}. Let $P: C_{i} \rightarrow C_{i}$ stand for the orthogonal projection onto \mathcal{K} and $\pi_{i, j}=\pi: C_{i} \rightarrow C_{i}$ the orthogonal projection onto the finite dimensional subspace spanned by the (open) i-cells which lie in Y_{j}. If R denotes the set of i-cells in D, then by definition

$$
\operatorname{dim}_{G} \mathcal{K}=\sum_{\sigma \in R}\langle P(\sigma), \sigma\rangle
$$

Since $\pi \circ P: C_{i} \rightarrow C_{i}$ has a finite dimensional image, the ordinary trace

$$
\operatorname{trace}_{\mathbb{R}} \pi \circ P=\sum_{\sigma \in R, x \in G}\langle(\pi P)(x \sigma), x \sigma\rangle
$$

is defined. Now $\langle\pi P(x \sigma), x \sigma)\rangle=0$ for cells $x \sigma$ not in Y_{j}; for cells $x \sigma \subset Y_{j}$

$$
\langle\pi P(x \sigma), x \sigma\rangle=\langle P(x \sigma), x \sigma\rangle=\langle P(\sigma), \sigma\rangle
$$

implying

$$
\operatorname{trace}_{\mathbb{R}} \pi P=N_{j} \sum_{\sigma \in R}\langle P(\sigma), \sigma\rangle=N_{j} \operatorname{dim}_{G} \mathcal{K}
$$

Since for any $c \in C_{i},\|\pi P(c)\| \leq\|c\|$,

$$
\operatorname{trace}_{\mathbb{R}} \pi P \leq \operatorname{dim}_{\mathbb{R}} \operatorname{im} \pi P=\operatorname{dim}_{\mathbb{R}} \pi(\mathcal{K})
$$

whence

$$
\operatorname{dim}_{G} \mathcal{K} \leq \frac{1}{N_{j}} \operatorname{trace}_{\mathbb{R}} \pi P \leq \frac{1}{N_{j}} \operatorname{dim}_{\mathbb{R}} \pi(\mathcal{K})
$$

To complete the proof, we need an estimate on $\operatorname{dim}_{\mathbb{R}} \pi(\mathcal{K})$.
Let σ be a cell in Y whose closure does not meet \dot{Y}_{j}. Then the same holds for the cells in $d_{i} \sigma$ since they lie in the closure of σ. For such a σ one has either $\pi \sigma=\sigma$ (if σ is in Y_{j}) and $\pi d \sigma=d \pi \sigma$; or $\pi \sigma=0$ (if σ is not in Y_{j}) and $\pi d \sigma=0=d \pi \sigma$. Writing C_{*}^{\prime} for the subspace of C_{*} having as Hilbert basis all cells σ in Y whose closure does not meet \dot{Y}_{j} it follows for $c \in C_{i}^{\prime}$

$$
d_{i} \pi c=\pi d_{i} c
$$

As earlier we identify ℓ_{2}-chains with ℓ_{2}-cochains, yielding inclusions

$$
K_{*}(Y) \otimes \mathbb{R} \subset C_{*}=C^{*} \subset K^{*}(Y) \otimes \mathbb{R}
$$

For $a \in K_{*}(Y) \otimes \mathbb{R}$ and $b \in K^{*}(Y) \otimes \mathbb{R}$ we write $b(a) \in \mathbb{R}$ for the usual evaluation of the cochain b on the chain a; if b happens to lie in C^{*} and we consider a as an ℓ_{2}-chain, the inner product $\langle a, b\rangle=b(a)$.

Consider now $c \in \mathcal{K} \cap C_{*}^{\prime}$. It satisfies $d_{i} c=0$ and $c=\delta^{i-1} b$ for some $b \in K^{i-1}(Y) \otimes \mathbb{R}$, and $d_{i} \pi c=\pi d_{i} c=0$, yielding

$$
\begin{aligned}
\|\pi(c)\|^{2} & =\langle\pi c, \pi c\rangle=\langle\pi c, c\rangle=\left\langle\pi c, \delta^{i-1} b\right\rangle \\
& =\left(\delta^{i-1} b\right)(\pi c)=b\left(d_{i} \pi c\right)=b\left(\pi d_{i} c\right)=0
\end{aligned}
$$

Whence

$$
\mathcal{K} \cap C_{i}^{\prime} \subset \operatorname{ker}\left\{\left.\pi\right|_{\mathcal{K}}: \mathcal{K} \rightarrow \pi(\mathcal{K})\right\}
$$

and therefore

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{R}} \pi(\mathcal{K}) & \leq \operatorname{dim}_{\mathbb{R}} \mathcal{K} / \mathcal{K} \cap C_{i}^{\prime}=\operatorname{dim}_{\mathbb{R}}\left(\mathcal{K}+C_{i}^{\prime}\right) / C_{i}^{\prime} \\
& \leq \operatorname{dim}_{\mathbb{R}} C_{i} / C_{i}^{\prime}
\end{aligned}
$$

The orthogonal complement \dot{C}_{*} of C_{*}^{\prime} in C_{*} has as Hilbert basis all cells in Y whose closure meets \dot{Y}_{j}. Now

$$
\operatorname{dim}_{\mathbb{R}} C_{i} / C_{i}^{\prime}=\operatorname{dim}_{\mathbb{R}} \dot{C}_{i} \leq \dot{N}_{j} \alpha(D)
$$

where $\alpha(D)$ denotes the number of cells in D. It follows that

$$
\operatorname{dim}_{G} \mathcal{K} \leq \frac{\dot{N}_{j} \alpha(D)}{N_{j}} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

and we conclude $\mathcal{K}=0$.
Corollary 4.3.2: Let X be a finite connected $C W$-complex with amenable fundamental group G. Then $\beta_{1}(X)=\beta_{1}(G)=0$.

Proof: The universal cover Y of X satisfies $H^{1}(Y ; \mathbb{R})=0$; thus the result follows from the Cheeger-Gromov Lemma.

The corollary also shows that --as remarked earlier-a group G which contains a non-abelian free group cannot be amenable, because $\beta_{1}(\mathbb{Z} * \mathbb{Z})=1 \neq 0$.

Applying the Cheeger-Gromov Lemma to the m-skeleton of the universal cover of a $K(G, 1)$ one obtains the following vanishing theorem for ℓ_{2}-Betti numbers.

Theorem 4.3.3: Let G be a finitely presented infinite amenable group. Then $\beta_{1}(G)=0$; if G is of type F_{m} then $\beta_{i}(G)=0$ for $i<m$.

Corollary 4.3.4: Suppose G is an infinite amenable group admitting a finite $K(G, 1)$. Then $\chi(G)=0$.

For the next application we need a general fact on Hilbert modules which is a generalization of 2.7.1.

Lemma 4.3.5: Let G be an infinite group and W a Hilbert G-module of finite dimension as an \mathbb{R}-vector space. Then $W=0$.

Proof: We may assume $W \subset\left(\ell_{2} G\right)^{n}$ and, by induction, that $n=1$. Let $\Pi \in N(G)$ be the orthogonal projection onto W so that

$$
\operatorname{dim}_{G} W=\langle\Pi(1), 1\rangle=\langle\Pi(x), x\rangle \leq\|\Pi(x)\|, \quad \forall x \in G .
$$

Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in W$. Each w_{i} has the form $\sum_{g \in G} r_{i}(g) g$ with $\sum_{g \in G} r_{i}(g)^{2}=1$. Since G is infinite it is therefore possible to find for each $j \geq 0$ an element $x_{j} \in G$ such that $\left|r_{i}\left(x_{j}\right)\right| \leq 2^{-j}, i=1, \ldots, n$. Note that

$$
\left\langle\Pi\left(x_{j}\right), w_{i}\right\rangle=\left\langle x_{j}, \Pi\left(w_{i}\right)\right\rangle=\left\langle x_{j}, w_{i}\right\rangle=r_{i}\left(x_{j}\right)
$$

With the x_{j} 's above

$$
\left\|\Pi\left(x_{j}\right)\right\|^{2}=\sum_{i} r_{i}\left(x_{j}\right)^{2} \leq n \cdot 2^{-2 j} \longrightarrow 0 \quad \text { as } j \rightarrow \infty
$$

showing that $\operatorname{dim}_{G} W=0$, whence $W=0$.
Combining the lemma with the Cheeger-Gromov Lemma yields
Corollary 4.3.6: Let Y be a connected free cocompact G - $C W$-complex with (infinite) amenable G. Assume that the ordinary Betti number $b_{i}(Y)<\infty$ for some i. Then $\beta_{i}(Y ; G)=0$.

COROLLARY 4.3.7: Let G be a finitely presented quasi-amenable group (meaning that there exists a normal subgroup $N<G$ with $b_{1}(N)<\infty$ and G / N infinite amenable). Then $\operatorname{def}(G) \leq 1$.

Proof: Choose a $K(G, 1)$ with finite 2 -skeleton X. Let Y be the covering space of X associated with N. From 4.1.6 we get

$$
\operatorname{def}(G) \leq 1+\beta_{1}(Y ; G / N)
$$

and the result follows since $\beta_{1}(Y ; G / N)=0$ for amenable G / N.

For a free cocompact G-CW-complex Y there is a natural map

$$
\operatorname{can}_{i}: H_{i}(Y ; \mathbb{Z}) \rightarrow{ }^{r e d} H_{i}(Y)
$$

induced by considering an integral chain as an ℓ_{2}-chain; we can also view the map to be induced by the inclusion of chain complexes

$$
K_{i}(Y) \rightarrow \ell_{2}(G) \otimes_{\mathbb{Z}[G]} K_{i}(Y)=C_{i}(Y)
$$

Lemma 4.3.8: Let Y be an n-dimensional free cocompact G - $C W$-complex. Then

$$
\operatorname{can}_{n}: H_{n}(Y ; \mathbb{Z}) \rightarrow{ }^{r e d} H_{n}(Y)
$$

is injective.
Proof: This follows immediately from the long exact homology sequence associated with

$$
0 \rightarrow K_{*}(Y) \rightarrow C_{*}(Y) \rightarrow C_{*}(Y) / K_{*}(Y) \rightarrow 0
$$

and observing that because Y is n-dimensional, ${ }^{r e d} H_{n}(Y)=H_{n}\left(C_{*}(Y)\right)$.

Corollary 4.3.9: Let Y be a free cocompact ($n-1$)-connected G-CW-complex of dimension $n>1$. Assume that one of the following conditions holds:

- the \mathbb{R}-vector space $H_{n}(Y ; \mathbb{R})$ is finite dimensional,
- the ℓ_{2}-Betti number $\beta_{n}(Y ; G)=0$.

Then Y is contractible.

Proof: Note that, because Y is n-dimensional, $H_{n}(Y ; \mathbb{Z}) \subset H_{n}(Y ; \mathbb{R})$. For the first case, use 4.3.5 and the previous lemma to conclude that $H_{n}(Y ; \mathbb{Z})=0$. The Hurewicz Theorem then shows that Y is n-connected, thus contractible. Similarly for the second case.
4.4. In this section we present a few applications concerning the partial Euler characteristic $\mathrm{q}_{m}(G)$ of (amenable) groups as well as the Hausmann-Weinberger Invariant $\mathrm{q}(G)$. For more results along these lines the reader is referred to $[8$, $9,10]$. Suppose G admits a $K(G, 1)$ with finite m-skeleton. Put $X=K(G, 1)^{m}$ and consider

$$
(-1)^{m} \chi(X)=\sum_{i=0}^{m-1} b_{i}(G)+b_{m}(X) \geq \sum_{i=0}^{m-1} b_{i}(G)
$$

Define

$$
\mathrm{q}_{m}(G)=\min \left\{(-1)^{m} \chi(X)\right\}
$$

the minimum being taken over all possible choices of finite X as above.
In particular

- $\mathrm{q}_{1}(G)=\min \{$ number of generators of $G\}$,
- $\mathrm{q}_{2}(G)=1-\operatorname{def}(G)$.

ThEOREM 4.4.1: Let G be an infinite amenable group of type F_{m}. Then $\mathrm{q}_{m}(G) \geq 0$, and $\mathrm{q}_{m}(G)=0$ implies that the cohomology dimension of G over \mathbb{Z} is $\leq m$.

Proof: Let X be a finite model for $K(G, 1)^{m}$. Since $\beta_{i}(X)=\beta_{i}(G)=0$ for $i<m$ (cf. 4.3.3),

$$
(-1)^{m} \chi(X)=\beta_{m}(X) \geq 0
$$

and therefore $\mathrm{q}_{m}(G) \geq 0$. If $\mathrm{q}_{m}(G)=0$ then we can choose $X=K(G, 1)^{m}$ with $\beta_{m}(X)=0$ and 4.3 .9 applied to the universal cover of X implies that X is a $K(G, 1)$ of dimension m (the case $m=1$ cannot occur here, since for a non-trivial group $\mathrm{q}_{1}>0$).

The following definition goes back to Hausmann-Weinberger [16]. Let M be a closed (smooth) oriented 4-manifold. Then, since $b_{1}(M)=b_{3}(M)=b_{1}(G)$ for G the fundamental group of M,

$$
\chi(M)=2-2 b_{1}(G)+b_{2}(M) \geq 2\left(1-b_{1}(G)\right)
$$

Put

$$
\mathrm{q}(G)=\min \{\chi(M)\}
$$

where M runs over all manifolds as above, with $\pi_{1}(M)=G$. In a similar way, various authors have defined (see [10])

$$
\mathrm{p}(G)=\min \{\chi(M)+\sigma(M)\}
$$

with M as before and $\sigma(M)$ the signature of M; the minimum exists because $|\sigma(M)| \leq b_{2}(M)$ so that

$$
\chi(M)+\sigma(M) \geq 2\left(1-b_{1}(G)\right)
$$

Note also that $\mathrm{p}(G) \leq \mathrm{q}(G)$ as $\sigma(-M)=-\sigma(M)$.
It is well known that there exists for any finitely presented group G a closed smooth oriented manifold M with fundamental group G. The invariants $\mathrm{p}(G)$ and $\mathrm{q}(G)$ are therefore defined for any finitely presented group G.

Atiyah proved in [1] the ℓ_{2}-Signature Theorem which tells that ${ }^{\text {red }} H^{2}(\tilde{M})$ splits into a Hilbert direct sum of two Hilbert G-modules with von Neumann dimensions $\beta_{2}^{+}(M)$ and $\beta_{2}^{-}(M)$ such that $\sigma(M)=\beta_{2}^{+}(M)-\beta_{2}^{-}(M)$. Expressing $\chi(M)$ in terms of ℓ_{2}-Betti numbers this leads in case of an infinite G to the formula

$$
\chi(M)+\sigma(M)=-2 \beta_{1}(G)+2 \beta_{2}^{+}(M)
$$

Applying it to groups with vanishing first ℓ_{2}-Betti number we see that $\chi(M)+$ $\sigma(M)$ is non-negative, which has interesting consequences, cf. [10]. In particular the case of an amenable G yields the following.

THEOREM 4.4.2: Let G be a finitely presented amenable group. Then $\mathrm{p}(G)$ and $\mathrm{q}(G)$ are non-negative.

References

[1] M. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32 (1976), 43-72.
[2] M. Burger and A. Valette, Idempotents in complex group rings: theorems of Zalesskii and Bass revisited, Journal of Lie Theory 8 (1998), 219-228.
[3] J. Cheeger and M. Gromov, L^{2}-cohomology and group cohomology, Topology 25 (1986), 189-215.
[4] J. Dodziuk, De Rham-Hodge theory for L^{2}-cohomology of infinite coverings, Topology 16 (1977), 157-165.
[5] J. Dodziuk and V. Mathai, Approximating L^{2} invariants of amenable covering spaces: a combinatorial approach, Journal of Functional Analysis 154 (1998), 359378.
[6] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Commentarii Mathematici Helvetici 17 (1944/45), 240-255.
[7] B. Eckmann, Coverings and Betti numbers, Bulletin of the American Mathematical Society 55 (1949), 95-101.
[8] B. Eckmann, Amenable groups and Euler characteristics, Commentarii Mathematici Helvetici 67 (1992), 383-393.
[9] B. Eckmann, Manifolds of even dimension with amenable fundamental group, Commentarii Mathematici Helvetici 69 (1994), 501-511.
[10] B. Eckmann, 4-manifolds, group invariants, and ℓ_{2}-Betti numbers, L'Enseignement Mathématiques 43 (1997), 271-279.
[11] B. Eckmann and P. Linnell, Poincaré duality groups of dimension two, II, Commentarii Mathematici Helvetici 58 (1983), 111-114.
[12] B. Eckmann and H. Müller, Poincaré duality groups of dimension two, Commentarii Mathematici Helvetici 55 (1980), 510-520.
[13] M. S. Farber, Novikov-Shubin invariants and Morse inequalities, Geometric and Functional Analysis 6 (1996), 628-665.
[14] E. Følner, On groups with full Banach mean value, Mathematica Scandinavica 3 (1955), 336-354.
[15] R. I. Grigorchuk, An example of a finitely presented amenable group that does not belong to the class EG, Matematicheskii Sbornik 189 (1998), no. 1, 79-100.
[16] J.-C. Hausmann and S. Weinberger, Caractéristique d'Euler et groupes fondamentaux des variétés de dimension 4, Commentarii Mathematici Helvetici 60 (1985), 139-144.
[17] P. Linnell, Division rings and group von Neumann algebras, Forum Mathematicum 5 (1993), 561-576.
[18] W. Lück, L^{2}-Betti numbers of mapping tori and groups, Topology 33 (1994), 203-214.
[19] W. Lück, Hilbert modules over finite von Neumann algebras and applications to L^{2}-invariants, Mathematische Annalen 309 (1997), 247-285.
[20] F. J. Murray and J. von Neumann, On rings of operators, Annals of Mathematics (2) 37 (1936), 116-229.
[21] S. P. Novikov and M. A. Shubin, Morse inequalities and von Neumann invariants of nonsimply connected manifolds, Uspekhi Matematicheskikh Nauk 41 (1986), 222-223.
[22] A. L. Paterson, Amenability, Mathematical Surveys and Monographs 29, American Mathematical Society, 1988.
[23] A. E. Zalesskii, On a problem of Kaplansky, Soviet Mathematics 13 (1972), 449452.

[^0]: * Notes by Guido Mislin, based on lectures by Beno Eckmann, autumn 1997, at the Mathematical Research Institute, ETH Zurich.
 Received June 17, 1999

