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Preface 

These are notes from a mini-course at the ETH Zurich addressed to faculty and 

advanced students. Its purpose was to provide a first acquaintance of the Hilbert 

space methods in algebraic topology which were initated by Atiyah in 1976 and 

have become a quite general and important tool during more recent years. Pre- 

requisites are basic algebraic topology of cell-complexes and basic concepts Of 

Hilbert spaces. The definitions (Hilbert-G-module, yon Neumann dimension, re- 

duced (co)homology, ~2-Betti numbers of finite complexes) are given, as well as 

complete proofs of main properties such as homotopy invariance, Poincar~ du- 

ality, etc. Applications which cannot, or not easily, be done without g2-Betti 

numbers concern (partial) Euler characteristic, finitely presented groups, and 4- 

manifolds; the Cheeger-Gromov lemma on amenable groups is stated and proved. 

The integrality conjecture known as "Atiyah conjecture" is formulated in a most 

general way and discussed. 

A word about our systematic use of the group of harmonic chains, isomorphic 

to both homology and cohomology groups. To prepare the ground this is illus- 

trated, in a preliminary chapter, by the elementary case of (co-)homology with 

real coefficients of a finite cell-complex X. The chain groups Ci(X) are finite 

dimensional vector spaces with a natural scalar product where the cells form an 

orthonormal basis. Boundary d and coboundary 5 are adjoint maps; Ci decom- 

poses into three mutually orthogonal subspaces: dCi+l, 5Ci-1, and the kernel 
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the Mathematical Research Institute, ETH Zurich. 
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7-/i of the combinatorial Laplacian A = d5 + 5d (or equivalently the intersection 

of the/-cycle  and the i-cocycle space), as described in the intuitive picture 

i-cocycles /-cycles 

dC~+l 
~Ci-1 

© 

Interesting use of the "harmonic" chains C 7/i representing (co-)homology classes 

can already be made in that elementary situation. 

The g2-methods appear if a regular covering Y of X is considered, in general an 

infinite cell-complex, with the covering transformation group G operating freely. 

The same decomposition, as above, of the Hilbert space of g2-chains is obtained 

with the only difference that one has to replace the / -boundary  space and the i- 

coboundary space by their closures. Thus 7-/i is isomorphic to reduced homology: 

cycles modulo the closure of the boundaries, and also to reduced cohomology. All 

these Hilbert spaces admit isometric G-action; they are Hilbert-G-modules, and 

their von Neumann dimension relative to G, a real non-negative number, plays 

the role of the vector space dimensions in the finite complex case. In particular, 

the von Neumann dimension of 7/i is the i-th t?2-Betti number fli of Y relative 

to G. If Y = )(,  the universal covering, G the fundamental group of X, it is just 

called Hi(X). For G = 1, Y = X, one is in the elementary case above. If G is 

finite, ~ ( X )  is the ordinary Betti number of Y divided by IGI. For infinite G 

the values of the g2-Betti numbers are more complicated but they nevertheless 

compute the Euler characteristic exactly as the ordinary Betti numbers do. 

Many thanks to Guido Mislin for writing up these notes, very carefully and 

with many improvements; and to Emmanuel Dror Farjoun for asking us to publish 

them in this journal despite their introductory character. 

Beno Eckmann 
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1. Finite  CW-complexes  and R-homology 

1.1. Let X be a finite CW-complex with cellular chain complex (K,(X),d). 
We write C,(X) = R ® K,(X) for the associated chain complex over R. If ai 
denotes the number of/-cells of X, then 

dimR Ci(X) = oLi,  

and Ci(X) has a natural basis a l , . . . ,  a ~  consisting of the/-cells of X. We will 

consider Ci(X) as a (real) Hilbert space with orthonormal basis a l , . . . ,  a ~  and 

associated inner product 

The boundary operator 

( , } : C i ® ~ C i  >R. 

di: Ci(X) > Ci-I(X) 

then has an ad jo in t  

d* = 6i_1: Ci-l(X) 

given by (&-ix,  y) = (x, diy). Thus 

> c~(x), 

ker6i -- (imdi+l) ± C Ci(X), and 

kerdi = (im6~_1) ± C Ci(X). 

Putting Zi = ker di, B~ = im di+l, Z i = ker 6i, B i = im 6i-1 and 6 ' / =  Ci (X), one 

finds orthogonal decompositions 

Ci -- B i I Zi = Bi I Z/. 

Since (6i-lX, di+ly} -- 0 for all x, y E Ci, one has B i l Bi and therefore 

c d x )  = B~ ± B ~ ± (Z~ n Z~), 

the H o d g e - d e  R h a m  d e c o m p o s i t i o n  of Ci (X). The groups 

~ , ( x )  := z~(x)  n z ' ( x )  

are called the harmonic/-chains of X. One defines the Lap lac i an  by 

Ai = di+16i -F 6i-ldi: Ci ) Ci. 

It has the property that 

hi(X) = {x e G(X) l  ZXi(x) = 0}. 
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Indeed, it is plain tha t  Zi n Z i C ker Ai. Conversely, if A ix  -- 0 then 

di+lhix = - h i - l d i X  E B i n  B i = {0}, 

thus 5ix E B ~+1 M Zi+l = {0} and d~x E Bi-a  M Z ~-l = {0}, implying tha t  

x E  Z i N Z  i. 

1.2. The  Euler characterist ic of X is, as usual, defined by 

x ( X )  = E ( - 1 ) i a i ,  
i 

and we define the Bett i  numbers  by put t ing  

hi (X)  = dimR 7t i (X) .  

COROLLARY 1.2.1: The Euler characteristic of  X satisfies 

x ( X )  = E ( - 1 ) i b i ( X ) .  
i 

Proof: Since C i ( X )  = B ~ ± Bi ± 7-li(X) and Z i = B i J_ 7-[i(X), we see tha t  ~i 

maps  (Zi )  ± c C i ( X )  onto B i+1, inducing an isomorphism 

(1) Bi ~-)B i+l 

so tha t  d i rer  Bi = direr  B i+1 for all i. Since ~i = dim~ Ci (X ) ,  it follows then 

tha t  

) d x )  = )--~(-1) ~ dim~ C~(X)  = ~ ( - 1 )  ~ dima 7~(X) + r, 
i i 

where r = ~ / ( - 1 ) i ( d i m a  Bi + dim~ B i) = O. 1 

Similarly, we obtain  the following inequalities. 

COROLLARY 1.2.1 (Morse Inequalities): Let  X be a finite C W - c o m p l e x  with a~ 

i-cells and  Bet t i  numbers  bi, i E IN. Then, for every k > 0, 

ak -- ak -1  + a k - 2  . . . .  (--1)ka0 >_ bk -- bk-1 + bk-2" '"  (--1)kb0. 

Proof :  Indeed, using (1), Ci = Bi  ± B i ± 7-{i ~ Hi • B i -1  • 7-Li and therefore 

k k 
E ( - 1 ) k - i a i  - E ( - 1 ) k - i b i  = dimR Bk >_ O. I 
i=0 i=0 
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1.3. The cellular R-homology groups are defined by 

Hi(X; •) = ZdX)/BdX). 

Because Zi(X)  = B i (X)  I "Hi(X), the orthogonal projection Zi(X)  --+ "Hi(X) 
induces an isomorphism 

(2) Hi (X; R)~+"Hi (X). 

In particular, our Betti numbers agree with the usual Betti numbers, bi(X) = 
dimR Hi(X;  N), and they are therefore homotopy invariants. 

The real cellular cochain complex C* = C*(X) = HomR(C.(X),N) has 

differential defined by 5 i-1 = Homt~(di,R): C i-1 --+ C i. Using the inner product 

of C.,  one obtains natural isomorphism 

Ai :CiX > CiX,  a ~ (a, ), 

a an/-cell  of X. Since 

((Ai+15i)(o)(c) = (6ia, c) = (a, di+lC) 

= (Ai(a)) (~diq-lC) : ((5iAi)(a))(c), 

A.: (C., 5) --+ (C*, 5) defines an isomorphism of cochain complexes, mapping 
Zi (X)  isomorphically onto ker5 i, and Bi (X)  onto im5 i-1. We may therefore 

refer, under that  isomorphism, to the elements of z i ( x )  C Ci(X)  as cocycles,  
and B i ( X )  C Ci(X)  as coboundar ies .  The harmonic chains are then those 

chains, which are simultaneously cycles and cocycles. 

1.4. A cellular map f :  X -+ Y induces fi: Ci(X) --+ Ci(Y)  mapping cycles to 

cycles, but in general, cocycles are not mapped to cocycles (of course, the adjoint 

f* maps cocycles to cocycles). If we wish to view "Hi as a (co)functor, we may 
proceed as follows. Using the identification (2): Hi(X;]R) --+ "Hi(X) induced 

by the orthogonal projection Zi(X)  ~ "Hi(X), we obtain a f u n c t o r  "Hi on the 

category of finite CW-complexes and cellular maps; the so induced maps 

given by 

n (x) "Hi(Y) 

f!: "Hi(X) ~-~ Hi(X;~)H~(-~Y)Hi(Y;R)~--'Hi(Y) 

depend obviously on the homotopy class of f only, showing that  "Hi is a functor on 

the category of'finite CW-eomplexes and homotopy classes of (not necessarily cel- 

lular) maps. In a similar way, using the orthogonal projection Zi (X)  -~ "Hi(X), 

we obtain isomorphisms 

(3) H ' (X;N)  ~-~ "Hi(X) 
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yielding c o f u n c t o r s  (i.e., contravariant functors) 7-/i with induced maps 

f ! :  7-li(Y) --+ ~ i ( X ) ,  

and one checks easily that f! and f! are adjoints of each other. 

1.5. To illustrate the use of harmonic chains, we consider the following example. 

Let pr: f (  --+ X be the projection of a finite, regular, connected covering space, 

with X a finite CW-complex and )(  carrying the cell structure induced from the 

cell structure of the base space X. If ~ denotes an/-cel l  over a and ¢ one over 

T, the projection pri: C i X  -+ C i X  satisfies 

gcG 

where G denotes the covering transformation group. It follows that the adjoint 

(pri)*: C i ( X )  --+ C i ( X )  is given by c ~ ~ g c a g ~ ,  where pri~ = c. We will use 

the notation ~ g~ = NS, N E Z[G] the norm element, thus 

* * 

pr  i o pri  = N ,  pri  o pr  i = [G I. 

Therefore, the adjoint pr* : C i ( X )  -~ C i ( f ( )  is injective, and 

pr*(pr i  o 5i -1)  = NSi_~  = 6 i - l N  = pr*(5~_l o pri)  

so that,  in this case, pri  commutes with 5 and d, inducing 

7-li(pri) = pr!: 7-li(f() --+ N i ( X ) .  

The adjoint (pr!)* = pr[ is then induced by pr* and satisfies pr! o pr  ! = IGI as 

well as pr  ! o pr! = N .  We thus obtain isomorphisms 

pr!: 7-l i (X) G ~-> 7-l i(X),  and pr!: 7-l i(X) - - ~  7-l i(X) a .  

If one writes 7/i(g) for the map g!: 7-/i(-~) --~ 7-/i()() induced by the covering 

transformation g: )(  --+ )(,  (g • G), then 7/i ()() is an N[G]-module and 

1 
(4) b i ( X )  = - -  E tr(7-l i (g)) ,  

Ial geo 
because ~ ~2tr(~(g)) equals the multiplicity of the trivial representation in 

the G-representation 7~i(3[). 

Remark 1.5.1: The idea of using the natural inner product structure on chain 

groups goes back to [6], where the notion of harmonic chains for finite simplicial 

complexes was first introduced and discussed. Various applications, in particular 

of (4), can be found in [7]. 
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2. R e g u l a r  c o v e r i n g s  o f  f in i te  C W - c o m p l e x e s ;  g2-chains 

Let Y be a connected CW-complex and G a group acting freely on Y by permut-  

ing the cells. We assume* the action on Y to be cocompact so that  X = Y/G is 

a finite CW-complex.  Note that  then G must be countable, being a factor group 

of the finitely generated fundamental group 7rl(X). We write ~2G for the (real 

separable) Hilbert space of square summable functions** f :  G --4 ll~; sometimes 

we use the notation ~ a  f (x)x  for such an f ,  with f(x) • R and ~ f (x)  ~ < c~. 
(The general facts which follow do not depend on the condition of G being count- 

able. If the discrete group G is not countable, ~2G is defined to be the Hilbert 

space of real valued functions on G with countable support.) The inner product 

on ~2G is given by 

e2a × e2a( '-AR, (f, gl = f(x)g(x). 
xEG 

Note that  the group algebra NG can then be viewed as a dense subspace of 

g2G, consisting of all functions G --~ R with ~nite support.  In this way we 

may consider G C £2G as a subset, and we write 1 • g2G for the image of 

1 • G. We like to stress that  the inclusion ]R[G] C g2G is not an inclusion of 

rings: the multiplication in N[G] does in general not extend in a natural  way to 

a multiplication in g2G. The elements y • G operate then via isometries on /2G ,  

from the left and from the right: for f • g2G one has 

• 

X X 2g X 

yielding a Z[G]-bimodule structure on ~2G. Note also that  the associated action 

of RG is an action by bounded operators. Indeed if a = ~ r ( x ) x  • RG and 

f • ~eG, then 

fla. ill _< ~ Ir(x)IIlxfll = l~I" II/ll, 

where I~1 = ( E  Ir(x)l); similarly for Ill" all. 

2.2. Because G acts cocompactly on Y, the cellular chain group KiY  is a finitely 

generated free Z[G]-module of rank equal to the number of/-cells of X = Y/G. 
We put 

Ci(Y, a) = e2a ®a Ki(r) .  

* Cf. Remark 2.6.3. 
** For simplicity we work throughout over R. Everything could be done over C 

(which is relevant in a more general context, but not here). 
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If the G-action on Y is clear from the context, we write just Ci(Y) for C~(Y, G). 

Note that  C~(Y) is a (left) RG-module. We define a Hilbert space structure on 

Ci (Y) by exhibiting an orthonormal Hilbert basis. For this we choose from each 

G-orbit  of / -cel ls  a representative ¢~,#  E {1,. . . ,c~i}, with c~i the number of 

/-cells of X.  Then 

{x ® e¢lx • a , ~  • { 1 , . . . , ~ d }  

constitutes an orthonormal Hilbert basis for Ci (Y); obviously, the Hilbert space 

structure on Ci(Y) does not depend on the choice of the representatives ¢/". (As 

a mat te r  of fact, Ci(Y) is naturally isomorphic as a Hilbert space to the space of 

square summable  chains 

C}2)(Y) :-- { ~  f(a)a I f(~) E N, ~ f(cr) 2 < oo}, 
aEJi a6Ji 

with orthonormal Hilbert basis {a}~Ej,, Ji denoting the set of / -cel ls  of Y.) 

Note also that  for f • g2G, the elements f ® f~ • Ci(Y) satisfy IIf ® ¢11 = 

]1 ~ f (x)x  ® •ll = Ilfll and therefore 

(e~a)", -4 Ci(r) 
C~ i 

( f l , . . . , f ~ )  ~-+ Ef.®e¢ 
~,=i 

defines an isometric G-equivariant isomorphism of Hilbert spaces (here (/?2G) ~ 

is considered as a Hilbert-space in the usual way, with 

I1(/~, ..,/~,)11 ~ = Y~. II/.ll ~ 
~=I 

so that  the inclusions g2G -4 (g2G) ~ are isometric G-equivariant embeddings). 

The induced boundary maps 

e2G ®v di: Ci(Y) -4 Ci-z(Y), 

which we denote by di too, if no confusion can arise, are bounded operators.  

Indeed, the following more general result is easy to prove. 

LEMMA 2.2.1: Let qD: (]~G) n -4 (NG) m be a morphism of®G-modules. Then 
the induced operator ~o : =  g2G ®RG qo: (f2G) n -4  (g2G) rn is bounded. 

Proof'. Let [p/j] denote the matrix of ~ so that  

qD(a l , . . . ,  an) -= ( E  aiqoil,..., E aiqOirn)' ( a l , . . . ,  an) C (~a) n 
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with ~ij E RG. Each ~)~j has the form ~xc~ j (x )x ,  with cij(x) E R and x E G. 

We write as before 

X 

Then for f E e2G one has IIf" ~jll -- I~ j l"  Ilfll, and 

II@(fl, . . . ,  fn)ll 2 = ~ I[ ~ fcP~J II 2 
j i 

V TM I(fl i .I 2 

i , j  

_< I i 12)ll(fl,..., fn)ll 2. 
i , j  

Thus q5 is bounded. | 

2.3. In particular, the operators di: Ci(Y)  --+ Ci-1 (Y) and their adjoints (~i-1 : 

d* are continuous. We put kerdi = Zi(Y) ,  and ker~i = Zi(Y); these are thus 

closed subspaces of Ci(Y)  so that 

n (Y,a) := Z W) n zi(Y) 

is a Hilbert subspace (i.e., a closed linear G-subspace) of C~(Y). The images 

Bi (Y)  := im(di+l: C/+I(Y) -~ Ci(Y))  and Bi (Y )  = im(5i-l:  C i - I ( Y )  -+ Ci(Y))  

need not be closed; we wri te / ) i  and/)4 for their closures, respectively. One finds 

then, as in 1.2, orthogonal decompositions 

Ci(Y)  = [1 i ± Zi = Bi ± Z i = [~i ± [1~ Z ?-li 

(g2-Hodge~de Rham decomposition). 

Laplacian by 

and 

As in the first section, we define the 

Ai = di+15i + 5i-idi: Ci(Y)  --+ C~(Y) 

7-t~(Y, G) -- {c E.C~(Y)IAic = 0}. 

The proof is essentially the same as in the situation described in section 1. One 

refers to "Hi(Y, G) as the space of h a r m o n i c  g2-chains on Y, and we will often 

just write ~ i ( Y ) ,  if the G-action is plain from the context. 

By analogy with 1.3 it is now natural to introduce r e d u c e d  g2-homology groups 

of Y by 

"~dHi(Z) = Z i ( Y ) / B i ( Y ) .  
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Then the projection Zi --~ r~dHi(Y) induces an isomorphism 7{i(Y) ~ r~dHi(Y) 
as Hilbert spaces. Similarly reduced cohomology groups are defined by 

= 

and one has an isomorphism "Hi(Y) ~ redHi(y). In case of a finite group G it is 

clear from section 1 that 

(y )  ,,o (Y R) '~  (Y;R). 7-[i = Hi ; = H i 

2.4. One might also look at non-reduced (co)-homology groups Zi/Bi and 

Zi/B i. As for the homology groups, 

Z,/Bi H (e2a ®a K,(Y)) = :  Hg(Y;e2a), 

the e q u i v a r i a n t  homology of Y with coefficients the G-module £2G. There is 

thus a natural surjection 

HiG (Y ; e2G) -+ ~dHi(Y). 

In a similar way, using the cochain complex 

ci (y)  := Homa(KdY), e~a), 

one defines equivariant cohomology groups 

H~(Y;g2G) := Hi(C*(Y)) = Hi(Homv(K.(Y),g2G)). 

Because K~(Y) is finitely generated and free as a Z[G]-module, Ki(Y) is isomor- 

phic to its dual Homc(Ki(Y), Z[G]). Similarly, using the Hilbert basis of Ci(Y) 
corresponding to the/-cells  of Y, we can identify the Hilbert spaces Ci (Y) and 

Ci(Y) = HomG(Ki(Y),g2G). This leads to isomorphisms 

Z' / B i '~ H'(Homa( Ki(Y ), g2G) ) =: Hb (Y ; g2G), 

and a natural surjection 

H~(Y ; g2G) ~ ~dH~ (Y). 

We also point out that,  analogous to the isomorphism C~2)(Y) -~ C~(Y), the 

cochains C i (Y) can be identified with the e2-cochains C~2 ) (Y) (defined as those 

real cochains ¢: Ki(Y) ~ R, which are square summable, ~ I¢(a)l 2 < oc, the 

sum being taken over all/-cells of Y). Clearly, C~2 ) (Y) is naturally isomorphic to 
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the Hilbert space dual Homcont (C[ 2) (Y), R), and one has isomorphisms of Hilbert 

spaces 

redHi(Y) ~ Homcont(redHi(Y),~) ~- ~edHi(Y), h ~+ (h, ). 

Finally, we observe that  there are obvious maps 

cani: Hi(Y;R)  ~ redHi(Y ) 

given by considering an ordinary real cycle as an g2-cycle, and 

cani: r¢dHi(y) ____+ H i ( y ; R ) ,  

which can be described as follows: cani(x) = [2], where 2 denotes the unique 

harmonic cocycle in C12 ) representing x, and [~] is its ordinary N-cohomology 

class. 

As is clear from examples (see 2.7.3), the unreduced groups are indeed different 

from the reduced ones, and they do not easily yield numerical invariants. The 

advantage of the reduced groups is that  they are Hilbert G-modules, as explained 

in the next section. 

2.5. If M is a Hilbert space, we call V C M a H i l b e r t  s u b s p a c e ,  if V is a 

closed linear subspace with induced Hilbert space structure. 

Detinition 2.5.1: A Hilbert G-module is a left G-module M, which is a Hilbert 

space on which G acts by isometrics such that  M is isometrically G-isomorphic 

to a G-stable Hilbert subspace of (g2G) '~ for some n. 

I t  follows that  Ci(Y),Z~(Y),Zi(y) ,Bi(Y) ,Bi(Y)  and 7-/i(Y) are all Hilbert 

G-modules. If M is a Hilbert G-module and V C M a G-stable linear subspace, 

then M/fd, V the closure of V, has a natural Hilbert G-module structure, with 

norm given by 

Ilwl] = min{llt~l[ I 7r(~) = w}, 

where 7r: M --+ M / V  denotes the projection. Note that  7r induces a G-equivariant 

isometric isomorphism of Hilbert G-modules 

v ± 

De~nition 2.5.2: A map f :  M1 ~ M2 of Hilbert-G-modules is a 

• weak isomorphism, if f is an injective, bounded G-equivariant operator,  

with im(f )  dense in M2; 
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• strong isomorphism, if f is an isometric G-equivariant isomorphism of 

Hilbert spaces. 

Using the polar decomposition of bounded operators, one easily deduces the 

following crucial fact. 

LEMMA 2.5.3: Suppose there exists a weak isomorphism M1 -4 M2 of Hilbert 

G-modules. Then there exists also a strong isomorphism. 

Proof: Let f :  M1 --4 M2 be a weak isomorphism. Then ( f*fv ,  v} is > 0 for all 

v C M1 \ { 0 }  and f ' f :  M1 -4 M1 is a positive operator with im( f* f )  dense. It 

follows that  there exists a unique positive self-adjoint operator g: M1 -4 M1 with 

g2 = f , f ,  and im(g)  D im(g  2) is dense inM1.  Put  h =  f o g - l :  i m ( g ) - 4  M2 

(g-~ exists since g is injective). Then im(h) = im(f)  C M2 is dense, and for 

x, y E im(g) 

(hx, hy) = ( f * f  o g- ix ,  g-ly> 

= (g2 o g-Ix ,  g- ly)  = (g o g- lx ,  g* o g-ly} 

= (x,  y ) ,  

where we used the fact that  g* = g. It follows that h is an isometric isomorphism 

im(g) -4 ira(f).  Since im(g) is dense in M1 and im(f)  is dense in M2, h extends 

by continuity to an isometric isomorphism h: M1 -4 M2. Since f and f* are 

G-equivariant, g is G-equivariant too and so is h. It follows that h is a strong 

isomorphism of Hilbert G-modules. | 

Definition 2.5.4: Two Hilbert G-modules M1 and M2 will be called isomorphic, 

and we will write M1 TM M2, if there exists a weak and therefore also a strong 

isomorphism M1 -4 M2. 

COROLLARY 2.5.5: Let ~o: M1 -4 M2 be a bounded G-equivariant operator of 

Hilbert G-modules. Then 

(ker ~o) ± ~ M1/ker  ~o ~ im~o 

as Hilbert G-modules. 

Proof: We have already seen that the projection M1 -+ M 1 / k e r ~  defines a 

strong isomorphism (ker T)± -4 M1/ker T. The canonical map M1/ker ~ -+ im 

is a weak isomorphism. Thus M1/ker  qo ~ im qo. | 
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2.6. Our next goal is to show that the isomorphism type of the Hilbert G- 

module 7-ti(Y) depends only upon the G-homotopy type of Y. It is plain that  

the projection Zi(Y) --+ r~dHi(Y) induces a strong isomorphism of Hilbert G- 

modules 
7ti(Y) ~-> rcdHi(Y). 

LEMMA 2.6.1: ~dHi( ) de/ines a functor from the category of free cocompact 
G-CW-complexes and G-bomotopy classes of maps, to the category of Hilbert 
G-modules and bounded G-equivariant operators. 

In particular, the Hilbert G-modules 7/i(Y) of harmonic g2-chains give rise to 

G-homotopy invariants. 

COROLLARY 2.6.2: If  f :  Y --+ Z is a G-map between free cocompact G-CW- 
complexes and f is a homotopy equivalence, then the Hilbert G-modules 7ti(Y) 
and 7"li( Z) are isomorphic. 

Indeed, f induces a weak equivalence r~dHi(Y) --> ~¢gHi(Z) and therefore 

~cdHi(Y) ~- ~edH~(Z), thus 7/i(Y) ~ 7-/i(Z) as nilbert G-modules. (There is no 

need to assume that  the map f in the corollary is a G-homotopy equivalence; as a 

matter  of fact, it is well known that  any G-map between free G-CW-complexes, 
which is a homotopy equivalence, is also a G-homotopy equivalence.) 

Proof of the Lemma: Let f :  Y --+ Z be a G-map of free cocompact G-CW- 
complexes. Then, by the G-cellular approximation theorem, f is G-homotopic 

to a cellular G-map f: Y --> Z, inducing bounded operators (cf. 2.2.1) and chain 

maps 

/~: c , ( r )  -~ C,(Z). 

Since fi is continuous, it maps [~i(Y) to Bi(Z) and induces therefore ~dHi(f): 
r¢dHi (Y) -+ ~dHi (Z). If ): Y --~ Z is a cellular G-map G-homotopic to f ,  then 

g i f ,  g i):  KiY --4 g i z  

are chain homotopic morphisms of G-chain complexes. It follows that  

g2G ®RG K , f  ~-: ] ,  and t2G ®RG K , f  =: ) ,  are chain homotopic too. Thus 

(], - f , ) (Zi(Y))  C Bi(Y) C JBi(Y) and, therefore, redHi(f,) = redHi(f,) for all 

i, showing that  ~edHi(f,) depends on the G-homotopy class of f only. | 

Similarly the reduced t2-cohomology groups, 

~¢dHi (y) = Zi(Y)/Bi(Y),  
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define cofunctors from free cocompact G-CW-complexes (and G-homotopy 

classes of G-maps) to the category of Hilbert G-modules (and bounded 

G-equivariant operators),  with f :  Y --4 Z inducing 

r~dHi (f): ~edHi (Z) ~ ~e~Hi (V) 

via the adjoint f*: Ci(Z) -4 Ci(Y). The reader should be careful to notice 

that  the left G-module structure on redHi(Y), which we are considering, is the 

one induced from considering the Hilbert G-module ~e~Hi(Y) as a G-subspace 

of C~(Y). We could also let g E G act via ~dHi(g), which would define a r i gh t  

G-action on ~dH~(Y). Passing to the associated left G-action using the inverse, 

would result in the left G-action considered first, because G acts by isometries 

on r¢dHi(Y) and therefore the adjoint of r~dHi(g) equals its inverse. In any case, 

the left G-spaces redHi(Y), 74i(Y), and redHi(Y) are all isomorphic as Hilbert 

G-modules. 

Remark  2.6.3: One can extend the definitions of the previous sections in the 

following obvious way. If Y is a G-CW-complex such that  for a given k C N the 

k-skeleton yk  is a free cocompact G-CW-complex, then we define for i < k the 

i-th (co)-homology groups (with all variations considered above), to be those of 

yk.  In particular, for any finitely presented group G, the groups 74o(EG) and 

741 (EG) are well defined, by choosing a model for EG with cocompact 2-skeleton. 

2.7. The following examples serve as an illustration. But first we need an 

elementary fact. 

LEMMA 2.7.1 : If G is an infinite group, then for n >_ 1 the left G-module (~2G) n 

contains no G-invariant element ¢ 0. 

Proof: If ~]xea f (x)x  C g2G is G-invariant, then f (x)  must be independent of 

x and, since G is infinite, f (x)  must be zero for all x; similarly for the case n > 1. 

| 

Example 2.7.2: Let Y be a connected G-CW-complex with cocompact 

1-skeleton and G an infinite group. Then r~dHo(Y) = 74o(Y) = r¢dH° (Y) = O. 
To see this, we consider the right-exact sequence 

CI(Y) -~Co(Y)  ~ £2G ®G 7. --+ O. 

It  shows that  kerS0 = ( imdl)  ± gets mapped injectively into the coinvariants 

g2G ® c  Z, showing that  ker 5o consists of G-invariant elements and is therefore 



Vol. 117, 2000 g2-METHODS IN TOPOLOGY 197 

trivial. Whence, r~dH°(Y) = 0. In particular, for any finitely generated infinite 

group G one has 7-lo(EG) = 0 (for G finite, 7to(EG) = ~). 

But the unreduced Ho need not be zero, as the following example shows. 

Example 2.7.3: Let Y = ]~, the universal cover of S 1, where G = Z acts by 

covering transformations on ]~ and Y/G is considered as a CW-complex with 2 

cells: S 1 = e ° U e 1. The complex of t2-chains C.  (Y) then takes the form 

0 - -+  6 ( Z ) d ' ~ 6 ( Z )  > O. 

If x denotes a generator of Z we can write f E g2(Z) as f = En6Z anxn, and dl 

is give n by 

dl ( f )  = (1 - x) E a'~x~ E g2(Z). 
n6Z 

Clearly, dl is injective, and imdl  is dense in ~2(Z) by 2.7.2. However, dl is 

not surjective. For instance, 1 6 g2(Z) is not in the image of dl, because 1 = 

(1 - x)~~ieza,x  i would imply that  all aj,  j < 0, are equal whence 0, and all 

aj , j  >_ 0 are equal whence 0, which is not possible. Therefore r~dH.(Y) = 0 

whereas 

Zo(Y) /Bo(Y)  = HoG(r;e2G) # O. 

Expressed in another way, the example shows that  7-ti(EZ) = 0 for all i > 0, 

whereas HZ(EZ;~2Z) = Hi(Z;~2Z) = 0 for i > 0, and H0(Z;g2Z) ~ 0 (and 

Hi(Z;£2Z) --- 0 for i # 1, H I ( Z ; / 2 Z )  # 0). 

Remark  2.7.4: A systematic study of the difference between reduced and 

unreduced g2-homology leads to the notion of torsion Hilbert modules, with 

associated Noviko~Shubin invariants (cf. [21]). For a systematic t reatment  of 

these mat ters  the reader is referred to [13, 19]. 

3. Von Neumann dimension; g2-Betti numbers 

The goal of this section is to define a real valued function "dime" (von  

Neumann dimension) on Hilbert G-modules satisfying the following basic 

properties: 

* dimG M > O, 

. d i m a M = 0 ~ M = 0 ,  

• d ima  M = d ima  N if M ~ N, 

- d ima  M • N = dimG M + dimG N,  

• d ime  M __ d ima  N if M C N, 
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• d ima  g2G = 1, 
1 - • d ima  M = ~-T dime M, if G is finite, 

• d ima  M = ~ dims M, if S < G has finite index. 

The function d ima  will be derived from a generalization of the s tandard Kaplan- 

sky trace map 

p: NG , N, Z r(x)x ' ~ r(1), 
xEG 

with 1 E G the neutral element. 

Definition 3.1.1: The von Neumann algebra N(G) is the algebra of bounded 

(left) G-equivariant operators g2G ~ g2G. 

Recall that  g2G is an NG-bimodule. Since the right action of II~G on geG is 

an action by bounded left G-equivariant operators, we may consider NG as a 

subalgebra of the yon Neumann algebra N(G). Mapping an operator ¢ to its 

adjoint ¢* defines an involution on N(G) (turning it into a real C*-algebra). 

Because the adjoint of the right action of x E G on i2G is right multiplication by 

x -1, passing to the adjoint in N(G) corresponds under the inclusion RG C N(G) 
to c o n j u g a t i o n  in IRG. By conjugation on RG (or /2G)  we mean the map 

s -- E s(x)x, , ] = E s(x) x-1. 

The Kaplansky trace on NG can now be extended to a t r a c e  on N(G) as follows. 

Definition 3.1.2: Let ~o e N(G) and 1 E IRG C g2G. Then 

traceG(v) = <V(1), i> e s .  

It  follows that  if we consider w = Er(x)x E g{G as an element of N(G), 

traceG(w) = (1- Er(x)x, 1) = {Er(x)x, 1) -- r(1) -- p(w) 

where, as before, p(w) stands for the Kaplansky trace of w. We also observe tha t  

the trace of ~ E N(G) satisfies 

traceG(qa) = <~0(1), i} = <1,~*(1)} = traceG(qO*). 

The following lemma shows that  the inclusion RG C ~2G extends to an embed- 

ding of G-modules N(G) C g2G (g2G is not a ring!) under which the *-involution 

of N(G) corresponds to conjugation in g2G; in the course of its proof we will make 

use of the obvious fact that  for f ,  g E g2G conjugation satisfies {f, g} -= {f,.q/. 
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LEMMA 3.1.3: 

g 2 - M E T H O D S I N  T O P O L O G Y  

The ]~-linear map 

O: N(G) --+ g2(G), ~o ,.. > ~o(1), 

199 

t racec(~¢) =(~(¢(1)) ,  1> = (%b(1), ~*(1)> 

=(%b(1), ~(1)> = (¢(1), ~(1)) 

=(¢*(1), ~o(1)} = (1, tb(~o(1))} 

= t r acea  (¢~). | 

3.2. Let Mn(N(G)) denote the algebra of bounded (left) G-equivariant 
operators (g2G) '~ --+ (g2G) n. An operator F C Mn(N(G)) is determined in the 

usual way by a matrix [Fi,j] of operators Fi,j in N(G) satisfying 

F(a t , . . . ,  a,~) = ( E  Ft,kak,. . . ,  E Fn,kak) • (e2G) n. 

Note that  the adjoint F* corresponds to the matrix of operators [(F*)i,j] -- [F~i ]. 
We extend the definition of the trace to operators F in Mn(N(G)) by putting 

traceG(F) := ~ tracea(Fi,i). 
i=1 

Clearly traceG(F) = tracec(F*) and, using Corollary 3.1.4, we see that  for all 

F1, F2 6 Mn(N(G)) 

traceG(F1 o F2) = tracec(F2 o F1). 

Proof'. We have 

is injective and satisfies 8(~*) ---- ~(1). 

Proof.' Let ~ E N(G) be such that  ~(1) = O. Then, for all x G G C £2G one has 

~(x) = x~(1) = O, showing that 0 is injective. Furthermore, for all x E G 

(~o*(1), x> =(1, ~o(x)> = (1, xqo(1)> 

=(x -I, ~o(I)> = (~, ~o(I)> = (~o(I), ~} 

=(~o(1), x}, 

and it follows that  ~*(1) = ~(1). | 

Our "tracec" has indeed the basic- property one requires of a trace: 

COROLLARY 3.1.4: Let ~ ,~  C N(G). Then 

tracec( ¢) = traeeG(¢ ). 
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L E M M A  3 . 2 . 1 :  

Proo~ 

f f  F E M~(N(G))  is self-adjoint and idempotent ,  then 

traceG(F) = E IIFi,j(1)l]2 
i , j  

It follows from the definitions that  

t r acea (F )  = E ( F j , j  (1), 1) = E((F2)j,j (1),  1} 
J J 

= E < F j , i F i j  (1), 1} = E ( F i , j  (1), F~*/(1)} 
i , j  i , j  

= E < F i j ( 1 ) , F i , j ( 1 ) >  -- E IIFi,j(1)H ~. | 
i , j  i , j  

The following is a simple but important  consequence. 

COROLLARY 3.2.2: Let F E Mn(N(G))  be seff-adjoint and idempotent .  Then 

traceG F is non-negative and traceG F = 0 implies F = O. 

Remark  3.2.3: The corollary holds too if F is only assumed to be an idempotent.  

This is easily seen by using the orthogonal projection 77 E Mn(N(G))  onto im F,  

observing that  FoTr = 77 and 77oF = F so that  t racec 77 = traceG F.  If e E N ( G )  

is an idempotent,  then tracec(e)  + traceG(1 - e) = 1 so that  

t r a c e G e <  1, and t r a c e G e = l ~ e = l .  

Thus, if e C Z[G] is an idempotent then, since in that  case t racec e must be an 

integer, one has e = 0 or e -- 1, yielding the following classical result: 

• the only idempotents in ZIG] are 0 and 1; or, equivalently, the integral 

group ring ZIG] does not admit a non-trivial decomposition into a direct 

sum of two left ideals. 

The K a p l a n s k y  C o n j e c t u r e  states that  the same conclusion holds for RIG] too, 

if one assumes G to be torsion free. This would follow, if one could prove tha t  

in the torsion free case traceG e is an integer for any idempotent e E •[G]. It  is 

known (Zalesskii [23], see also [2]) that  for an arbitrary group G and idempotent 

e E RIG] the value traceG e is a rational number. 

3.3. We are now ready to define the function dimG. First we consider a special 

case. Let V C (~2G) n be a G-invariant Hilbert subspace and let try denote the 

orthogonal projection onto V. Because for all a E (/~2) n and x E G 

xa = ~ry(xa) + (xa - 77v(xa)) = x77v(a) + (xa - z77v(a)) 
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with Irv(xa),xTrv(a) E V and xa - 7rv(xa),xa - xTrv(a) E V ±, it follows tha t  

7rv(xa) = xTrv(a) and therefore try E Mn(N(G)).  The yon Neumann  dimension 

of V is now defined by 

d i m a  V :=  t raeec  7rv E R. 

Because 7rv is a self-adjoint idempotent ,  we infer from Corollary 3.2.2 tha t  

d i m a  V > 0 and tha t  d i m a  V = 0 implies V = 0. 

For the general case we proceed as follows. Let M be an arbi t rary  Hilbert 

G-module  and choose a G-equivariant isometric isomorphism 

a : M  - ~ > V C ( g 2 G )  n. 

Define the yon Neumann  dimension of M by 

d ime  M := d ima  V. 

We need to check tha t  d i m a  M does not depend on the choice of a.  Suppose 

~: M --% W C (e2a) m 

is another  G-equivariant  isometric isomorphism, with m = n + k > n. If  V r 

denotes V considered as a subspace of (g2G) n+k using the inclusion 

(e2c") c (e a) n . (e C) k, z (z, 0), 

one sees f rom the definition tha t  d i m a  V'  = d ima  V. Therefore we may assume 

wi thout  loss of generali ty tha t  m = n. Define then h :=  ~ o c~-1: V -+ W and 

extend h to an opera tor  H E Mn(N(G) )  by put t ing  HIV = h and HIV ± = 0, so 

H is a partial isometry V -+ W. The composit ion H*H is, by construct ion,  the 

or thogonal  project ion onto V, and HH* is the orthogonal  project ion onto W.  It  

follows tha t  

d i m a  V = tracea( H* H) = tracea(HH*) = d i m a  W, 

showing tha t  d i m a  M is well-defined indeed. 

An immedia te  consequence of the definition is tha t  

• d i m a  M > 0, and (d ima M = 0 ¢=:* M = 0), 

• d i m a  M ® N = d i m a  M + d i m a  N.  
m If  S < G has finite index m, then G = [-[i=1 Sxi, and g2G decomposes as a 

Hilbert  S -module  into ±~-1 ~2S" xi ~- (g2S) "~. Thus if F E N(G) then 

m m 

t races  F = Z ( F ( x i ) ,  xi) = ~ ( F ( 1 ) ,  1) = m -  t r acea  F. 
i = l  i=1 
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Similarly for F E Mn(N(G)),  so that for any Hilbert G-module, dims M = 

m d i m c  M. The other properties stated in 3.1 are readily checked too and are 

left to the reader. 

Remark 3.3.1: The general dimension theory in (complex, finite) yon Neumann 

algebras goes back to the fundamental paper [20]. The dimension dime is closely 

related to the universal center-valued trace, and all our properties could be de- 

rived from it. The center-valued trace, however, is a rather difficult and deep 

concept while our treatment of dimG is direct and elementary. 

3.4. In applications, we will be dealing with chain complexes of Hilbert 

G-modules. 

Definition 3.4.1: A chain complex 

V . : . . - ~  V i + l ~ E - ~ ¼ - 1 ~ " "  

of Hilbert G-modules is called an g2G-chain c o m p l e x  if each Vi --~ Vi-1 is a 

bounded G-equivariant operator. 

Definition 3.4.2: Let 

Y.: .. .  -~ V~+l -~ Vi ~ Y~_l... 

be an g2G-chain complex. Then 

• the r e d u c e d  h o m o l o g y  m o d u l e s  of V, are the Hilbert G-modules 

redHi(V, ) = ker(Vi ~ Vi-1)/im(Vi+l ~ Vi); 

• the complex V, is called weak-exac t ,  if ~edHi(V,) = 0 for all i. 

Definition 3.4.3: Let V, and W, be two e2G-chain complexes. 

• A m o r p h i s m  ¢,: V, --+ W, is an ordinary morphism of chain complexes 

consisting of bounded G-equivariant operators. 

• Two morphisms ~b,,ip,: V, ~ W, are £2G-homotopic if they are chain 

homotopic by a chain homotopy consisting of bounded G-equivariant 

operators. 
• The complexes V, and W, are g2G-homotopy equivalent if there are 

morphisms ¢,:  V, ~ W, and ¢, :  W, --+ V, such that ¢,  o ¢ ,  and ¢ ,  o ¢ ,  

are g2G-homotopic to the identity. 

Clearly, a morphism ¢,:  V, --+ W, induces bounded G-equivariant operators 

~dH~(V,) --+ ~dHi(W,) ,  depending on the g2G-homotopy class of q~, only. In- 

deed, the components of ¢ ,  map cycles to cycles and, because of continuity, 
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the closure of boundaries to the closure of boundaries; if ¢,  is g2G-homotopic 

to ¢,  then ¢i - ¢i maps cycles to boundaries and thus they agree on reduced 

cohomology. 

COROLLARY 3.4.4: f f  the g2G-ehain complexes V, and W, are g2G-homotopic, 

then the Hilbert G-modules ~¢dHi(V,) and ~edHi(W,) are isomorphic for all i. 

Definiton 3.4.5: A sequence U --+ V --+ W of Hilbert G-modules is called s h o r t  

w e a k - e x a c t ,  if 

O --+ U --+ V --+ W ~ O 

is a weak-exact g2G-chain complex. 

Recall that  for a G-equivariant bounded operator a : V --+ W of Hilbert G- 

modules, the Hilbert G-modules c~(V) and (ker a)  ± C V are isomorphic, and the 

latter is isomorphic to V/ker a. It follows that  

dimG V = dimG(ker a)  + dima(a(V~) = dima(ker  c~) + d imG(V/ker  a).  

In particular, if U --+ V --+ W is a short weak-exact sequence of Hilbert G- 

modules, then 

dimG V = d ime U + dimG W. 

COROLLARY 3.4.6: Let 

W.:O--~ Wn.-+ Vn_l--+...--+ VO---} O 

be a chain complex of Hilbert G-Modules. Then 

Z ( - 1 )  / d ima  V~ = Z ( - 1 )  i dimG ~dHi(V,). 
i i 

Proof.' Let Ki = ker(Vi -+ V/-1) and Ii = im(V/+l -+ Vi). Then there are short 

weak-exact sequences of Hilbert G-modules 

Ki-+ Vi--+ Ii-1, I i-+ K~-~eaHi(V, ) ,  

yielding the equations 

d ima  Vi = dimG Ki + d ima I i -1,  d ima  ~aHi  = d ima  Ki - dimG Ii. 

The result now follows readily. | 
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3.5. Let Y be a free cocompact G-CW-complex with cellular chain complex 

K,(Y) .  Then C,(Y) = g2G ®G K,(Y)  is an £2G-chain complex in the sense of 

Definition 3.4.1. The i-th £2-Bett i  n u m b e r  of Y (with respect to G) is defined 

by 

~i(Y ; G) :-- dimc "~dHi(Y). 

It is plain from the results proved earlier that the £2-Betti numbers enjoy the 

following properties: 

• fl i(Y;G) is a G-homotopy invariant of Y (and therefore a homotopy 

invariant of the orbit space Y/G; cf. 3.4.4); 

• if S < G is a subgroup of index m, then ~i(Y; S) = m .  ~i(Y; G) (in this 

case Y / S  is an m-sheeted finite covering space of Y/G); 

• if G is finite, then/3i(Y; G) = i-~lbi(Y), where bi(Y) stands for the ordinary 

ith Betti number of Y (in this case, dimG ~dHi(Y) = ~ dimR Hi(Y; II~)); 

in particular if Y is connected,/30(Y; G) = ~'1. 

• if G is infinite and Y is connected, then/30(Y; G) = 0 (cf. 2.7.2). 

Definition 3.5.1: Let X be a connected finite CW-complex. The g2-Bet t i  

n u m b e r  13i(X) of X is/3i(X; G), where X denotes the universal covering space 

of X and G = 7rl(X). 

Note that  if c~i denotes the number of /-cells of X, the Hilbert G-module 

~dHi(f() is isomorphic to a Hilbert submodule of Ci()() ~ (g2G) ~.  Therefore 

the g2-Betti numbers satisfy 

o <_ ~ ( x )  _< ~i. 

Furthermore, if )~ is a connected m-sheeted covering space of the finite complex 

X and S < G denotes the fundamental group of )( ,  then 

~i()~) = dims r~dHi(fC) = m . dimG "~dHi(2) = m " ~ (X) ,  

which is quite different from the way the ordinary Betti numbers behave. 

Example 3.5.2: If X = S t , then ~i(X) = 0 for a l l i  > 0 (cf. 2.7.3). More 

generally, if X is a connected finite CW-complex which possesses a regular finite 

covering space )(  --~ X of degree m > 1 with )(  homotopy equivalent to X,  then 

the £2-Betti numbers of X all vanish, because in this case ~i(X) = ~i()() = 

m. ~i(x) .  
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3.6. Let X be a finite connected CW-complex with ordinary Betti numbers 

bi(X) and Euler characteristic x(X)  i 1 i = E ~ ( - 1 )  ~ = E ~ ( -  ) b~(X), ~ the num- 
ber of/-cells of X. It is an interesting fact that x(X)  can also be computed using 

the g2-Betti numbers. 

THEOREM 3.6.1: The 

CW-complex satisfies 

Euler characteristic x (X)  of a finite connected 

x(x) = ~(-1)%(x). 
i 

Proof: We consider the g2-chain complex C, ( ) ( )  = g2G Qc  K, ( ) ( ) ,  where G 

denotes the fundamental group of X. Since Ci(X) ~- (g2G) ~' with cq the number 

of/-cells of X, 

~ ( - 1 )  i dima Ci(f~) = ~-~(-1)~ai = x(X) .  
i i 

On the other hand (cf. 3.4.6) 

~ ( - 1 )  i dima Ci(fC) = E ( - I )  i dima redHi(X),  
i i 

which proves the claim. | 

The following is a slight generalization. 

THEOREM 3.6.2: Let X be a finite connected CW-complex and N a normal 

subgroup of 7rlX with quotient group Q. Let XN denote the covering space of 

X associated with N. Then 

~ ( x )  = ~ ( - 1 ) % ( x N ;  q) .  

Along the lines of 3.6.1 one can also establish the following M o r s e  I n e q u a l i t i e s  

(cf. 1.2.2). 

COROLLARY 3.6.3: Let X be a connected CW-complex with finite (k + 1)- 

skeleton. Denote by ai the number of i-cells and by t3i the g2-Betti numbers 

of X.  Then 

ak - ak-1 + " "  + ( -1)kao  >_/3k - J~k-1 - [ -  " " " - [ -  (-1)kj3o • 

Remark 3.6.4: We also like to mention (without proof) the following K i i n n e t h  

F o r m u l a  for g2-Betti numbers. Let X be a free cocompact G-CW-complex, 

and Y a free cocompact H-CW-complex. Then, using the fact that  X × Y is 
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a free cocompact (G × H)-CW-complex with K . ( X  × Y) and K(X)  ®z K . (Y)  
isomorphic as G x H-complexes, one can show that 

~ j ( X × Y ; G x H ) =  E ~ ( X ; G ) . / 3 t ( Y ; H ) .  
s+t=j 

(Question: If F --+ E --+ B is a fibration, under what condition is /3jE = 

Es+ =j Z E. ? For the case of ZlE, see [lS].) 

3.7. Let X be a connected CW-complex with fundamental group 7rl(X) =: G. 

As earlier, we denote by K ,  ()() the cellular chain complex of the universal cover 

)~ of X. The associated n -dua l  ~DK,(X) is defined by 

"DKj (2() = Homa (K,_j  (_~), Z[G]) 

which we consider as (left) G-modules via (xf)(c) := f(c)x -1, where x E G and 

f E Homa(K,_j( f ( ) ,  Z[G]); the differential is the one induced from K,()~). 

Definiton 3.7.1: We call a connected CW-complex X a v i r t ua l  PDn-complex, if 

there is a subgroup S of finite index in 7rl (X) such that K,  (~7) is chain homotopy 
equivalent as a Z[S]-complex to its n-dual nDK,(f(). A group G is called a 

v i r t ua l  PD'~-group, if K(G, 1) is a virtual PD"-complex. 

For instance, a closed (not necessarily orientable) topological n-manifold is 

homotopy equivalent to a virtual PDn-complex in the above sense. Also, the 

reader checks easily that  a group G of type FPoo is a virtual PDn-group in the 

sense of (3.7.1) if and only if it possesses a subgroup of finite index which is a 

PDn-group in the "usual" sense (as defined for instance in [12]). 

THEOREM 3.7.2: Let X be a finite virtual PD~-complex. Then there exists a 
subgroup of finite index S < lrl(X) such that the Hilbert S-modules r~dH~(X) 
and r~dH._i(f() are isomorphic; in particular/3i(X) =/3n-i(X) for all i and if 

7ri(X) is infinite t3.(X) = 13o(X) = O. 

Proof'. Let S < G be a subgroup of finite index such that  the Z[S]-complexes 

K.()~) and nDg.( f ( )  are chain homotopic. As in Section 2 we put C.()()  -- 

~2S ®s K .  ()(); define furthermore the ~2S-chain complex ~DC.(-f() by 

'~DCj ()() = Homs(Kn- j  ()(), g2S), 

with S-action on f E Homs(Kn-j()~,e2S) given by (xf)(c) = f(c)x -1 for x e S 
and c E K,~_j()~), and obvious differential. Since K.()~) is chain homotopy 

equivalent to nDK.(fO as Z[S]-complex, the g2S-chain complexes C.()()  and 
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'~DC,(f() are ~2S-homotopic (cf. (3.4.3)). Thus by (2.6.2), the Hilbert S-modules 

"~dHi (X) and redHi('~DC, (X)) are isomorphic. But 

r¢'~Hi('~DC,(2) ) ~ ,'*dHn-~ (2  ) ~_ rCdHn_i(2),  

with the first isomorphism following from the definition of the n-dual complex, 

and the second one was discussed at the end of (2.6). Since 

1 dims r¢dHj(fi), fly(X) = d ima redHj(f~) -- [G: S] 

the assertion concerning the g2-Betti numbers follows. | 

3.8. If G is a group with a finite CW-model  K(G, 1), we define its ~2-Betti 

numbers by 

fl~(a) = fli(K(a, 1)). 

According to 2.6.3 we can extend this definition as follows. Suppose G has a 

CW-mode l  with finite n-skeleton for some n > 2 (i.e., G is of type Fn). Then we 

put 

fli(G) = fli(K(G, 1)n), i < n. 

In particular, fll (G) is defined for any finitely presented group G. 

Example 3.8.1: Let X = VkS 1 be a wedge of k circles. Then x(X) = k - 1 and 

X = K(*kZ,  1) so that  

k - l ,  f o r i = l ,  
fli(VkS 1) = fli(*kZ) = 0, else. 

In particular,  fli(S 1) = fli(Z) = 0 for all i. Using the Kiinneth formula we 

conclude that  for any group G of type Fn 

fli(Z x G) = 0 for i < n. 

Example 3.8.2: Let Eg be an orientable surface of genus g >__ 0, with fundamental  

group ag. Because E 9 = K(ag, 1) is a PD2-complex of Euler characteristic 2 - 2 g ,  

2 g - 2 ,  f o r i = l ,  
/~i(E 9) = fli(ag) = 0, else. 

Example 3.8.3: Let X be a finite pD2-complex with infinite fundamental  group. 

Then bl(X) > fl l(X) ___ 0. In particular, bl(X) > 0. Indeed, one has 

x(X) = 1 - bl(X) + b2(X) = -~I  (X) > -bl  (X). 



208 B. ECKMANN Isr. J. Math. 

(Actually, finite pD2-complexes are homotopy equivalent to closed surfaces, see 

[12]; the result holds even for an arbitrary finitely dominated pD2-complex, see 

[11].) 

3.9. We can extend the definition of our e2-Betti numbers as in (2.6.3). If Y is 

a G-CW-complex with cocompact j-skeleton, we put 

f i ( Y ; G ) : = f i ( Y J ; G ) ,  i < j. 

Similarly the g2-Betti numbers f i ( X )  are defined for i < j if XJ is a finite 

connected complex. Note that if X j+l is finite too, f j ( X )  is defined and it is 

obvious from the definition that it satisfies 

f j (x )  _< 

COROLLARY 3.9.1: Let X be a connected CW-complex  with finite j-skeleton 

and (j - 1)-connected universal cover. Then for all i < j 

f l i(X) -- fli(Tri (X)  ). 

Proof: The assumptions on X imply that one can construct a model Y for 

K(Trl(X), 1) by attaching cells of dimension > j to X j. Thus for all i < j 

f l i ( X )  = f l i ( X  j )  = fl~(Y) = fli(Trl(X)). | 

In particular, for any connected space X with finite 2-skeleton one has 

f l ( X )  : f l ( T r l ( X ) ) .  

Remark 3.9.2: Let Y -+ Y / G  = X be a regular covering of a compact oriented 

Riemannian manifold X. The L2-harmonic forms dP~riP(Y) form a HAlbert G- 

submodule of the de Rham complex of L2-forms on Y and integration of forms 

over cochains (with respect to a suitable triangulation of Y) defines a morphism 

of HAlbert G-modules 
: dRq/P(y) ~ redHP(y). 

Dodziuk proved in [4] that this is an isomorphism of R-vector spaces. In 

particular the Betti numbers fin(Y; G) agree with the corresponding de Rham 

t?2-Betti numbers dimG dRT'IB(y). 

Atiyah asked in [1] whether these numbers are rational (resp. integers, in the 

case of a torsion-free group G). The question is related to the conjectures below 

and also to a question concerning zero divisors in Q[G]. 
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3.10. The following two statements are variations of what sometimes is referred 

to as A t i y a h ' s  C o n j e c t u r e .  

CONJECTURE A: Let Y be a connected free cocompact G-CW-complex. Then 

all/Ji(Y; G) are rational numbers. If k is a positive integer such that the order 

of any finite subgroup of G divides k, then k •/Ji(G) is an integer. 

Note that  the group G in the conjecture is necessarily finitely generated, being 

a factor group of 7rl (Y/G). 

CONJECTURE B: Let ¢: Z[G] "~ -4 Z[G] n be a morphism ofZ[G]-modules, ¢ the 

induced bounded operator £2(G) m -4 £2(G) n. Then dimc ker ¢ is rational. If k 

is as above in A then k • dima ker ¢ is an integer. 

Since the ¢ in the conjecture is induced by some ¢: ZIG] m --+ ZIG] n for a 

suitable finitely generated subgroup G < G, the conjecture holds if it holds for 

all finitely generated groups. 

PROPOSITION 3.10.1: For a finitely generated group G the two conjectures are 

equivalent. 

Proof: Assuming A and given ¢ as in B, it is easy to construct a Y as in A such 

that  ker ¢ is isomorphic to r~dHa(Y). (Choose a surjection F -4 G with F finitely 

presented and choose a K(F, 1) = Z with finite 2-skeleton Z 2. Let V~S 2 be a 

wedge of n two-spheres and define y2  to be the covering space of Z 2 V(V~S 2) 

associated with the kernel of F -4 G. It  is a free cocompact G-space; at tach rn 

free G-cells of dimension 3 to y2  to obtain Y with ker(K3 (Y) -4 K2 (Y)) = ker ¢.) 

Conversely, assuming B one obtains A by observing that  r~dHi(Y) = ker/~, 

where the c o m b i n a t o r i a l  L a p l a c i a n  A: Ki(Y) -4 Ki(Y) is defined in the 

obvious way (using the identification Kj (Y) = Z[G] ~ , a j  the number of j-cells 

of Y/G). 1 

The Z e r o  D i v i s o r  C o n j e c t u r e  states that  for a torsion-free group G the group 

ring Q[G] does not contain any zero divisors ~ 0. Clearly the conjecture holds, 

if it holds for finitely generated groups. It  is known to hold for a large class of 

groups (cf. [17]). 

THEOREM 3.10.2: The conjectures A and B imply the Zero Divisor Conjecture. 

Proof: Let G be a finitely generated torsion-free group and let a, b C Q[G] 

with a 7~ 0 and ab = 0; we need to show that  b -- 0. Consider the bounded 

G-equivariant operator 

Lb: ~2G -4 ~2G, z ~ zb 
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and write M for its kernel. Since a E M, M ~ 0 and therefore 0 < d ime  M < 1. 

Replacing b by nb for some n > 0 if necessary, we may assume b E ZIG] so that  

Lb = ¢ for ¢: ZIG] --~ ZIG] the right multiplication by b. Conjecture B now 

implies d ime  M = 1, and therefore M = ~2G whence b = 0. | 

4. A p p l i c a t i o n s  (def ic iency,  a m e n a b l e  g r o u p s )  

Suppose that  the group G possesses a presentation with g generators and r 

relators. Then obviously 

g - r _< rank(Gab) = bl (G). 

The  maximal  value def(G) of the differences g - r  over all finite presentations of G 

is called the de f i c i ency  of G. For example, a finite group G has def(G) < 0. In 

the following we want to get some estimates for the deficiency of infinite groups. 

If G is a finitely presented group with g generators and r relators we can 

construct a K(G, 1) with 2-skeleton K(G, 1) 2 possessing 1 zero-cell, g one-cells 

and r two-cells. Taking Euler characteristics yields 

r - g + 1 = b2(K(G, 1) 2) - bl(K(G, 1) 2) + 1. 

B u t  bl(K(G, 1) 2) = bl(G) and b2(K(G, 1) 2) _> b2(G) so that  in general 

def(G) < bl(G) - b2 (G). 

For g2-Betti numbers we get 

def(G) = 1 - f~o(G) + ~31(G) - ~2(K(G, 1)2). 

Whence 

THEOREM 4.1.1: Let G be a finitely presented group. Then 

def(G) < 1 + 131(C). 

In particular 13~(G) = 0 implies def(G) _< 1. 

In case K(G, 1) has a finite 3-skeleton the Morse inequality (3.6.3, case k = 2) 

for the ~2-Betti numbers of K(G, 1) 3 yields 

r - 9 + 1 > ~ 2 ( a )  - ~ l ( a )  + ~ 0 ( a ) .  

Recall that  a group G is of type F,~ if and only if there is a K(G, 1) with finite 

n-skeleton. 
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THEOREM 4.1.2:  Let G be a group of type F3. Then 

def(G)  _< 1 + ]~1 (G) -- /~2 (G). 

Example 4.1.3: If G = *nZ is a free group of rank n, then using 3.8.1 we obta in  

def(*nZ) = n = 1 +/31(*nZ) • 

Example 4.1.4: Let G = ag be the fundamental  group of an orientable surface 

of  genus g > 0. The  well known presentat ion for ag yields def(ag) _> 2g - 1 so 

tha t  from 3.8.2 we obtain  

def(ag) = 2 9 - 1 = 1 + ~l(~rg). 

The  next  example is due to Lfick [19]. 

Example 4.1.5: Let G be a finitely presented group possessing a finitely gener- 

a ted infinite normal  subgroup N such tha t  Z < GIN. Then  /31(G) = 0 ([19], 

Theorem 0.7) and thus 

def(C) <_ 1. 

The  following variat ion of 4.1.2 is a consequence of 3.6.2. 

THEOREM 4.1.6:  Let X be a connected finite CW-complex with fundamental 

group G, normal  subgroup N < G and  Q = G/N.  Let X~v be the covering space 

o f  the 2-skeleton of X associated with N. Then 

def(C)  _< 1 -  x ( X  2) _< 1 + fll(X~r; Q ) -  f i2(X~; Q). 

4.2. Let G be a group and B the space of bounded  R-valued functions on G. 

We consider B as a G-module  by put t ing  (xf)(y)  :-- f (yx)  for all x, y c G and 

f E B.  A m e a n  on G is a linear map M:  B -+ ]R such tha t  for all x 6 G and 

f c B  
• M(1)  = 1 (1: G --+ R the constant  function 1), 

• M ( x f )  = M ( f ) ,  

• f > _ O ~ M ( f ) > O .  
The  following not ion goes back to von Neumann.  

Definition 4.2.1: A group G is called a m e n a b l e  if it admits  a mean. 

Example 4.2.2: A finite group G is amenable:  it has a unique mean, given by 

1 
M(f) = V~ ~ f(x). 

' ' xEG 
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It is known that  the infinite cyclic group Z is amenable and that the class of 

amenable groups is 

(i) extension closed, closed with respect to passing to subgroups and factor 

groups, 

(ii) closed with respect to taking directed unions. 

In particular all abelian and all solvable groups are amenable. The smallest class 

of groups containing all finite and all abelian groups, and which satisfies the 

closure properties (i) and (ii), is the class of elementary amenable groups. There 

do exist examples (even finitely presented ones) of amenable groups which are 

not elementary amenable (cf. [15]). On the other hand, it is a classical result 

that  a group which contains a non-abelian free group cannot be amenable. For 

more information on amenability the reader is referred to [22]. 

4.3. Let Y be a free cocompact connected G-CW-complex. For results con- 

cerning the ~2-Betti numbers /3i(Y;G) for infinite amenable G, the following 

construction is most useful. Choose an (open) cell from each G-orbit of cells in 

Y and write D C Y for their union and /)  for the closure of D in Y (D will 

not be a subcomplex of Y in general!). Since G is a factor group of 7rl(Y/G) 
it is countable: G = {g~l u C N}. Construct an increasing family {Yj}jeN of 

subspaces of Y as follows. Let {Nj} be a strictly increasing sequence of natural 

numbers. Each Yj is the ~nion of Nj distinct translates g~D, v = 1 , . . . ,  Nj, 
g. E G and Y = [.J Yj. Let Nj be the the number of translates of D which meet 

the topological boundary ]~j of Yj C Y. Using the combinatorial Folner criterion 
for amenability of G [14] it follows that the sequences {Nj ,Yj}  can be chosen 

such that  Nj /N j  --+ 0 for j --~ c~ (eft [5, 8]); we will call such a family a F ¢ l n e r  

e x h a u s t i o n .  

Recall that  there is a canonical map 

cani: T~dHi (y) --+ Hi(Y; ]~) 

induced by considering a harmonic ~2-cocycle as an ordinary one. The following 

lemma is very useful. 

LEMMA 4.3.1 (Cheeger-Gromov [3]): Let Y be a connected tree cocompact 
G-CW-complex, G an (infinite) amenable group. Then 

can i : r~dHi (y) --+ Hi(y;  ]~) 

is injective for all i > O. 

Proof." Choose a F¢lner exhaustion {Nj,Yj] j • N} for Y. View the kernel K: of 

r~dHi(Y) ~ Hi(Y;I~) as a Hilbert G-submodule of 7-/i(Y) C Ci(Y) =: Ci.  Thus 
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c E K: is a harmonic  chain c = Y~ c(a)a which, when considered as a cocycle 

c( ): K i ( Y )  ~ JR, is of the form 5i-lb for some cochain b: Ki-1 --~ JR. Recall 

tha t  Ci has a Hilbert basis which corresponds bijectively to the (open or closed) 

cells of Y and we will sometimes identify a cell of Y with the corresponding 

element in Ci. Let P :  Ci -+ Ci s tand for the orthogonal  project ion onto K: and 

7ri,j = 7r: Ci -+ Ci the or thogonal  projection onto the finite dimensional subspace 

spanned by the (open)/-cel ls  which lie in Yj. If R denotes the set of/-cel ls  in D, 

then by definition 

d ima  1C = E (P(~r), a). 
aER 

Since 7r o P: Ci --+ Ci has a finite dimensional image, the ordinary trace 

traee~ ~r o P = E ((TrP)(xa),x@ 
aER,xEG 

is defined. Now (TrP(xa),xcr)) = 0 for cells xa not in Yj; for cells xcr C Yj 

@P(xa),  xa) = (P(xa), xa) = (P(cr), a), 

implying 

t r ace r  7rP = Nj E (P(a), a) = Nj dimG ~ .  
oER 

Since for any c E Ci, IirrP(c)ll < Ilcll, 

t r acer  7rP _< dimR imTrP -- dimR 7r(]C) 

whence 

d ime/C < - -  t racee l rP  < dime rr(/C). 
- -  N j  

To complete the proof, we need an estimate on dimR 7r(/C). 

Let cr be a cell in Y whose closure does not meet ~ .  Then  the same holds 

for the cells in dio r since they lie in the closure of a. For such a a one has 

either 7ra = a (if a is in Yj) and Irdcr = dTra; or 7ra = 0 (if a is not  in Yj) and 

7rda = 0 = dTra. Wri t ing C', for the subspace of C ,  having as Hilbert basis all 

cells a in Y whose closure does not  meet  ~ it follows for c E C~ 

diTre = 7rdic. 

As earlier we identify g2-chains with g2-cochains, yielding inclusions 

K , ( Y ) ® R c C , = C *  c K * ( Y ) N R .  
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For a E K . ( Y ) ® N  and b E K * ( Y ) ® N  we write b(a) E N for the usual evaluat ion 

of the  cochain b on the  chain a; if b happens  to lie in C* and we consider a as an  

g2-chain, the  inner p roduc t  (a, b} = b(a). 

Consider  now c E K N C'.. It  satisfies d~c = 0 and c = (~i-lb for some 

b E K i - I ( Y )  ® R, and di~rc = ~rdic = 0, yielding 

II~(c)ll 2 =(zrc, 7re) = (rrc, e) = (zrc, 5i-lb) 

=((~ i - l b ) (Tre )  = b(dgrc) = b(Irdic) = O. 

Whence  

/C n C~ c ker{~d~c:/C --+ ~r(K:)} 

and therefore  

! ! 
d ime  7r(/(;) <__ dime/C//C N C~ = dimE(K; + Ci) /C  i 

_< d ime Ci/C~. 

The  or thogonal  complement  6". of 61. in C.  has as Hi lber t  basis all cells in Y 

whose closure meets  ~ .  Now 

d ime  Ci/C~ = d ime Ci _< IYja(D) 

where a ( D )  denotes  the number  of cells in D. I t  follows tha t  

dimG/C < l~[ja(D) ÷ 0 as j -+ oc, 
Yj 

and we conc lude /~  = 0. | 

COROLLARY 4.3.2:  Let X be a finite connected CW-complex with amenable 

fundamental group G. Then i l l (X)  = i l l (G) = 0. 

Proof: T h e  universal  cover Y of X satisfies H I (Y; R) = 0; thus the  result  follows 

f rom the C h e e g e r - G r o m o v  Lemma.  1 

T h e  corollary also shows tha t  - - a s  remarked  ea r l i e r - -  a group G which contains  

a non-abel ian  free group cannot  be  amenable ,  because/31(Z * Z ) = I  ~ 0. 

Apply ing  the  C h e e g e r - G r o m o v  L e m m a  to the m-skele ton of the  universal  cover 

of a K(G,  1) one obta ins  the following vanishing theorem for e2-Betti  numbers .  

THEOREM 4.3.3:  Let G be a finitely presented infinite amenable group. Then 

/~I(G) -- O; if G is of type Fm then/~i(G) = 0 for i < m. 
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COROLLARY 4.3.4: Suppose G is an infinite amenable group admitt ing a finite 

K(G,  1). Then X(G) = O. 

For the next application we need a general fact on Hilbert modules which is a 

generalization of 2.7.1. 

LEMMA 4.3.5: Let G be an infinite group and W a Hilbert G-module of finite 

dimension as an N-vector space. Then W = O. 

Proof: We may assume W C (g2G) n and, by induction, that  n = 1. Let 

I I E  N(G)  be the orthogonal projection onto W so that  

d i m a W  = (II(1),l} = (II(x),x} _< IIH(x)II, Vx E G. 

Choose an orthonormal basis Wl,..  •, wn C W. Each wi has the form }--~gea r~(g)g 

with ~ g e a  ri(g) 2 = 1. Since G is infinite it is therefore possible to find for each 

j > 0 an element xj E G such that  [r~(xj)[ <_ 2-J,  i = 1 , . . . , n .  Note that  

With  the xj 's  above 

IIn(xj)ll 2 = ~ r i ( x j )  2 < n .  2-~J 
i 

showing that  d ima  W = 0, whence W = 0. 

) 0 as j - - -~oo,  

Combining the lemma with the Cheeger-Gromov Lemma yields 

COROLLARY 4.3.6: Let Y be a connected free cocompact G-CW-complex  with 

(infinite) amenable G. Assume that the ordinary Bett i  number bi(Y) < c~ for 

some i. Then fli(Y; G) = 0. 

COROLLARY 4.3.7: Let G be a finitely presented quasi-amenable group (meaning 

that there exists a normal subgroup N < G with bl (N) < oc and G / N  infinite 

amenable). Then def(G) __< 1. 

Proof: Choose a K(G,  1) with finite 2-skeleton X. Let Y be the covering space 

of X associated with N. From 4.1.6 we get 

def(G) < 1 + ill(Y; G / N)  

and the result follows since ~ ( Y ; G / N )  = 0 for amenable G / N.  | 
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For a free cocompact G-CW-complex Y there is a natural map 

can/: Hi(Y; Z) ~ ~edHi(Y) 

induced by considering an integral chain as an £2-chain; we can also view the 

map to be induced by the inclusion of chain complexes 

K~(Y) -~ e2(c) ®ziG1 K~(Y) = C~(Y). 

LEMMA 4.3.8: Let Y be an n-dimensional free cocompact G-CW-complex. Then 

can~ : Hn(Y; Z) --+ r~dH~(Y) 

is injective. 

Proo~ This follows immediately from the long exact homology sequence 

associated with 

0 --+ K , ( Y )  -~ C, (Y)  ~ C , ( Y ) / K , ( Y )  ~ O, 

and observing that  because Y is n-dimensional, redH,(Y) = Hn(C,(Y)) .  

COROLLARY 4.3.9: Let Y be a free cocompact (n-1)-connected G-CW-complex 

of dimension n > 1. Assume that  one of the following conditions holds: 
• the ]R-vector space Hn(Y; •) is finite dimensional, 

• the £2-Betti number fin(Y; G) = 0. 

Then Y is contractible. 

Proof." Note that,  because Y is n-dimensional, Hn(Y; Z) C H~(Y; g{). For the 

first case, use 4.3.5 and the previous lemma to conclude that  Hn(Y; Z) = 0. The 

Hurewicz Theorem then shows that  Y is n-connected, thus contractible. Similarly 

for the second case. | 

4.4. In this section we present a few applications concerning the partial Euler 

characteristic qm (G) of (amenable) groups as well as the Hausmann-Weinberger 

Invariant q(G). For more results along these lines the reader is referred to [8, 

9, 10]. Suppose G admits a K(G, 1) with finite m-skeleton. Put  X = K(G, 1) m 

and consider 

rn--1 rn--1 

(-1)rex(X) = Z b~(C) + bin(X) > ~ b~(C). 
i=0  i=0  
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Define 

qm(G) = m i n { ( - l ) ' ~ x ( X ) } ,  

the min imum being taken over all possible choices of finite X as above. 

In par t icular  

• ql (G) = ra in{number  of generators of G}, 

• q2(G) = 1 -  def(G). 

THEOREM 4.4.1:  Let G be an infinite amenable  group of type Fm. Then 
qm(G) _> 0, and qm(G) = 0 implies that the cohomology dimension of G over Z 
is < rn. 

Proof." Let X be a finite model for K(G, 1) 'L  Since ~i (X)  = / ~ i ( G )  = 0 for 

i < m (cf. 4.3.3), 

(-1)rex(X) =/3m(X) > 0 

and therefore qm(O) > O. If  qm(O) = 0 then we can choose X = K(G, 1) m 

with/3re(X) = 0 and 4.3.9 applied to the universal cover of X implies tha t  X is a 

K(G, 1) of dimension m (the case m = 1 cannot  occur here, since for a non-trivial  

group ql > 0). II 

The  following definition goes back to Hausmann-Weinberger  [16]. Let M be a 

closed (smooth)  oriented 4-manifold. Then,  since bl(M) = b3(M) = bl(G) for G 

the fundamenta l  group of M,  

x(M) = 2 -  2bl(G) + b2(M) > 2(1 - bl(G)).  

Pu t  

q(G) = min{x(M)}  

where M runs over all manifolds as above, with 7r 1 ( M )  : G. In a similar way, 

various authors  have defined (see [10]) 

p(G) = m i n { x ( M  ) + a(M)} 

with M as before and a(M) the signature of M;  the min imum exists because 

la(M)l <<_ b2(M) so tha t  

x(M) + a(M) > 2(1 - bl(G)).  

Note also tha t  p(G) < q(G) as a( -M)  = -a(M).  
It  is well known tha t  there exists for any finitely presented group G a closed 

smooth  oriented manifold M with fundamenta l  group G. The  invariants p(G) 

and q(G) are therefore defined for any finitely presented group G. 
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Atiyah proved in [1] the g2-Signature Theorem which tells that r~4H2(/17/) splits 

into a Hilbert direct sum of two Hilbert G-modules with yon Neumann dimensions 

13+(M) and 132(M ) such that a (M)  = J32+(M) - ~2(M).  Expressing x ( M )  in 

terms of g2-Betti numbers this leads in case of an infinite G to the formula 

x ( M )  + a(M)  = -2~ l (G)  + 2/3+(M). 

Applying it to groups with vanishing first g2-Betti number we see that x ( M )  + 

a (M )  is non-negative, which has interesting consequences, cf. [10]. In particular 

the case of an amenable G yields the following. 

THEOREM 4.4.2: Let G be a finitely presented amenable group. Then P(G) and 

q(G) are non-negative. 
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