
Int J Thermophys (2008) 29:706–734
DOI 10.1007/s10765-007-0317-5

Modeling Transient Heat Conduction and Radiative
Transport in Semitransparent Media: A Tool
for the Interpretation of Reflectivity Data

Manuela Musella · Hans Rudolf Tschudi

Received: 23 December 2005 / Accepted: 16 November 2007 / Published online: 18 December 2007
© Springer Science+Business Media, LLC 2007

Abstract In this work the problem of interpretation of reflectivity data for semitrans-
parent materials at high temperatures is addressed. A detailed analysis of the transient
thermal response of a participating medium subjected to a pulse of finite energy is
performed using a new method developed to solve the general equation of energy
transfer for a conductive, absorbing, emitting, and scattering medium. The model,
previously presented for a material with constant optical properties (Musella, Tschu-
di, Int J Thermophys 26:981, 2005), has been upgraded to encompass a much wider
scenario where the thermophysical and optical properties are temperature dependent.
This allows the study of the transient reflectivity of laser-heated samples where high
heating rates and strong temperature gradients occur near the surface. Considerable
differences of the reflectivity values for the same surface temperature calculated in
the heating and cooling phases, both different from the corresponding values for an
isothermal sample, are reported in accordance with experimental results.

Keywords Ceramics · Emissivity · High temperature · Pyrometry ·
Radiative transport

1 Introduction

The significance of radiative properties as process data for technical facilities has
increased during recent years motivated by a constant demand from industry. A subject
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of particular interest among engineers and materials physicists is the knowledge of
radiative properties for semitransparent media (STM) at high temperatures.

The application domain is broad. Nowadays, ceramic materials, a typical example
of STM, are in fact widely employed in components for high-temperature use. As a
result of their corrosion-resistant and insulation properties, they are, for instance, used
as thermal barrier coatings in advanced turbine engines, space vehicles, and chemi-
cal and nuclear reactors. In all these applications, the calculation of energy balances,
energy losses, and temperature gradients in the material is of fundamental importance.

In order to describe the internal energy transport of STM, the radiative properties of
the material, such as the absorption and scattering coefficients, and their temperature
dependences must be known. These properties are determined from reflectivity and
transmission measurements which ideally should be performed under isothermal con-
ditions. The high temperatures required to characterize STM, however, can be only
attained with transient heating of the sample, using, for instance, a laser. Laser heating
causes strong temperature gradients in the sample, and appreciable temperature dif-
ferences may occur within the optical escape depth of the material. Since, in general,
the radiative properties of STM clearly depend on temperature, a strong tempera-
ture gradient within the optical escape depth has the effect that regions with different
absorption and scattering properties contribute to the reflected light, and the relation-
ship between the measured reflectivity and the radiative properties of the material
becomes complex. For connecting measured reflectivity and transmission data with
the radiative properties, detailed modeling of the interaction of light with matter and
of the combined effects of radiative and conductive heat transfer is therefore required.
Moreover, since most of the measurement techniques are based on dynamic records,
as pointed out, the thermal transient behavior has to be analyzed.

The topic of radiation effects on transient energy transfer is of large interest and
has been extensively studied during the last 50 years [1,2]. Unfortunately, most of the
studies are focused on very special cases because of the mathematical complexity of
the problem. The topic of transient combined conduction and radiative transfer is even
less studied, and only very particular problems like the absence of scattering [3–6],
extremely short times [7,8], or very specific applications [9,10] have been addressed.
The analysis of more general cases proved to be quite complex with long and tedious
procedures for their numerical solution [11,12].

To deal with this problem, we proposed in a previous study [13] a new method
for solving the heat conduction and radiation transfer equations that is general and
fast from the computational point of view. The central idea is to express the solu-
tion of the two-flux equations for radiation [14,15] as the sum of two contributions,
namely, of an approximate special solution of the full, inhomogeneous two-flux equa-
tions accounting for absorption, scattering, and emission of radiation and of a solu-
tion of the homogeneous equations, the equations without the emission term. The
special solution is dominant in the interior of the participating medium and properly
accounts for the thermal emission term but does not recognize, in general, the boundary
conditions for the radiation field while the second contribution, important in a surface
layer, is used to match these boundary conditions. The radiative flow originating from
the approximate special solution corresponds to the diffusion approximation [14,16].
This flow is completed in the surface region by a radiative flow contribution due to the
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solution of the homogeneous equations. In [13], these ideas are applied to the problem
of an infinite slab of gray material. An explicit expression for the special solution
of the inhomogeneous equations is derived in terms of the temperature field, and an
analytical solution for the homogeneous equation is given under the assumption that
the optical properties of the material are constant in the surface layer.

In this paper we extend the analysis to the case where the thermophysical and
optical material parameters are true temperature functions everywhere in the layer. A
method is developed to calculate the solution of the homogeneous equations and the
reflectivity of the slab, taking into account the temperature dependence of the optical
properties and the actual temperature profile inside the sample. In addition, a formula
is derived for the transient temperature that a one-color pyrometer would measure
using the actual transient emissivity values. It is shown that this temperature corre-
sponds to the actual surface temperature for an opaque sample although the radiation
probed with the pyrometer originates from a surface layer with a possibly non-uniform
temperature.

Based on these results, a numerical algorithm is developed and implemented as
a C++ code. This code is used to study the behavior of a layer of yttria-stabilized
zirconia irradiated with a laser pulse. The temperature profile of the sample is studied
as a function of the key parameters, and its influence on the transient reflectivity of
the layer is investigated. The results obtained are then compared with experimental
investigations found in the literature.

2 Physical Model and Governing Equations

2.1 Heat Conduction and Radiative Transfer in a Slab

Combined heat conduction and radiative transport in a slab consisting of a homoge-
neous absorbing, scattering, and emitting medium is considered. The material prop-
erties may depend on temperature. If the temperature and the energy fluxes vary only
in the direction perpendicular to the surface of the slab, the x-direction, the energy
equation is given by

d(T )cp(T )
∂T (x, t)

∂t
= − ∂

∂x

(
JQ + J

)
(1)

where d(T ) denotes the density of the material and cp(T ) the specific heat per mass.
Equation 1 must be supplied with expressions for the conductive and radiative fluxes,
JQ and J . The conductive flux JQ is given by Fourier’s equation,

JQ = −k(T )
∂T (x, t)

∂x
(2)

If the physical properties vary only in the direction perpendicular to the surface of the
slab, an expression for the radiative flux J is appropriately given using the two-flux
approximation [14]. In this case the description of the radiative field is reduced to two
radiant fluxes, J+ and J−, in the positive and negative x-directions (see Fig. 1). With
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T(L,t) = TN

x = L 

A, S, k, d, cp

x = 0 
x

J+(x,t) 

J-(x,t) 

T(x,t) 

E(t) 

JQ(x,t) 

ρsh

Fig. 1 Geometry, coordinate system, and nomenclature of the studied physical system

the Kubelka–Munk notation [15], the two fluxes, J+ and J−, are expressed by the
total radiative flux J and a second quantity F which is proportional to the local energy
density of the radiative field:

J (x, t) = J+(x, t) − J−(x, t)

F (x, t) = J+(x, t) + J−(x, t)

For these quantities, the differential equations,

∂J (x, t)

∂x
= −A

[
F(x, t) − 2σBT 4

]
(3a)

and

∂F (x, t)

∂x
= −(A + 2S)J (x, t) (3b)

are valid if the absorption coefficient A and the scattering coefficient S do not depend
on the wavelength (gray body).

It was shown in a previous paper [13] that the solution of the system of Eq. 3 can
be expressed as a sum of two contributions:

J = J si + J h (4a)

F = F si + F h (4b)

where J si and F sirepresent a special solution of the full equations, inhomogeneous
with respect to the radiation quantities J and F , and J h and F h represent the solu-
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tion of the homogeneous equations of radiative transfer without the emission term
2AσBT 4. This solution is needed to match the boundary conditions for the radiative
field. An approximation to the special solution of the full, inhomogeneous Eqs. 3a and
3b is given by [13]

F si = 2σBT 4 (5a)

and

J si = − 8σBT 3

A + 2S

∂T

∂x
(5b)

The expressions in Eq. 5 are the first terms of a recursive solution of the two-flux Eq. 3.
Equation 5b corresponds to the diffusion approximation [16,14].

Substituting Eq. 4a in Eq. 1 yields

d(T )cp(T )
∂T (x, t)

∂t
= − ∂

∂x

(
JQ + J si

)
− ∂J h

∂x
.

With Eqs. 2 and 5b the transient energy equation can, thus, be rewritten as

d(T )cp(T )
∂T (x, t)

∂t
= −∂J ′

∂x
− ∂J h

∂x
(6)

where

J ′ = −khrt(T )
∂T (x, t)

∂x
(7)

with

khrt(T ) = k(T ) + 8σB

A + 2S
T 3

Equation 6 has now the form of the classical transient energy equation where the
first term on the right side is analogous to Fourier’s equation (with khrt describing the
combined effects of heat conduction and radiative transport) and the second term ∂J h

∂x
represents an additional outer heat source.

2.1.1 Solution of the Homogeneous Two-Flux Equations

In order to find a general expression for the term ∂J h

∂x
in Eq. 6, the homogeneous

two-flux equations, Eqs. 3a and b without the emission term, have to be solved. These
equations can be analytically solved if the absorption and scattering coefficients do
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LJ ,−
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RJ ,−

εL, ρ εR, ρ
Fig. 2 Radiative flows for a layer of thickness δ. The homogeneous two-flux equations for radiative transfer
connect the flows on the left-hand side of the layer with the flows on the right-hand side through the transfer
matrix P

not vary with x. In this case, the solution can be written with a propagation matrix
which has the form (see Fig. 2),

(
J h+,R
J h−,R

)
= P

(
J h+,L
J h−,L

)
(8)

where J h±,L and J h∓,R represent the in- and out-going fluxes at the left and right sides
of a layer of thickness δ and

P =
(

P11 P12
P21 P22

)
(9)

is the propagation matrix, the elements of which are equal to

P11 = cosh(Wδ) − A + S

W
sinh(Wδ)

P12 = −P21 = S

W
sinh(Wδ)

P22 = cosh(Wδ) + A + S

W
sinh(Wδ)

with W = √
A2 + 2AS. It follows that det P = P11P22 − P12P21 = 1.

If an inhomogeneous layer is considered with spatially varying absorption and
scattering coefficients, a solution can be found by subdividing the whole layer into a
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system of thin layers, each having constant material properties. In this case the prop-
agation matrix of the whole layer is the matrix product of the matrices of the single
sublayers (see Sect. 2.2).

If the incident fluxes, J h+,L and J h−,R, on either side of a layer are given, an alterna-
tive formulation of the solution of the homogeneous two-flux equations is appropriate.
The outgoing fluxes, J h−,L and J h+,R, can then be expressed as linear combinations of
the two impinging ones,

J h−,L = ρLJ h+,L + τRJ h−,R (10a)

J h+,R = τLJ h+,L + ρRJ h−,R (10b)

where the reflectivities ρL and ρR and the transmissivities τL and τR of the layer all
have values in the interval [0,1]. These four quantities can be expressed by the elements
of the propagation matrix. If J h−,R = 0, then

ρL = J h−,L

J h+,L

and

τL = J h+,R

J h+,L

yielding

ρL = −P21

P22
(11a)

and

τL = 1

P22
(11b)

Similarly, if J h+,L = 0, then

ρR = J h+,R

J h−,R

and

τR = J h−,L

J h−,R
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yielding

ρR = P12

P22
(12a)

and

τR = 1

P22
= τL = τδ. (12b)

On the other hand, the matrix elements P11, P12, P21, P22 may be also expressed by
ρL, ρR, and τδ as

P12 = ρL

τδ

(13a)

P21 = −ρR

τδ

(13b)

P22 = 1

τδ

(13c)

P11 = 1

P22
(1 + P12P21) = 1

τδ

(
τ 2
δ − ρLρR

)
(13d)

The power flow �J h absorbed in the layer as a function of the impinging fluxes is
given by

�J h = J h
L − J h

R = J h+,L − J h−,L + J h−,R − J h+,R

which together with Eqs. 10a and b gives

�J h = εLJ h+,L + εRJ h−,R (14)

with

εL/R = 1 − ρL/R − τδ (15)

2.2 Solution for a Slab Subjected to Laser Heating

2.2.1 Discretization of the Layer

We consider an infinitely extended plane layer of thickness L initially at temperature
TN and placed in vacuum. The slab is uniformly irradiated on the front surface by a
laser pulse of finite width while the rear surface is kept at constant temperature TN

(see Fig. 1). The layer is assumed to be homogeneous with physical properties that
may depend on temperature. The absorption and scattering coefficients do not depend
on wavelength (gray body). The transient energy equation representing the system is
then given by Eq. 6.
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For the numerical solution, the investigated slab is divided into N cells indexed
with n = 1, 2, . . . , N . Each cell of thickness δn is considered to be isothermal with
temperature Tn and with constant physical properties. The discrete analogous of Eq. 6
for this case is (see [13], Sect. 3)

dTn

dt
= 1

(dcp)n

1

δn

(
J ′

n−1 − J ′
n

) + 1

(dcp)n

1

δn

�J h
n (16)

where

J ′
n = −2

khrt,nkhrt,n+1

δnkhrt,n+1 + δn+1khrt,n
(Tn+1 − Tn) (17)

and �J h
n is given by Eq. 14. If three consecutive layers have the same thickness,

δn−1 = δn = δn+1, the derivative dTn

dt
is equal to the value of the partial derivative

∂T (x,t)
∂t

, given by Eq. 6, at the middle of the layer n up to a term of the order of δ2
n.

Otherwise, additional deviations of the orders δn − δn−1, δn − δn+1 occur.

2.2.2 Evaluation of the Source Term of Eq. 16

In order to obtain a closed system of equations, the second term on the right-hand side
of Eq. 16 must be expressed as a function of the temperature Tn and the boundary
conditions for temperature and radiative flows on both sides of the slab. First, one
observes that the power absorbed in the layer n is given by

�J h
n = εn(J

h+,n−1 + J h−,n) (18)

with

εn = 1 − P
(n)
12 + 1

P
(n)
22

(19)

Equation 14 has been used and the fact that each individual layer is homogeneous
implies P

(n)
21 = −P

(n)
12 and, thus, ε

(n)
L = ε

(n)
R = εn.

As a second step, the radiative fluxes, J h−,n and J h+,n, are expressed by the cor-
responding fluxes at the boundaries of the slab. For that purpose, we divide the cell
structure of the slab into two substructures, a left one grouping the cells from 0 to n

and a right one grouping the cells from n + 1 to N (see Fig. 3). Since the propagation
matrix for a sequence of adjacent layers is the product of the individual propagation
matrices P(n) for the single layers, the propagation matrix Ln of the left substructure
is given by

Ln = P(1)P(2) . . . P(n)
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10 Nn+12 n
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h
nJ ,+

h
nJ ,−

h
NJ ,−

Fig. 3 Subdivision of the slab into N layers used for the numerical implementation (for details, see text)

and the propagation matrix Rn for the right substructure by

Rn = P(n+1)P(n+2) . . . P(N)

According to Eq. 10, it is at the boundary n

J h−,n = ρR
L,nJ

h+,n + τR
n J h−,N (20a)

J h+,n = ρL
R,nJ

h−,n + τL
n J h+,0 (20b)

where ρR
L,n and τR

n refer to the reflectivity and transmissivity of the right substructure

and ρL
R,n and τL

n to the left substructure. From Eq. 20, the fluxes, J h−,n and J h+,n, at the

boundary n separating the layers n and n+ 1 can be expressed by the fluxes, J h+,0 and

J h−,N , impinging on either side of the whole slab yielding

J h+,n = τL
n J h+,0 + τR

n ρL
R,nJ

h−,N

1 − ρR
L,nρ

L
R,n

(21a)

J h−,n = τR
n J h−,N + τL

n ρR
L,nJ

h+,0

1 − ρR
L,nρ

L
R,n

(21b)

Finally, the quantities ρL
R,n, τL

n , ρR
L,n, and τR

n in Eq. 21 are recursively calculated in
terms of the propagation matrix elements of the individual layers. Considering the left
substructure in Fig. 3 with J h+,0 = 0, it is

ρL
R,n = J h+,n

J h−,n

(22)

τL
n = J h−,0

J h−,n

(23)
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From the equations,

J h+,n = P
(n)
11 J h+,n−1 + P

(n)
12 J h−,n−1 (24)

J h−,n = P
(n)
21 J h+,n−1 + P

(n)
22 J h−,n−1 (25)

and with det P(n) = 1, one gets the recursions,

ρL
R,1 = P

(1)
12

P
(1)
22

(26)

ρL
R,n = P

(n)
11 ρL

R,n−1 + P
(n)
12

P
(n)
21 ρL

R,n−1 + P
(n)
22

for n = 2, 3, . . . , N (27)

and

τL
1 = 1

P
(1)
22

(28)

τL
n = τL

n−1

P
(n)
21 ρL

R,n−1 + P
(n)
22

for n = 2, 3, . . . , N. (29)

Similarly, considering the right substructure with J h−,N = 0, it is

ρR
L,n = J h−,n

J h+,n

(30)

τR
n = J h+,N

J h+,n

(31)

and the equations,

J h+,n = P
(n+1)
22 J h+,n+1 − P

(n+1)
12 J h−,n+1 (32)

J h−,n = −P
(n+1)
21 J h+,n+1 + P

(n+1)
11 J h−,n+1 (33)

yield the recursions,

ρR
L,N−1 = P

(N)
21

P
(N)
22

(34)

ρR
L,n = P

(n+1)
11 ρR

L,n+1 − P
(n+1)
21

−P
(n+1)
12 ρR

L,n+1 + P
(n+1)
22

for n = N − 2, . . . .1, 0 (35)
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and

τR
N−1 = 1

P
(N)
22

(36)

τR
n = τR

n+1

−P
(n+1)
12 ρR

L,n+1 + P
(n+1)
22

for n = N − 2, . . ..1, 0 (37)

By definition, it is LN = R0 and the transmissivity and the reflectivities at the left and
right sides of the whole slab are

τ = τL
N = τR

0 (38a)

ρ0 = ρR
L,0 (38b)

ρN = ρL
R,N (38c)

2.2.3 Boundary Conditions

The values for J h+,0 and J h−,N in Eq. 21 are derived from the boundary conditions of

the total radiative field, J+,0 and J−,N taking into account that J± = J si± + J h± and
J si± = 1

2 (F si ± J si).
On the front surface, the slab is irradiated by a laser pulse of power flow E(t). The

slab internally conducts heat, but there is no heat flow at the front surface because of
the vacuum surroundings. From JQ(0, t) = 0, it follows that ∂T

∂x
(0, t) = 0, and thus

from Eq. 5b, also J si(0, t) = J si
0 = 0. The boundary condition at the front surface is,

therefore, given by

J+,0 = E(t) + σBT 4
surr = J h+,0 + 1

2
(F si

0 + J si
0 ) = J h+,0 + σBT 4

0

where Eq. 5a has been used and Tsurr denotes the surrounding temperature. The result
is

J h+,0 = E − σB(T 4
0 − T 4

surr) (39)

At the rear surface, the slab is kept at constant temperature TN by a thermostat having
reflectivity ρsh. The radiative balance at the rear surface is, thus, given by

J−,N = ρshJ+,N + (1 − ρsh)σBT 4
N

which yields

J h−,N + σBT 4
N − 1

2
J si

N = ρsh(J
h+,N + σBT 4

N + 1

2
J si

N) − (1 − ρsh)σBT 4
N
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and, as a consequence,

J h−,N − ρshJ
h+,N = 1

2
(1 + ρsh) J si

N (40)

with

J si
N = − 8σBT 3

A + 2S

(TN − TN−1)

δN

(41)

Substituting the flow J h+,N using Eq. 10b finally gives

J h−,N =
(

1
2 (1 + ρsh) J si

N + ρshτJ h+,0

)

1 − ρshρN

(42)

Equations 16, 17, 18, 21, 39, and 42 represent the complete system of equations for
the problem of transient energy transfer of the physical system defined above. The rel-
atively complicated treatment of the solution of the homogeneous two-flux equations
is necessary in order to be able to deal with temperature-dependent optical parameters.

2.3 Numerical Solution Procedure

The task remains to solve numerically the system, Eq. 16, of nonlinear, first-order
differential equations. In order to get a compact notation, the quantities Dn, ηn, and
the source terms qn are defined as follows:

Dn = 1

(dcp)nδn

for n = 1, 2, . . . ., N − 1

ηn = 2khrt,nkhrt,n+1

δn+1khrt,n + δnkhrt,n+1
for n = 1, 2, . . . ., N − 1

qn = Dn�J h
n for n = 1, 2, . . . ., N − 2

with �J h
n given by Eq. 18. For the first layer, Eq. 16 is expressed as

dT1

dt
= −D1η1T1 + D1η1T2 + q1 (43a)

where T1 corresponds to the temperature of the irradiated surface denoted by T0
previously. For the inner layers, it is

dTn

dt
= Dnηn−1Tn−1 − Dn(ηn + ηn−1)Tn + DnηnTn+1 + qn for n = 2, . . . , N − 2

(43b)
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Since the temperature TN of the boundary layer n = N is kept constant, Eq. 43b must
be modified for the layer N − 1 yielding

dTN−1

dt
= DN−1ηN−2TN−2 − DN−1(ηN−1 + ηN−2)TN−1 + qN−1 (43c)

with the source term,

qN−1 = DN−1ηN−1TN + DN−1�J h
N−1

The structure of the Eqs. 43a–c becomes evident if a vector and matrix notation is
used;

d �T
dt

= H �T + �q (44)

where �T (x) = (T1, T2, . . . , TN−1)
T, �q(x) = (q1, q2, . . . , qN−1)

T, and H is a tridiag-
onal (N − 1) × (N − 1) matrix

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−D1η1 D1η1 0 . . . 0 0 0
D2η1 −D2(η1 + η2) D2η2 . . . 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 . . . DN−2ηN−3 −DN−2(ηN−3 + ηN−2) DN−2ηN−2
0 0 0 . . . 0 DN−1ηN−2 −DN−1(ηN−2 + ηN−1)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

Each element of H and of �q depends on temperature and, thus, on time.
The transient temperature distribution in the material is now calculated with Eq.

44 performing an iterative time integration scheme. For a time increment �tm =
tm+1 − tm, a Taylor expansion yields

�Tm+1 = �Tm + (Hm
�Tm + �qm)�tm + O((�tm)2)

with �Tm = �T (tm), etc. This formula is equivalent to

(1 − �tmHm) �Tm+1 = �Tm + �tm �qm + O((�tm)2) (45)

the implicit differencing scheme being used for its superior numerical stability [17].

2.4 Pyrometric Temperature Measurements

The temperature measured by a one-color pyrometer, focusing on the front surface
of the slab, can be obtained from the flux of radiant energy leaving the front surface
J−,0. Inserting the value of J h−,N given by Eq. 42 into Eq. 10a calculated at cell n = 0
yields

J h−,0 = ρtotJ
h+,0 + τ

2

(1 + ρsh)

(1 − ρshρN)
J si

N
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where

ρtot = ρ0 + τ 2ρsh

1 − ρshρN

(46)

is the reflectivity of the combined layer and thermostat system.
From Eq. 39 and J si

0 = 0, it follows that

J−,0 = J h−,0 + σBT 4
0 = ρtot(E + σBT 4

surr) + τ

2

(1 + ρsh)

(1 − ρshρN)
J si

N + (1 − ρtot)σBT 4
0

(47)

On the other hand, it follows from the definition of the temperature Tpyr measured by
the pyrometer on a surface with emissivity (1 − ρtot) that

J−,0 = ρtot(E + σBT 4
surr) + (1 − ρtot)σBT 4

pyr (48)

Finally, we get from Eqs. 47 and 48 that

T 4
pyr = T 4

0 + 1

(1 − ρtot) σB

τ (1 + ρsh)

(1 − ρshρN)
J si

N ≥ T 4
0 (49)

since J si
N ≥ 0 for the given problem according to Eq. 41.

It follows that the pyrometer measures an upper bound of the true surface tem-
perature T0. For a thick slab, however, τ → 0 and Tpyr → T0. We conclude that
the temperature measured with a one-color pyrometer using the actual value of the
transient emissivity is the actual true value of the transient surface temperature for
opaque samples. This is not obvious because there may be a considerable temperature
interval within the optical escape depth with a distinct influence on the actual value of
the reflectivity and emissivity if the optical material properties depend on temperature
(see Figs. 12, 14 and Table 2). For transparent samples considerable deviations may
occur, as shown in Sect. 3, since the reflectivity properties of the thermostat matter in
this case.

3 Simulation: Results

The algorithm developed in Sect. 2 was implemented in a computer code, and simula-
tions of the energy transfer were performed for yttria-stabilized zirconia, an example of
a typical technical STM used at very high temperatures. For calculations, the medium
is assumed to have a constant density of 5.6 × 103 kg ·m−3 and temperature-depen-
dent thermophysical properties as listed in Table 1. The temperature dependence of
the absorption coefficient of zirconia is not well known for elevated temperatures.
Cabannes and Billard [18] report the results of an investigation on cubic zirconia from
room temperature to 1,930 K in the wavelength region from 3 µm to 6 µm where they
demonstrate that the absorption coefficient increases monotonically. The increase is
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Table 1 Thermophysical properties used in the calculations

T (K) k(W ·m−1 ·K−1) cp(J ·kg−1 ·K−1) ρa (−) Ab(m−1) Ab(m−1)
[21] [22] [20] S = 1 × 104 m−1 S = 5 × 104 m−1

300 1.40 456 0.65 9.42 × 102 4.71 × 103

400 1.40 517 0.65 9.42 × 102 4.71 × 103

500 1.40 549 0.65 9.42 × 102 4.71 × 103

600 1.50 569 0.65 9.42 × 102 4.71 × 103

700 1.50 596 0.65 9.42 × 102 4.71 × 103

800 1.50 605 0.65 9.42 × 102 4.71 × 103

900 1.50 614 0.65 9.42 × 102 4.71 × 103

1000 1.50 622 0.648 9.56 × 102 4.78 × 103

1100 1.50 630 0.64 1.01 × 103 5.06 × 103

1200 1.50 637 0.625 1.13 × 103 5.63 × 103

1300 1.50 644 0.6 1.33 × 103 6.67 × 103

1400 1.50 644 0.56 1.73 × 103 8.64 × 103

1500 1.50 644 0.49 2.65 × 103 1.33 × 104

1600 1.50 644 0.4 4.50 × 103 2.25 × 104

1700 1.50 644 0.33 6.80 × 103 3.40 × 104

1800 1.50 644 0.28 9.26 × 103 4.63 × 104

1900 1.50 644 0.23 1.29 × 104 6.44 × 104

2000 1.50 644 0.2 1.60 × 104 8.00 × 104

2100 1.50 644 0.18 1.87 × 104 9.34 × 104

2200 1.50 644 0.17 2.03 × 104 1.01 × 105

2300 1.50 644 0.16 2.21 × 104 1.10 × 105

2400 1.50 644 0.155 2.30 × 104 1.15 × 105

2500 1.50 644 0.15 2.41 × 104 1.20 × 105

2600 1.50 644 0.15 2.41 × 104 1.20 × 105

2700 1.50 644 0.15 2.41 × 104 1.20 × 105

2800 1.50 644 0.15 2.41 × 104 1.20 × 105

a Reflectivity at 0.63 µm
b Calculated with Eq. 50

almost linear up to 1,600 K but much more pronounced above this temperature. How-
ever, they do not propose any mathematical or empirical relation that would allow
extrapolation of their results to the temperature and wavelength range considered in
this work. For this reason, the values for the absorption coefficient were derived here
on the basis of diffuse reflectivity measurements of an infinitely thick sample. From
the relation between the reflectivity ρ and the quotient A/S of the absorption and
scattering coefficients,

(1 − ρ2)

2ρ
= A

S
, (50)

which is valid for the two-flux approximation of an isothermal infinitely thick slab
with constant material parameters, it follows that the temperature dependence of the
reflectivity determines the temperature dependence of the quotient A/S. Since the
scattering coefficient depends largely on porosity and typical grain size, it can be
assumed that it does not change with temperature as long as no structural changes
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Table 2 Optical penetration
depth for zirconia

T (K) 1/W (m) 1/W (m)
S = 1 × 104 m−1 S = 5 × 104 m−1

300 2.25 × 10−4 4.50 × 10−5

400 2.25 × 10−4 4.50 × 10−5

500 2.25 × 10−4 4.50 × 10−5

600 2.25 × 10−4 4.50 × 10−5

700 2.25 × 10−4 4.50 × 10−5

800 2.25 × 10−4 4.50 × 10−5

900 2.25 × 10−4 4.50 × 10−5

1000 2.23 × 10−4 4.47 × 10−5

1100 2.17 × 10−4 4.34 × 10−5

1200 2.05 × 10−4 4.10 × 10−5

1300 1.88 × 10−4 3.75 × 10−5

1400 1.63 × 10−4 3.26 × 10−5

1500 1.29 × 10−4 2.58 × 10−5

1600 9.52 × 10−5 1.90 × 10−5

1700 7.41 × 10−5 1.48 × 10−5

1800 6.08 × 10−5 1.22 × 10−5

1900 4.86 × 10−5 9.71 × 10−6

2000 4.17 × 10−5 8.33 × 10−6

2100 3.72 × 10−5 7.44 × 10−6

2200 3.50 × 10−5 7.00 × 10−6

2300 3.28 × 10−5 6.57 × 10−6

2400 3.18 × 10−5 6.35 × 10−6

2500 3.07 × 10−5 6.14 × 10−6

2600 3.07 × 10−5 6.14 × 10−6

2700 3.07 × 10−5 6.14 × 10−6

2800 3.07 × 10−5 6.14 × 10−6

occur. Therefore, the temperature dependence of A is given by the temperature depen-
dence of the reflectivity through Eq. 50.

Based on the work of Makino et al. [19], the two values, S = 1 × 104 m−1 and
S = 5 × 104 m−1, were chosen for the scattering coefficient. Since the model devel-
oped so far cannot deal with wavelength-dependent optical properties, we restricted
the analysis to one characteristic wavelength, and we used the absorption coefficients
at 0.63 µm calculated from the reflectivity data of Petrov et al. [20] with Eq. 50 (see
Table 1). In Table 2, the parameter 1/W , which is a measure of the optical penetration
and escape depth of the material, is listed as a function of temperature for the two
chosen values of the scattering coefficient.

In the following sections, the influence of various experimental parameters on the
temperature distribution in the sample, on the reflectivity, and on the pyrometric tem-
perature is studied. In particular, we investigate the effects of the optical thickness, of
the reflectivity of the thermostat (which is significant when the layer is semitranspar-
ent), of the laser pulse time, and of the rear and initial temperatures of the sample.
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Fig. 4 Power profile of the laser pulse used for the numerical calculations. tp denotes the total length of
the laser pulse. The area under the curve is proportional to the total energy flow Etot of the pulse

In the following, the initial temperature of the layer is assumed to be 300 K and in
thermal equilibrium with the surroundings except when otherwise stated. The ther-
mostat1 keeping the rear surface at constant temperature TN = 300 K is supposed
to have a reflectivity ρsh = 0.65. The layer material has a scattering coefficient of
S = 1 × 104 m−1. A laser pulse of a standardized shape,

E(t) = Etotf

(
t

tp

)

given in Fig. 4 is used for the calculations. The duration of the pulse tp = 5 ×
10−3 s, except when stated differently. The calculations were always performed with
an equally spaced grid of 2,000 points. A total transient time of 60 s was investigated
with a time grid consisting of 17,000 points, the spacing being denser for the heating
phase than for the cooling phase. In the figures, only representative time points are
shown. Since the energy required to reach the desired surface temperature strongly var-
ies with the material properties and boundary conditions, calculations were performed
with different energy inputs as reported in the text.

3.1 Influence of Thickness

To investigate the influence of the layer thickness on the thermal profile, a set of dif-
ferent thicknesses (L = 2, 1, 0.5, 0.1 mm) was considered. All calculations reported
in this section refer to a total input laser energy flow Etot = 7.28 × 106 J ·m−2.

As an example of an opaque sample, the temperature profiles in the layer of 2 mm
are shown in Fig. 5 as a function of time. During heating (see Fig. 5a), the temperature
of the layer progressively increases reaching its maximum when all the laser power is
delivered. During cooling (see Fig. 5b), the value of the surface temperature mono-

1 It should be noted that the thermostat could also be viewed as the sample holder or the substrate of a
coating where the zirconia layer represents the coating.
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Fig. 5 Transient temperature distribution for a sample with L = 2 mm, S = 1 × 104 m−1, TN = 300 K,
ρsh = 0.65, and tp = 5 × 10−3 s: (a) heating phase during the laser pulse and (b) cooling phase after the
laser has been switched off

tonically decreases. In the interior, however, the temperature still increases for some
time due to the heat redistribution in the layer.

It should be noted that the spatial temperature distribution decreases monotonically
also in the cooling phase, even though the direction of the total energy flow at the
surface is now opposite to the one for the heating phase. Radiative cooling distinctly
differs in this respect from cooling by heat conduction. In our model, the value of the
temperature gradient at the surfaces is determined uniquely by the boundary condi-
tions for the temperature field. In the calculations presented, the sample is assumed
to be in vacuum with no heat flow across the irradiated surface yielding always a
zero value of the temperature gradient. Conductive or convective heat flow across the
irradiated surface can also be modeled leading to a positive value of the temperature
gradient near the surface in the heating phase as well as in the cooling phase as long
as the surface temperature exceeds the temperature of the surroundings. In this case,
the spatial maximum of the temperature would be found in the interior of the sample
and not at its surface.
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Fig. 6 Transient temperature of the front surface for a sample with L = 2 mm, S = 1 × 104 m−1,
TN = 300 K, ρsh = 0.65, and tp = 5 × 10−3 s: (a) heating phase during the laser pulse and (b) cooling
phase after the laser has been switched off. The surface temperature T0 and the temperature Tpyr measured
with a pyrometer coincide

In Fig. 6, the temperature at the front surface is shown as a function of time. When
the laser is switched off at tp = 0.005 s, the material slowly cools, and after about
13 s, the temperature reaches the surrounding value of 300 K. The sample is opaque,
and the true temperature of the front surface coincides with the temperature that is
measured by a pyrometer in accordance with the findings in Sect. 2.4.

In Fig. 7, curves 1 and 2, the isothermal reflectivity of the material and the calcu-
lated transient reflectivities during heating and cooling are represented. The transient
reflectivities strongly differ from the isothermal values, the difference being more
pronounced during heating than during cooling due to the more pronounced tempera-
ture drop within the layer optically accessible from the surface. The thickness of this
layer, the optical penetration depth, is of the order of 1/W . At the maximum surface
temperature reached, 1/W is equal to 3.07 × 10−5 m and the temperature drops from
2,737 K to 1,890 K within the distance 1/W from the surface. Therefore, an apprecia-
ble part of the light reflected at the surface stems from a region with a low quotient of
A/S leading to a reflection coefficient well above its isothermal value for the surface
temperature.
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Fig. 7 Isothermal and transient reflectivities as a function of temperature for a sample with L = 2 mm,
TN = 300 K, ρsh = 0.65, tp = 5 × 10−3s, S = 1 × 104 m−1, and S = 5 × 104 m−1. Branches 1, 1′ show
the transient reflectivity during heating, branches 2, 2′ during cooling

The samples with thicknesses of 1 and 0.5 mm are still opaque. The temperature
profiles and the transient reflectivity values show the same behavior as in the case
of the 2 mm thick layer. However, the picture drastically changes if its thickness is
further reduced. As an example, the results for a thickness of 0.1 mm are reported in
Fig. 8. The maximum surface temperature reached is much lower than in the previous
cases, and the sample is semitransparent for temperatures below 1,500 K. As soon
as the sample becomes semitransparent, the temperature that a pyrometer measures
using the correct emissivity value (one minus the actual transient reflectivity) starts to
deviate from the true surface temperature (see Fig. 9). The pyrometric temperature is
then always higher than the true surface temperature in accordance with the theoretical
findings in Sect. 2.4, Eq. 49. In Fig. 10, curves 1 and 2, the corresponding transient
reflectivity values are reported.

3.2 Influence of the Reflectivity of the Sample Holder

The influence of the reflectivity of the thermostat on the temperature profiles and on
the reflectivity of the sample was investigated for the thickness L = 2, 1, 0.5, and
0.1 mm. As expected, there is no such influence for the opaque samples. However, there
is a drastic influence in the case of the semitransparent sample with L = 0.1 mm.
With a value of ρsh = 0.2 instead of ρsh = 0.65 and an identical energy input
(Etot = 7.28 × 106 J ·m−2), a much lower temperature is reached (1,333 K instead of
2,140 K) due to the smaller radiative flux reflected by the thermostat and the increase
of absorptivity between 1,300 K and 2,000 K (see Table 1). The influence of the reflec-
tivity of the thermostat on the calculated transient reflectivity values is illustrated in
Fig. 10. Curves 1′ and 2′ referring to ρsh = 0.2 indicate indeed a much lower reflec-
tivity value compared with the values calculated for ρsh = 0.65.
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Fig. 8 Transient temperature distribution for a sample with L = 0.1 mm, S = 1 × 104 m−1, TN = 300 K,
ρsh = 0.65, and tp = 5 × 10−3 s: (a) heating phase during the laser pulse and (b) cooling phase after the
laser has been switched off

3.3 Influence of the Scattering Coefficient

The influence of the scattering coefficient was investigated for thicknesses of 2, 1, 0.5,
0.1, and 0.05 mm. The results obtained with S = 5 × 104 m−1 show that the sample is
opaque for the first four studied thicknesses, implying Tpyr = T0 and semitransparent
for L = 0.05 mm. As expected, the temperature profiles in the samples were much
steeper than for the case of S = 1 × 104 m−1 because of the higher scattering coef-
ficient. In order to obtain the same temperature increase as before, considerably less
energy was required (Etot = 2.2 × 106 J · m−2 instead of 7.28 × 106 J · m−2 for the
2 mm layer).

The calculated reflectivities for L = 2 mm are reported in Fig. 7, curves 1′ and 2′.
The comparison of the results obtained for S = 1 × 104 m−1 and S = 5 × 104 m−1

shows that the higher scattering coefficient results in calculated transient reflectivities
that are closer to the isothermal values.

3.4 Influence of the Laser Pulse Time

The influence of the laser pulse time has been investigated for a sample of thickness
L = 2 mm. In Fig. 11, the temperature profiles for laser pulse times of tp = 5×10−4 s
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Fig. 9 Transient temperature at the front surface for a sample with L = 0.1 mm, S = 1 × 104 m−1,
TN = 300 K, ρsh = 0.65, and tp = 5 × 10−3 s: (a) heating phase during the laser pulse and (b) cool-
ing phase after the laser has been switched off. There are substantial deviations of the temperature Tpyr
measured with a pyrometer from the true surface temperature T0
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Fig. 10 Isothermal and transient reflectivities as a function of temperature for a sample with L = 0.1 mm,
S = 1 × 104 m−1, TN = 300 K, ρsh = 0.65 and ρsh = 0.2, and tp = 5 × 10−3 s. Branches 1, 1′ show the
reflectivity during heating, branches 2, 2′ during cooling
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Fig. 11 Transient temperature distribution for a sample with L = 2 mm, S = 1 × 104 m−1, TN = 300 K,
and ρsh = 0.65 for different total lengths tp of the laser pulse: (a) heating during the laser pulse, tp =
5 × 10−4 s, (b) cooling after the laser has been switched off, tp = 5 × 10−4 s, (c) heating during the laser
pulse, tp = 5 × 10−2 s, and (d) cooling after the laser has been switched off, tp = 5 × 10−2 s

with Etot = 6.64 × 106 J · m−2 and of tp = 5 × 10−2 s with Etot = 9.35 × 106 J · m−2

are presented.
Comparing these results with those obtained for tp = 5×10−3 s, which are reported

in Fig. 5, it can be seen that the pulse duration strongly influences the temperature
profile within the sample. The temperature gradients within the optical escape depths
of 3.07 × 10−5 m for the maximum temperature of about 2,760 K are shown in Fig.
12 for all the three cases studied. As expected, the longer the laser pulse, the smaller
is the thermal gradient within the optical escape depth. The same pattern is observed
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length of the laser pulse tp is varied, and the total energy flow of the laser is adapted to get approximately
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0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

1"

1'

2"
2'

2

1

 isothermal

 transient tp = 5 x10-4 s

 transient tp = 5 x10-3 s

 transient tp = 5 x10-2 s

ytivitcelfe
R

Temperature, K
400 800 1200 1600 2000 2400 2800

Fig. 13 Isothermal and transient reflectivities as a function of temperature for different total lengths tp of
the laser pulse and for a sample with L = 2 mm, S = 1×104 m−1, TN = 300 K, and ρsh = 0.65. Branches
1, 1′, 1′′ show the reflectivity during heating, branches 2, 2′, 2′′ during cooling

for the transient reflectivities: the longer the laser pulse, the closer the values of the
calculated reflectivity to the isothermal values (see Fig. 13).

3.5 Influence of the Initial and Rear Temperatures

The influence of the initial temperature on the thermal response of the sample was
investigated for the sample of thickness L = 2 mm. Since the aim of this work is to
investigate the thermal response of an isothermal sample to a laser shot, the constant
rear temperature of the slab was always assumed to be equal to its initial temperature:
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Fig. 14 Temperature distribution near the surface at the maximum temperature reached just before the laser
is switched off for two different initial temperatures Tinit of a sample with L = 2 mm, S = 1 × 104 m−1,
ρsh = 0.65, and tp = 5×10−3 s. The temperature of the thermostat is always equal to the initial temperature
of the sample

TN = Tinit . The input energy was chosen such that the sample is heated to the same
maximum surface temperature as for the case of Tinit = 300 K, necessitating a reduced
energy input of Etot = 5.6 × 105 J ·m−2 for Tinit = 1,500 K. A comparison of the
results for this higher initial temperature with the results obtained for an initial tem-
perature of 300 K reveals that the temperature profile in the interior of the samples
remains qualitatively the same but with a reduced thermal gradient (see Fig. 14). With
Tinit = 1,500 K, the lower temperature gradient within the optical escape depth of the
sample influences the values of the transient reflectivity which are much closer to the
isothermal ones than in the case of Tinit = 300 K (see Fig. 15).

4 Discussion and Conclusion

Semitransparent materials are frequently used in high-temperature applications where
combined heat conduction and radiative transport play an important role. As a conse-
quence, there is considerable interest in the measured values of the thermophysical and
optical properties of such materials at high temperatures. Radiative properties such
as absorption and scattering coefficients are preferably determined from reflectivity
and transmissivity measurements on isothermal samples. At very high temperatures,
measurements under isothermal conditions may, however, become impracticable and
one has to rely on transient measurements, e.g., using laser pulses to heat the sample
surface to the desired temperatures.

The interpretation of transient reflectivity and transmission data in terms of optical
properties of the material such as the absorption and scattering coefficients of the
two-flux model for radiation is, however, not straightforward since semitransparent
materials typically combine low thermal conductivity with low values of absorption
over an extended wavelength region, and the material parameters often depend on
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Fig. 15 Isothermal and transient reflectivities as a function of temperature for different initial temperatures
and for a sample with L = 2 mm, S = 1 × 104 m−1, ρsh = 0.65, and tp = 5 × 10−3 s. The temperature of
the thermostat is always equal to the initial temperature of the sample. Branches 1, 1′ show the reflectivity
during heating, branches 2, 2′ during cooling

temperature. In a transient heating or cooling regime, considerable temperature dif-
ferences may occur within the optical penetration depth, and the incident light used for
a reflectivity measurement may simultaneously probe regions with different absorption
and scattering properties. The responses from these different regions then contribute
to the transient value of the reflectivity.

As a consequence, the measured transient values of the reflectivity to the same
surface temperature may considerably differ in the heating and cooling phases of a
laser-heated sample as reported by Petrov et al. [20]. We fully agree with the conclu-
sion of the authors “that the reflectivity and emissivity under intense laser heating are
not physical constants which may be related to some temperature, but depend on the
temperature field in the surface layer of the sample.” This implies that such reflectivity
data can be related to the optical material properties only by modeling the combined
heat and radiative transport in the sample, taking into account the experimental cir-
cumstances such as, for instance, the proper boundary conditions for temperature and
radiation.

Such a model is presented here for a gray slab with temperature-dependent thermo-
physical and radiative properties. Although the conditions of our calculations are not
strictly identical with the experimental conditions for the reflectivity measurements
reported in [20], the same qualitative results are obtained: the reflectivity values mea-
sured with laser-heated samples differ considerably for the heating and cooling phases
and both values are different from the isothermal values. These deviations strongly
increase with increasing power of the heating laser (compare Fig. 7 in [20] with Fig.
7 of the present work). The differences in the hypothetical temperature distributions
reported by the authors of [20] and the ones reported in this work (compare Fig. 5
of [20] with our Figs. 5b, 8b, 11b, 11d) are due to the different experimental condi-
tions. In the experiments carried out in [20], the irradiated front surface is cooled by
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convection and melting of the material occurs (in our calculations, the samples are
placed in vacuum and melting is not considered).

The calculations in this work are based on a model for a gray slab and disregard
phase transitions. Phase transitions can, however, be easily taken into account by
choosing the specific heat as a function of temperature cp(T ) accordingly. In addition,
the model can be extended to cover the wavelength dependence of radiative proper-
ties by dividing the total wavelength region into intervals where the absorption and
scattering coefficients are constant with respect to wavelength. This will improve the
modeling of semitransparent materials which typically exhibit an absorption edge and
often are heated and probed with radiation of different wavelengths.

Acknowledgement This work has been supported by the Swiss Federal Office of Energy (BFE).

Nomenclature
A Absorption coefficient (m−1)
cp Specific heat, (J ·kg−1·K−1)
d Density (kg ·m−3)
Etot Total energy flow of laser pulse (J ·m−2)
E(t) Laser power flow (W ·m−2)
F J+ + J−, auxiliary flux quantity (W ·m−2)
F h Solution of the homogeneous two-flux equations (W ·m−2)
F si Solution of the in-homogeneous two-flux equations (W ·m−2)
J+, J− Radiative fluxes in the positive and negative x-directions (W ·m−2)
J h Flux quantity, solution of the homogeneous two-flux equations

(W ·m−2)
J si Flux quantity, solution of the inhomogeneous two-flux equations

(W ·m−2)
JQ Conductive heat flux (W ·m−2)
J Total radiative flux (W ·m−2)
k Thermal conductivity (W ·m−1 ·K−1)
khrt Combined heat and radiative transfer coefficient (W ·m−1 ·K−1)
L Thickness of the slab (m)
Ln Transfer matrix for left substructure at boundary n (−)
P Transfer matrix for homogeneous two-flux equations (−)
P(n) Transfer matrix of layer n (−)
Rn Transfer matrix of right substructure at boundary n (−)
S Scattering coefficient (m−1)
t Time (s)
tp Duration of the laser pulse (s)
T Temperature (K)
TN Temperature of thermostat (K)
Tpyr Temperature measured with a pyrometer (K)
Tsurr Temperature of surroundings (K)
�tm tm − tm−1, step for time integration (s)
W−1 Optical penetration depth of the medium (m)
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δn xn − xn−1, space grid step at point n, 1 ≤ n ≤ N (m)
εL/R Emissivity at the left/right surface of a layer (−)
ρL/R Reflectivity at the left/right surface of a layer (−)
ρ0 Reflectivity at the front surface of the slab (−)
ρN Reflectivity at the rear surface of the slab (−)
ρL

R,n Reflectivity of the left substructure at the right side of cell n (−)
ρR

L,n Reflectivity of the right substructure at the left side of cell n (−)
ρsh Reflectivity of the thermostat (−)
ρtot Transient reflectivity of the combined system (slab and

thermostat) (−)
σB Stefan–Boltzmann constant (W ·m−2 ·K−4)

τL/R Transmissivity at the left/right surface of a layer (−)
τδ Transmissivity of a layer of thickness δ (−)
τ

L/R
n Transmissivity of the left/right substructure (−)

τ Transmissivity of the slab (−)
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