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Abstract The incorporation of energy elastic effects in
the modeling of flowing polymeric liquids is discussed.
Since conformational energetic effects are determined
by structural features much smaller than the end-to-
end vector of the polymer chains, commonly employed
single conformation tensor models are insufficient to
describe energy elastic effects. The need for a local
structural variable is substantiated by studying a micro-
scopic toy model with energetic effects in the setting
of a generalized canonical ensemble. In order to ex-
amine the dynamics of flowing polymeric liquids with
energy elastic effects, a thermodynamically admissible
set of evolution equations is presented that accounts
for the evolution of the microstructure in terms of a
slow tensor, as well as a fast, local scalar variable. It is
demonstrated that the temperature used in the defini-
tion of the heat flux is directly related to the Lagrange
multiplier of the microscopic energy in the generalized
canonical partition function. The temperature equation
is discussed with respect to, first, the dependence of
the heat capacity on the polymer conformation and,
second, the possibility to measure experimentally the
effects of the conformational energy.
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Introduction

Entropy elasticity of rubbers (Treloar 1975) serves as a
starting point for most of the current models to describe
the flow of polymeric liquids, while consideration of en-
ergetic effects is scarce. Such exclusive subscription to
entropy elasticity derives from the following contrast.
The slowest degrees of freedom, which are of primary
importance for the rheology under slow and mod-
erate deformation rates, describe large-scale features
in the polymeric liquid, whereas the energetic effects
depend on local aspects of the chain conformations
that have much faster relaxation processes. Further-
more, in particular, the variables describing the large
scales lead to significant contributions to the entropy
due to the large number of corresponding microstates.
Nevertheless, it has recently been demonstrated using
configurationally biased Monte Carlo simulations that
energetic effects of the polymer conformation indeed
become relevant, particularly at large deformations,
which supports the significance of fast local degrees
of freedom (Mavrantzas and Theodorou 1998; Ionescu
et al. 2008b). For these reasons, it is interesting to
discuss the possible ramifications of energy elasticity
on the flow behavior of polymeric liquids. In order to
arrive at a model suitable for describing conformational
energetic effects, the following questions must be ad-
dressed: (1) What is a suitable choice of variables to
capture energy elastic effects? (2) How can energetic
and entropic contributions be distinguished properly in
the thermodynamic potentials?

The proper choice of variables is of fundamental
importance in modeling complex fluids, as it is often
stated and also well known. The key aspect of the
word “proper” means that the set of variables must be
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sufficiently detailed to capture the physics one is in-
terested in describing. Since polymer chains depart
significantly from equilibrium upon the application of
flow, structural variables are chosen to capture that
deviation (Bird et al. 1977; Larson 1988), including the
distribution function p(R) of the end-to-end vector R
between chain ends or the second moment c = 〈RR〉,
the distribution function p(n, s) of the tangent vector
n and label s along the primitive path in the reptation
model, or the local chain stretch λ (Öttinger 1999).
Although these choices differ in their applicability to
polymeric solutions and melts, respectively, a feature
common to them is that they are usually employed
to describe entropy elasticity only, while energetic ef-
fects are neglected, a preference that may be traced
back to the works of Astarita (1974), Astarita and
Sarti (1976), and Sarti and Esposito (1977). Exceptions
in this regard are some applications of conformation
tensor models, in which the entropic spring for R is
replaced by a spring with mixed entropic and ener-
getic character (Braun and Friedrich 1990; Peters and
Baaijens 1997; Wapperom and Hulsen 1998; Dressler
et al. 1999). Such an extension is certainly admissible
if c is to remain the only relevant structural variable
in the model. However, by virtue of the physical origin
of energetic effects, e.g., as described by the rotational
isomeric state (RIS) model (Flory 1988; Mattice and
Suter 1994) or the local packing of chain segments, it
seems that structural features on scales much finer than
the end-to-end vector must be resolved to represent
the energetics appropriately. Ignoring the existence
of an independent local variable and instead linking
it statically to the conformation tensor seems inade-
quate and would be a severe restriction of the physics,
in particular with regards to the dynamics, since the
more local the structural feature is, the more rapid is
its associated relaxation processes (Bird et al. 1977;
Larson 1988). Local structural variables have been in-
troduced previously for the modeling of flowing poly-
meric liquids, e.g., in some versions of the reptation
model (Ianniruberto and Marrucci 2001; Marrucci and
Ianniruberto 2003) and in the pompon model for melts
of multiply branched polymers (McLeish and Larson
1998; Öttinger 2001; Soulages et al. 2006). While, in
both of these examples, the scalar structural variable
represents local chain (segment) stretch that relaxes
substantially faster than the tensorial variable, the step
to incorporate energy elasticity has not been taken in
full generality by Öttinger (2002, 2005).

The distinction of energetic and entropic effects
based on a thermodynamic potential in nonequilibrium
situations is more involved than it may seem at first
sight. To address the energy–entropy separation in

equilibrium thermodynamics, one usually departs from
the free energy F(T, X) with absolute temperature T
and extensive variables X, based on which, the quan-
tity E= F−T ∂ F/∂T|X is identified with the energy
of the system. This identification can be substantiated
with statistical mechanics since, in the canonical en-
semble, E is the ensemble average of the microscopic
Hamiltonian (Reichl 1980; Landau and Lifshitz 1980;
Callen 1985). Clearly, this procedure for identifica-
tion of energetic and entropic contributions rests on
the clear concept of temperature, which is, how-
ever, a cumbersome one in beyond equilibrium situ-
ations (Grmela 1998; Casas-Vázquez and Jou 2003).
Therefore, one must examine critically the ways to
achieve the energy–entropy separation based on out-
of-equilibrium Helmholtz free energy expressions, as
implicitly invoked, e.g., in Braun and Friedrich (1990),
Peters and Baaijens (1997), Wapperom and Hulsen
(1998), and Dressler et al. (1999). In order to clarify the
meaning of T as a variable out of equilibrium similar
to the scenario in equilibrium, one can envision that,
also out-of-equilibrium, a statistical mechanics treat-
ment must come to the aid to bring clarification. To
our knowledge, such steps have not yet been taken in
literature.

In order to address these issues, the manuscript is
organized as follows: We start with a microscopically
motivated toy model that includes conformational en-
ergetic effects in terms of different RIS states (Flory
1988; Mattice and Suter 1994). For this model, both
the coarse-grained conformational energy and the con-
formational entropy are calculated in a generalized
canonical ensemble and expressed in terms of the con-
formation tensor c and a local structural variable λ. In
order to study the dynamic behavior of such a system
under flow, the general equation for the nonequilibrium
reversible–irreversible coupling (GENERIC) frame-
work (Grmela and Öttinger 1997; Öttinger and Grmela
1997; Öttinger 2005) is then used to formulate a closed
set of evolution equations that includes the dynamics of
c and λ, apart from the usual hydrodynamic variables.
The resulting model is discussed with regards to the
ramifications of conformational energetic effects and
the use of a temperature-like dynamic variable, and is
illustrated for the previously introduced toy model.

Toy model

With the aid of a simple toy model, which can be treated
analytically, it will be shown that energetic effects of the
polymer conformation are described with a structural
variable that resolves length scales significantly more
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local than what is characterized by the conformation
tensor. To that end, a generalized canonical ensemble
is considered to relate the microscopic understanding
about the chain with the level of a thermodynamic
state function, valid also out of equilibrium. For the
sake of keeping the model tractable, we consider only
intrachain energetic effects. Possible extensions are ad-
dressed in the “Summary and perspectives” section.

While in the usual canonical ensemble, the average
value of the energy H is conveniently controlled by the
Lagrange multiplier β = 1/(kBT), out-of-equilibrium
situations of polymeric systems involve further (exten-
sive) variables {Xi}i=1,...,k, the averages of which can
be controlled by corresponding Lagrange multipliers
{αi}i=1,...,k. As an example, one structural variable can
be the dyadic of the end-to-end vector, X1 = RR. The
generalized canonical partition function can formally
be written as (Öttinger 2005)

Z (β, {αi}) =
∑

PS

e−βH−∑k
i=1 αi Xi , (1)

where the summation (integration) runs over all of the
available phase space (PS). Based on that partition
function, one can derive expressions for the entropy S
and for the averages of H and Xi,

S = kB

(
ln Z + β〈H〉 +

k∑

i=1

αi〈Xi〉
)

, (2a)

E ≡ 〈H〉 = − ∂ ln Z
∂β

∣∣∣∣
αi

, (2b)

〈Xi〉 = − ∂ ln Z
∂αi

∣∣∣∣
β,αk,k�=i

, (2c)

all expressed as functions of β and {αi}i=1,...,k. With
the access to the Lagrange parameters αi in the
partition function Eq. 1, one has a handle on the av-
erages 〈Xi〉, which means that out-of-equilibrium situ-
ations can be generated in this way, as used in Monte
Carlo simulations of polymer melts (Mavrantzas and
Theodorou 1998; Mavrantzas and Öttinger 2002; Baig
and Mavrantzas 2007; Ionescu et al. 2008b). Using a
generalized canonical partition function of the form
Eq. 1, it is straightforward to show that the following,
model-independent, relations between the entropy and
energy defined in Eq. 2 hold,

∂(S/kB)

∂β

∣∣∣∣〈Xi〉
− β

∂ E
∂β

∣∣∣∣〈Xi〉
= 0 , (3a)

∂

∂〈Xi〉
(

S
kB

− βE
)∣∣∣∣

β,〈Xk〉,k�=i
= αi , (3b)

where it must be noted that the averages 〈X〉 rather
than the Lagrange multipliers α are held constant upon
differentiation.

As a specific example for illustrating conformational
energetic effects, we consider a single linear polymer
chain composed of N (united) atoms with variable bond
lengths, bond angles, and torsion angles. To render
analytic calculations for this toy model feasible and
transparent, we assume that the conformation of such
a chain can be described by (1) well-defined RIS (Flory
1988; Mattice and Suter 1994) with fixed bond length,
fixed bond angle, and discrete values for the torsion
angle, and (2) local vibrations around each RIS state.
While the potentials describing the bond length and
bond angle degrees of freedom shall have a single min-
imum each, the torsional degree of freedom is assumed
to take three states (local minima): a trans state (t) of
zero energy by definition, and two gauche states (g+
and g−) with a energy penalty of ε, each with respect
to the trans state. This model is representative of poly-
ethylene, and relates to the potentials for bond length,
bond angle, and bond torsion as used in realistic united
atom simulations (Paul et al. 1995; In ’t Veld et al.
2006). The number of gauche states along the chain
are denoted by n, and hence, εn is the instantaneous
conformational energy of a chain.

The energy and entropy for the toy model defined
above can be calculated as follows. In order to describe
a single polymer chain in situations out of equilibrium,
we introduce α and μ as the Lagrange multipliers to
the structural variables X1 = RR and X2 = n, respec-
tively, and calculate the generalized canonical partition
function Z (β, α, μ). It can be shown (see Appendix A
for details) that the expressions for the energy and
entropy of a single chain (sc) of length N in terms of β,
the conformation tensor c = 〈RR〉, and the (average)
number of gauche states n assume the form

Esc(β, c, n)=
(

Floc(β, n)+β
∂ Floc(β, n)

∂β

)
+εn , (4a)

Ssc(β, c, n)=kBβ2 ∂ Floc(β, n)

∂β
+Sconf(n)

+ kB

2

[
3−tr (c/c0(n))+ln det (c/c0(n))

]
,

(4b)

where Floc represents the local Helmholtz free energy
(Eq. 34) accounting for the local vibrations around
the RIS conformations with n gauche states. As dis-
cussed in Appendix A, the n-dependence of Floc can
be neglected if the form of the atomistic potentials
around a RIS conformation with n gauche states is
effectively independent of n, which, e.g., is reasonably
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well satisfied by the torsion potential for polyethylene.
The conformational entropy is given by

Sconf(n) = kB ln

(
2n

(
N − 2

n

))
, (5)

which counts the number of possible RIS conforma-
tions with n of the N − 2 torsional degrees of free-
dom being in the (twofold degenerate) gauche state.
In the entropy Eq. 4b, the quantity c0 is related to
the distribution of the end-to-end vector Q of all RIS
conformations for given n, 〈 Q Q〉 = c0(n)1. Keeping
constant the bond length l and the bond angle ϑ , and
with torsion angle ϕ, one can write for long chains of
length N (Flory 1988)

c0(n) = (N − 1)l2

3
C∞

= (N − 1)l2

3

(
1 + cos ϑ

1 − cos ϑ

)(
1 + 〈cos ϕ〉
1 − 〈cos ϕ〉

)
, (6a)

where it has been assumed that the torsion angles are
independent from each other and that the energy of a
single torsion angle ϕ is symmetric in ϕ around ϕ = 0.
As the torsion angle in the RIS model can assume only
three distinct values, e.g., for polyethylene ϕtrans = 0
and ϕgauche � ±2, one has

〈cos ϕ〉 = n
N − 2

cos ϕgauche +
(

1 − n
N − 2

)
cos ϕtrans ,

(6b)

i.e., the dependence of c0 on n and N for long chains is
of the form f (n/N)N.

The total energy Esc splits into a local and a con-
formational contribution depending on n, while the
entropy Ssc consists of a local term and two conforma-
tional ones, depending on n and c, respectively. Given
the weak dependence of Floc on n, the influence of
n on the local energy and local entropy, respectively,
becomes negligible. Identifying the different contribu-
tions is useful for interpreting the deformation of the
polymeric system. For example, the exchange between
local and conformational entropy explains the heating
of an adiabatically stretched rubber. Similar insights
can be expected from accounting for both forms of
energy, local and conformational. The absence of a c-
dependent contribution to the energy is noteworthy
and highlights the effect of using the local structural
variable n.

Since the parameters α and μ in the generalized
canonical ensemble have been introduced to drive the
system out of equilibrium, it is now interesting to ex-
press them for the specific toy model in terms of the

variables (β, c, n). Application of the identity Eq. 3b to
the single chain energy and entropy Eq. 4 leads to

α = 1

2

(
c−1 − 1

c0(n)
1
)

, (7a)

μ = −βε + ∂(Sconf/kB)

∂n
− β

∂ Floc

∂n
− c : α

d ln c0

dn
. (7b)

In equilibrium, α=0, one thus finds ceq =c0(n)1, which
highlights the meaning of the function c0(n). Equi-
librium furthermore requires μ = 0, from which one
obtains, by virtue of Eq. 7b, a relation of the form
neq(β). This in turn leads to the β-dependent confor-
mation tensor ceq = c0(neq(β))1 of the polymer chain
at equilibrium (see “Implications of the model” section
below for details). On the other hand, if only the local
variable n is equilibrated (μ = 0) but the large-scale
variable c is not (α �= 0), one finds from Eq. 7b by
neglecting ∂ Floc/∂n the implicit expression for n/N in
the long chain limit, N − 2 � N,

n
N

= 2e−βε−Y

1 + 2e−βε−Y
, (8a)

Y ≡ 1

2

[
3 − tr(c/c0(n))

] d ln c0(n)

dn
. (8b)

In view of the form Eq. 6 for c0, one observes that
d ln c0(n)/dn scales in the long chain limit with fixed
n/N as N−1. Therefore, it is reasonable to assume Y �1,
which in turn leads to the probability of gauche states

n
N

� 2e−βε

1 + 2e−βε

(
1 − Y

1 + 2e−βε

)
, (8c)

i.e., linear in the out-of-equilibrium term 3 − tr(c/c0).
In order to arrive at an explicit equation for n/N cor-
rect to first order in 3 − tr(c/c0), one can replace in Y
the occurrence of n by its value for c = c01.

After these discussions, we proceed with compar-
ing our expressions (Eq. 4) with the ones used in the
literature. The c-dependent terms in the entropy are
the well known result found in literature (Sarti and
Marrucci 1973; Dressler et al. 1999). However, in Sarti
and Marrucci (1973), the unperturbed size of the chain
depends on the temperature, i.e. c0(T), while we have
explicit access to the number of gauche states and,
hence, c0(n). As discussed above, only in the limit
of an equilibrated number of gauche states n (i.e.,
for μ = 0) do we observe the effect of β on c0. The
contributions εn and Sconf in the energy Eq. 4a and
entropy Eq. 4b, respectively, are new conformational
contributions. In contrast, in Dressler et al. (1999), a
term proportional to trc is added to the energy to
represent energetic effects. Specifically, the following
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conformation-dependent contributions to the energy
and entropy are used, here expressed for a single chain,

Esc,Dressler(T, c)
∣∣
conf =

1

2

(
K(T)−T

dK(T)

dT

)
tr(c) , (9a)

Ssc,Dressler(T, c)
∣∣
conf =

1

2

[
−dK(T)

dT
tr (c)+kB ln det (c)

]
,

(9b)

with the overall chain spring constant K(T) with
temperature T. In their case, energetic effects arise
as the dependence of K on T is nonlinear. However,
in the light of the microscopic origin of energetic
effects (e.g., in our toy model), it seems to us more
desirable to capture these local effects with a local
structural variable, as exemplified with our toy model.
With regard to the approximate form of gauche
states (Eq. 8c), it is clear that, in our approach, the
conformational energy εn can be expressed as a term
linear in trc only under special circumstances, namely,
if n is equilibrated and if the effect of trc on n is weak.
In particular, with the approximation mentioned after
Eq. 8c, the energy term linear in trc assumes the form

Esc = −1

2

d ln c0

dβ
tr (c/c0) + . . . , (10)

where the dots stand for terms independent of c. The
derivative of c0 must be understood as a derivative with
respect to n at Y = 0, multiplied by the derivative of n
from Eq. 8c at Y = 0 with respect to β. It is comforting
to note that the form Eq. 10 is identical to the
corresponding contribution contained in Eq. 9a when
using their relation K(T) = kBT/c0(T) (Dressler et al.
1999; Ionescu et al. 2008a), under the condition T =
(kBβ)−1. It will be shown below in the “Discussion”
that this condition is indeed satisfied; see Eq. 22.

Formulation of the dynamics

Strategy

Motivated by the above toy model, the use of a lo-
cal structural variable in addition to the conformation
tensor is promising for addressing the effect of confor-
mational energy on the behavior of polymers. In order
to examine the flow behavior, we aim at formulating a
thermodynamically admissible, closed set of evolution
equations including a scalar and tensorial variable, λ

and c, for describing the conformation of the polymer
chains. To keep this development from being restricted
to the toy model, we do not imply that λ = n, and

we also use the most general form for the energy and
entropy as functions of the structural variables. After-
wards, the ramifications of the toy model can be studied
as a special case of the general model.

As guard-rail to formulate the dynamic model, we
choose the GENERIC framework by Grmela and
Öttinger (Grmela and Öttinger 1997; Öttinger and
Grmela 1997; Öttinger 2005) of beyond-equilibrium
thermodynamics. In regard to the topic of this paper,
this method is particularly suitable for two reasons.
First, it is applicable to nonisothermal situations, and
second, the specification of generalized thermodynamic
potentials, namely energy and entropy, is a key ingredi-
ent that allows for a large flexibility of the phenomena
under consideration. In the following, we summarize
only briefly those aspects of GENERIC that are of
relevance for this paper.

When trying to formulate a model in that framework,
the first step is to choose a set of variables, x, that
describes the situation of interest to sufficient detail.
The time evolution of the variables x of an isolated
system are then written in the form

∂x
∂t

= L(x) · δE
δx

+ M(x) · δS
δx

, (11)

where the two generators E and S are the total energy
and entropy functionals in terms of the state variables
x, and L and M are certain matrices (operators). The
two contributions to the time evolution of x generated
by the total energy E and the entropy S are called the
reversible and irreversible contributions, respectively.
The operator L describes the kinematics, while the op-
erator M accounts for a wealth of irreversible processes
and, hence, contains material parameters such as dif-
fusion coefficients, viscosities, relaxation times, and re-
action constants. The matrix multiplications (symbol ·)
imply not only summations over discrete indices but
may also include integration over continuous variables,
in particular for non-local field theories, and δ/δx typi-
cally implies functional rather than partial derivatives.

The GENERIC structure also imposes certain con-
ditions on the building blocks in Eq. 11. First, Eq. 11 is
supplemented by the mutual degeneracy requirements

L(x) · δS
δx

= 0 , (12a)

M(x) · δE
δx

= 0 , (12b)

representing entropy and energy conservation upon
reversible and irreversible dynamics, respectively. In
addition, L must be antisymmetric, whereas M needs
to be positive-semidefinite and Onsager–Casimir sym-
metric. As a result of all these conditions, one may show



306 Rheol Acta (2009) 48:301–316

that the GENERIC Eq. 11 implies both the conserva-
tion of total energy, as well as a nonnegative entropy
production. Finally, the GENERIC structure requires
that the Poisson bracket associated to the operator L
fulfills the Jacobi identity, which expresses the time-
structure invariance of the reversible dynamics. The
complementary degeneracy requirements, the symme-
try properties, and the Jacobi identity are essential for
formulating proper L- and M-matrices when modeling
concrete nonequilibrium problems. Various applica-
tions have shown that the two-generator idea and the
criteria on the two matrices have strong implications
(e.g., Öttinger and Grmela 1997; Öttinger 2002, 2005;
Edwards and Öttinger 1997).

Choice of variables x, generating functionals E and S

The toy model in the previous section has illustrated
that, in addition to a conformation tensor c, a local
structural variable, denoted by λ, is useful for capturing
conformational energetic effects. Furthermore, in order
to describe nonisothermal flow, we use the “hydrody-
namic” variables momentum density u, mass density
ρ, and a yet unspecified thermal variable θ . In view
of the toy model and of capturing the fast vibrations
that are unresolved by λ and c, the variable θ can be
interpreted as related to the Lagrange parameter β, the
local energy, or the local entropy. In summary, the full
set of variables is thus given by

x = (u, ρ, θ, c, λ) . (13)

The tensor c is interpreted as the average c = 〈RR〉
introduced in the “Introduction.” In other words, it is
a tensor rather than a tensor density and shows upper
convected Maxwell behavior, both of which will be of
relevance when formulating the reversible dynamics.
Note that, in the above choice of structural variables,
it is implicit that there are no intermediate time scales
between what is described by c and λ, respectively. In
other words, the following description is supposed to
be reasonable for relatively short chains as far as quali-
tative aspects of the energetic effects are concerned. If
one were interested in quantitative predictions, more
variables would have to be included.

The functionals for the total energy and the total
entropy in terms of the variables x are written in the
form

E =
∫ (

u2

2ρ
+ et(ρ, θ, c, λ)

)
d3r, (14a)

S =
∫

st(ρ, θ, c, λ)d3r, (14b)

with the only assumption that the total energy is the
sum of a kinetic contribution plus an internal energy
term, the latter being independent of the momentum
density. In both expressions, the symbols et and st stand
for both local and conformational effects. With the
set of variables Eq. 13 and by keeping the functions
et and st general, the evolution equations developed
in Öttinger (2002, 2005) are extended as to achieve
highest flexibility in modeling conformational energetic
effects.

For the microscopic toy model introduced above,
one can choose θ = (kBβ)−1 and λ = n (or λ = n/N).
The functions et and st are then given by multiplication
of the single chain expressions in Eq. 4 by the number
density of polymer chains, ρ/Mw, where Mw denotes
the molecular weight of each polymer.

Operators L and M

The operators L and M, which are involved in the
reversible and irreversible contributions to the evo-
lution equations (Eq. 11), are discussed in detail in
Appendix B. The main points for their specification are
the following.

For L, it is observed, first, that the reversible contri-
butions to the full evolution equations of the variables
x are of purely kinematic origin, and hence, directly
related to the velocity field v. Second, the reversible
evolution of the conformation tensor c and of the scalar
λ is assumed to be given by

∂tc|rev = −v · ∇c + κ · c + c · κT , (15a)

∂tλ|rev = −v · ∇λ + κ : g , (15b)

with the transpose velocity gradient κ = (∇v)T . In
other words, c shows upper convected Maxwell be-
havior, and the evolution of the scalar λ is coupled
to c, where g is a function of λ and c. Since λ is a
scalar, such coupling is required to describe, for exam-
ple, orientation-dependent local chain stretching upon
the application of flow. It can indeed be shown that
a Poisson operator L can be found that satisfies all
the GENERIC conditions, provided that the function
g(c, λ) is of the specific form Eqs. 44–47.

In order to construct M, we include as irreversible
effects anisotropic heat conduction, and the relaxation
of the conformational variables c and λ. For simplicity,
anisotropic viscous flow and slip effects on the confor-
mation tensor, as occurring in Schowalter derivatives,
are not included. Due to the restriction to heat con-
duction and structural relaxation, only three thermo-
dynamic driving forces are relevant. Correspondingly,
there are three thermodynamic fluxes, namely, the heat
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flux, the rate of relaxation of c, and the rate of relax-
ation of λ. Transport coefficients are then introduced to
relate the forces to the fluxes. In particular, the follow-
ing transport coefficients come into play: a second rank
tensor k characterizes anisotropic thermal conductivity
(Schieber et al. 2004), and a fourth rank tensor � and
a scalar rate R describe the relaxation of the conforma-
tion tensor c and scalar variable λ, respectively. Cross-
effects in the force-flux relations are also possible. For
example, the relaxation of c can give rise to a heat flux,
as will be quantified below by the transport coefficient
Z1 of tensorial rank three. Furthermore, the relaxation
of λ could affect the relaxation of c, this coupling
being described below by the transport coefficient Z2

of tensorial rank two. Any ansatz for the quantities
k, �, R, Z1, and Z2 must comply with the positive
semidefiniteness of the matrix of transport coefficients,

D =
⎛

⎝
T2k T Z1 0
T ZT

1 � Z2

0 ZT
2 R

⎞

⎠ ≥ 0 , (16)

in order to satisfy all conditions of the thermodynamic
framework (see Appendix B for details). The quantity
T stands for the generalized temperature defined in
Eq. 18e below.

Time-evolution equations

In view of the functional derivatives Eq. 42, the Poisson
operator Eq. 43, and the friction matrix Eq. 48, and
after some mathematical rearrangements, the full set of
time-evolution equations assumes the form

∂tu=−∇ · (vu) + ∇ · σ , (17a)

∂tρ =−∇ · (ρv), (17b)

∂tθ =−v · ∇θ+ 1

et,θ

[
σ s : (∇v) − ∇· jq − et,c : (∂tc|irr)

− et,λ ( ∂tλ|irr)
]
, (17c)

∂tc =−v · ∇c + κ · c + c · κT + T ZT
1 · ∇ 1

T

+� :
(

st,c − 1

T
et,c

)
+ Z2

(
st,λ − 1

T
et,λ

)
, (17d)

∂tλ=−v · ∇λ + κ : g

+ZT
2 :

(
st,c − 1

T
et,c

)
+ R

(
st,λ − 1

T
et,λ

)
, (17e)

with the velocity field v = u/ρ, the transposed velocity
gradient κ = (∇v)T , and where we have defined the

stress tensor σ and heat flux jq, and introduced the
abbreviation T as

σ = σ e + σ s , (18a)

σ e = (
et − ρet,ρ

)
1 + 2c · et,c + get,λ , (18b)

σ s = −T
(
st − ρst,ρ

)
1 − 2Tc · st,c − gTst,λ , (18c)

jq = −k · (∇T) + T Z1 :
(

st,c − 1

T
et,c

)
, (18d)

T ≡ et,θ /st,θ . (18e)

In Eqs. 17 and 18, as well as in the remainder of the
manuscript, we use the notation y(x),xi ≡ (∂y/∂xi)|xk �=i

for partial derivatives. In the expressions for σ e
c and

σ s
c, we have exploited that et,c and st,c commute with c,

which is appropriate since c is the only tensor variable.
The contributions ∂tc|irr and ∂tλ|irr in Eq. 17c represent
the irreversible contributions to the evolution of the
conformation tensor c (Eq. 17d) and local structural
variable λ (Eq. 17e), respectively, i.e., the terms pro-
portional to the transport coefficients �, R, Z1, and Z2.

Due to the appearance of σ in the momentum bal-
ance Eq. 17a, its interpretation as the physical stress
tensor is evident. Similarly, the interpretation of jq

as the heat flux becomes clear when considering the
evolution equation for the total entropy density st, that
can be derived from Eq. 17 by way of the chain rule,

∂tst = −∇ · (stv) − ∇ ·
(

1

T
jq
)

+
⎛

⎜⎝

(∇ 1
T

)

st,c − et,c

T

st,λ − et,λ

T

⎞

⎟⎠ · D ·
⎛

⎜⎝

(∇ 1
T

)

st,c − et,c

T

st,λ − et,λ

T

⎞

⎟⎠ . (19)

The evolution equation for the total energy assumes
with

∂tet = −∇ · (etv) + (∇v) : σ − ∇ · jq (20)

the usual form, representing the conservation of the
kinetic plus internal energy, E.

It is important to note that the driving forces for
structural relaxation in Eqs. 17d and 17e and the
anisotropic contributions to the stress tensor Eqs. 18a–
18c can only be expressed as the derivative of the
Helmholtz free energy density ft ≡ et − Tst, if the tem-
perature T defined in Eq. 18e does not depend on c
and λ, respectively. Whether that condition is fulfilled
depends on the choice for the thermal variable θ , as
discussed below. In the general case, not the Helmholtz
free energy but, rather, the two generators energy and
entropy are relevant.
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Discussion

First, we compare the set of evolution equations
(Eq. 17) with the constitutive equations (Eq. 18) with
known expressions from literature. To that end, we
note that the evolution equation for θ (Eq. 17c) can
be replaced by the equivalent evolution of either st

(Eq. 19) or et (Eq. 20). In the absence of cross-
couplings (Z1 =0 and Z2 =0), the evolution equation
for c (Eq. 17d) and the expression for the stress tensor
specified in Eq. 18 agree with the results in Beris and
Edwards (1994), if viscous stresses and nonaffine slip
are neglected. The full set of Eqs. 17 and 18 with Z1 =0
and Z2 =0 is identical to Eqs. 46 and 47 in Dressler et al.
(1999), with the major difference that we have included
the local scalar variable λ for quantification of the
energetic effects, in contrast to their procedure with the
temperature-dependent overall chain spring constant
(see also Eq. 9 above). Furthermore, in contrast to
Dressler et al. (1999), we have neglected for simplicity
viscous stresses, and external effects on energy and
momentum are also not considered. In comparison to
Öttinger (2002, 2005), there is agreement about the
choice of a scalar and tensorial structural variable,
and about the corresponding evolution equations in
general. However, while our treatment is less broad
with respect to the irreversible effects accounted for,
we make no restriction on the functional forms of et

and st. Particularly, we permit that the conformational
contributions to these two functions may depend on the
thermal variable θ .

Second, we discuss the meaning of the function T de-
fined in Eq. 18e. For the choice θ =et, that definition is
formally equivalent to the one for the temperature used
in Dressler et al. (1999). On the other hand, if the con-
formational energy and the conformational entropy are
both independent of the thermal variable θ , and with θ

being the local energy density, the definition Eq. 18e
reduces to the “local” temperature used by Öttinger
(2002, 2005). In both cases, the corresponding temper-
ature enters in the usual way into Fourier’s law of heat
conduction. While we consider a more general case for
the definition of T here, T is still directly related to the
driving force for the heat flux Eq. 18d. Furthermore,
T also enters into the expression for the stress tensor
Eq. 18a–18c. Several terms in the evolution equations
(Eq. 17) can be written in a condensed, probably more
familiar, form if Eq. 18e allows one to make a variable
transformation from θ to T. In this case, one obtains
from Eq. 18e the “canonical” consistency relation

T = et,T(ρ, T, c, λ)

st,T(ρ, T, c, λ)
, (21)

and et,T in Eq. 17c assumes the meaning of a
conformation-dependent heat capacity. Furthermore,
with θ =T and defining the Helmholtz free energy den-
sity as ft =et−Tst, one can simplify the driving forces
for structural relaxation in Eqs. 17d and 17e to − ft,c/T
and − ft,λ/T, respectively, and also the stress tensor
expression (Eqs. 18a–18c) assumes a more common
form.

What is the relation between the temperature T
and the parameter β used in the generalized canonical
ensemble? Since the GENERIC equations developed
above relate to the choice X1 = RR and X2 =n in the
generalized canonical ensemble Eq. 1, one concludes
from Eq. 3a that, for θ =T, the parameter β−1 can be
identified with kBT,

kBT = β−1 . (22)

It is pointed out that this identification holds irrespec-
tive of a specific model (e.g., the RIS model as used in
the toy example earlier), and it is not restricted to single
chain partition functions. While T was related above to
the driving force for the heat flux and also entered the
stress tensor expression, i.e., it can be interpreted as a
“transport” temperature, it becomes clear with Eq. 22
that this temperature also stands for the Lagrange mul-
tiplier for the microscopic energy in the setting of a
generalized canonical ensemble. Therefore, only now,
after establishing the relation between the nonequi-
librium thermodynamics treatment and the general-
ized canonical ensemble, it seems confirmed that using
the temperature T as a dynamic variable, as done in
Braun and Friedrich (1990), Peters and Baaijens (1997),
Wapperom and Hulsen (1998), and Dressler et al.
(1999), is indeed admissible. Furthermore, according to
Eq. 3b, the driving forces for structural relaxation in
Eqs. 17d and 17e are given by the Lagrange parameters
α and μ, respectively, and the anisotropic contributions
to the stress tensor expression (Eq. 18a–18c) can also
be rewritten in the form −kBT(2c · α + gμ).

After clarifying the meaning of T as a temperature
and establishing its relation to the (microscopic) para-
meter β, we are now in the position to discuss the evolu-
tion equation of the temperature for flowing polymeric
systems. In literature, one usually starts by rewriting
Eq. 20 with the aid of the mass balance Eq. 17b into an
equation for the internal energy per unit mass êt =et/ρ,

ρDtêt = (∇v) : σ − ∇ · jq , (23a)

with the material derivative Dt = ∂t + v · ∇ (Braun and
Friedrich 1990; Peters and Baaijens 1997; Wapperom
and Hulsen 1998; Dressler et al. 1999; Schieber et al.
2004; Ionescu et al. 2008a). Subsequently, as êt is taken
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as a function of the temperature T, as well as of the
polymer conformation, and the mass density (or the
hydrostatic pressure), application of the chain rule to
Dtêt leads to an equation for the temperature of the
form

ρêt,T DtT = (∇v) : σ − ∇ · jq − ρêt,c : Dtc − ρêt,ρ Dtρ .

(23b)

While the derived results in all of these references are
thus equivalent, our equation for θ = T is most easily
compared to the temperature equations in Braun and
Friedrich (1990), Peters and Baaijens (1997), Ionescu
et al. (2008a), to which Eq. 17c reduces upon neglecting
the local variable λ. A direct consequence of applying
the chain rule to Dtêt is the occurrence of the “heat
capacity” êt,T , similar to et,θ in Eq. 17c. It is currently
debated whether this quantity depends on the confor-
mation of the polymer chains (e.g., Schieber et al. 2004;
Ionescu et al. 2008a). We will come back to this issue
in the next section when discussing the temperature
equation in relation to our microscopic toy model.

The evolution equation Eq. 17c can also be used
for other purposes than for deriving a temperature
equation. For example, if one is interested in the ex-
change between local and conformational entropy, it
is convenient to choose the local entropy density as
thermal variable, θ = sl, and compare the evolution
equations Eqs. 17c and 19. To simplify the discussion,
we start with the special case that the conformational
entropy is independent of sl, i.e., et,θ = T. In this case,
the evolution equations for the local entropy density sl

and conformational entropy density sc = st − sl, based
on Eq. 17c with θ = sl and Eq. 19, can be written in the
form

∂tsl = −∇ · (slv) + �l + 
(s)
ex − ∇

(
jq

T

)
, (24a)

∂tsc = −∇ · (scv) + �t − �l − 
(s)
ex , (24b)

with rate of entropy exchange defined by


(s)
ex = 1

T

[ (
σ s + Tsl1

) : (∇v) − et,c : (∂tc|irr)

− et,λ (∂tλ|irr)
]
, (24c)

the local entropy production �l = (∇T−1) · jq, and to-
tal entropy production �t given by the third contri-
bution on the right-hand side of Eq. 19. Note that,
for Z1 = 0 and Z2 = 0, the quantity �t − �l expresses
the positive semidefinite entropy production due to
conformational relaxation. The first term in Eq. 24c
is reversible in nature and is interpreted as follows.

The flow field distorts the chain conformation, which
leads to a decreased conformational entropy. Since the
total entropy density is not altered by the reversible
dynamics, that loss in conformational entropy must be
compensated by the local entropy. This effect is well
known in standard classroom experiments on rubber
elasticity. The second term in Eq. 24c is irreversible in
nature and more subtle since an irreversible exchange
also brings about a corresponding entropy production.
Due to this joint occurrence of “current” and entropy
production, the second term in Eq. 24c must be inter-
preted as containing both of these contributions, i.e.,
also including production terms. Assuming et,θ = T for
the discussion of entropy transfer is a useful technical
and conceptual simplification. When relaxing that as-
sumption, the concept of exchange between local and
conformational entropy becomes more subtle, and one
may use st,sl − 1 as an expansion parameter by which
the scenario for et,θ = T can be extended. Similarly,
Z1 �= 0 and Z2 �= 0 introduce coupling between the
local and conformational entropies. However, we shall
not enter into these extensions to not distract from the
main points of the manuscript.

If, on the other hand, one is interested in the ex-
change between local and conformational energy, one
chooses the local energy density as thermal variable,
θ = el. Given that the conformational energy is inde-
pendent of el, i.e., et,θ = 1, one can proceed in a similar
way as in Eq. 24 to identify the rate of exchange be-
tween the local energy density el and conformational
energy density ec = et − el. Based on Eqs. 17c and 20,
one obtains

∂tel = −∇ · (elv) + σ s : (∇v) + 
(e)
ex − ∇ · jq , (25a)

∂tec = −∇ · (ecv) + σ e : (∇v) − 
(e)
ex , (25b)

with the exchange rate between the local and confor-
mational energy densities


(e)
ex = el(∇ · v) − et,c : (∂tc|irr) − et,λ (∂tλ|irr) , (25c)

that contains an isotropic reversible and an irreversible
contribution. Note that the contributions proportional
to (∇v) in the evolution equations (Eqs. 25a and 25b)
express exchange terms between the kinetic energy on
the one hand and the local and conformational ener-
gies, on the other hand.

Implications of the model

We now seek to analyze the full set of evolution equa-
tions (Eq. 17) with the constitutive equations (Eq. 18)
specifically with regard to identifying the effects of the
conformational energy. One should note that, for the
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choice θ = T, conformational contributions to the en-
ergy density become readily identifiable in et. Namely,
according to Eqs. 2b and 31, the total energy density
et becomes independent of the polymer conformation
exactly if the microscopic conformational energy is
set to zero, i.e., for ε = 0. In contrast, if one chose
θ = et, any explicit dependence of et on the confor-
mation would be gone, although that dependence is
still present physically in the system. In that spirit, the
separation of the stress tensor (Eq. 18a) into energetic
and entropic contributions (Eqs. 18b and 18c) is par-
ticularly meaningful for θ = T. For all these reasons,
we choose θ = T = (kBβ)−1 for the remainder of the
paper. Nevertheless, the examination of energetic ef-
fects is still complicated since the ramifications of the
energy function et(ρ, T, c, λ) in Eqs. 17 and 18 are
multiple, namely, et enters in (1) the driving forces for
structural relaxation, (2) the stress tensor expression,
and (3) several places in the temperature equation.

One possible simplification to the full set of evolu-
tion equations consists in looking for spatially homoge-
neous solutions in a homogeneous time-dependent and
incompressible flow, i.e., v(r, t) = κ(t) · r with trκ = 0.
Another possibility is to examine the behavior of the
material in the absence of flow. In this latter case, and
upon neglecting cross-couplings (Z1 = 0 and Z2 = 0),
the evolution equations (Eq. 17) become

0 = ∇ · σ , (26a)

∂tρ = 0 , (26b)

et,T∂tT = −∇ · jq − et,c : ∂tc − et,λ∂tλ , (26c)

∂tc = � :
(

st,c − 1

T
et,c

)
, (26d)

∂tλ = R
(

st,λ − 1

T
et,λ

)
. (26e)

As a special case of these reduced equations, the sta-
tionary solutions can be used to study energetic ef-
fects. Particularly, with regard to the microscopic toy
model introduced earlier, the complete relaxation of λ

is equivalent to μ = 0, according to Eq. 3b. Following
the discussion after Eq. 7b, the size of the polymer
coil in the relaxed state, as described by c0(n), becomes
temperature-dependent if conformational energetic ef-
fects are involved, since the equilibrium value of n
depends on temperature through Eq. 8. If the polymer
coil is fully relaxed also on the large scale, Eqs. 3b and
7a lead to α = 0, i.e., c = c0(n)1. Therefore, one can set
Y = 0 in Eq. 8c to arrive at the temperature depen-
dence of the number of gauche states n, and hence of
the coil size, c0(n(T)). To proceed, we define the local

structural variable to be the fraction of occupied gauche
states,

λ = n/N , (27)

where it has again been assumed that the degree
of polymerization N is high, N − 2 � N. Using ε =
2095 J mol−1 for polyethylene (Hoeve 1961; Paul et al.
1995), our toy model predicts a change in relative pop-
ulation of gauche states with temperature at T = 420 K
(i.e., in the melt state) in equilibrium as

dλeq/dT � 3.5 × 10−4 K−1 , (28)

which in turn affects the distribution of the torsion
angle ϕ. The average 〈cos ϕ〉 (Eq. 6b) with ϕtrans =0 and
ϕgauche � ±2 changes with temperature as d〈cos ϕ〉/
dT �−5 × 10−4 K−1. Using the relation Eq. 6a, our toy
model thus predicts

d ln C∞
dT

� −10−3 K−1 . (29)

The good agreement of this value with experimen-
tal data, d ln C∞/dT � −1.1 × 10−3 K−1 (Hoeve 1961;
Boothroyd et al. 1991; Krishnamoorti et al. 2002) over-
estimates the accuracy of the toy model, given the
fact that correlations between torsion angles have been
neglected altogether (see Hoeve (1961) for further
details).

The reduced equations (Eq. 26) can also be used
for studying the material behavior immediately after
stopping the flow (see also Schieber et al. 2004). In
homogeneous situations and with et,c = 0 as in our mi-
croscopic toy model, the temperature equation assumes
the form

et,T∂tT = −et,λ∂tλ , (30a)

with, again, λ being interpreted as the relative occu-
pation of gauche states defined in Eq. 27. Since the
microscopic toy model was intended to highlight the
form of the conformational contributions to the en-
ergy and entropy and since the single chain approxi-
mation is a drastic abstraction, we base our estimate
for et,T on experimental values rather than on Eq. 4.
For polyethylene, the following value is estimated for
et,T = ρCV at equilibrium, where CV is the heat ca-
pacity at constant volume per unit mass. Using the
relation ρ(Cp − CV) = Tα2/κ with the heat capacity at
constant pressure per unit mass Cp = 2202 J kg−1 K−1,
the mass density ρ = 780 kg m−3, the thermal expansion
coefficient α = 7.16 × 10−4 K−1, and the isothermal
compressibility κ = 10.5 × 10−10 Pa−1, all at T = 420 K
(Orwoll 1996), one obtains et,T = 1.5 × 106 J m−3 K−1.
On the other hand, for the microscopic toy model with
et = (ρ/Mw)Esc and Esc defined in Eq. 4a, one finds
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et,λ = ερ/(Mw/N) � 1.2 × 108 J m−3, where we have
used Mw/N = mCH2 = 0.014 kg mol−1. 1 Therefore, the
rates of change in the temperature and the relative
gauche population are related by

∂tλ

∂tT
� −0.013 K−1 . (30b)

For example, if, over some small time interval, λ re-
laxes by an amount 
λ = 0.013, a temperature change

T � −1K occurs as a result of the effects of confor-
mational energy. The ability of the local variable λ to
relax by a certain amount depends on how strongly
the polymer chain was previously deformed in flow,
where the applied flow rate competes with the relax-
ation effect. In general, note that the relaxation of
λ is much faster than the relaxation of c. It is thus
to be expected that, for experimentally measuring the
effects of conformational energy by way of Eq. 30,
one must be able to capture relatively fast changes in
the temperature. Due to the fast relaxation of λ, the
restriction in Eq. 30 to homogeneous situations that
preclude thermal conduction to/from the walls of the
sample, i.e., to adiabatic conditions, is reasonable if
the sample was approximately homogeneous prior to
stopping the flow. While detailed flow calculations are
required to understand how strongly λ can change as a
result of certain flow situations, there is an alternative
route to at least get a feeling for what 
λ = 0.013 stands
for. From the relation Eq. 28, one infers that, under
equilibrium conditions, a temperature change of the
order of T = 37K is required to achieve 
λ = 0.013.

Finally, we discuss the dependence of the heat capac-
ity et,T on the conformation. Dressler et al. (1999), and,
subsequently, Ionescu et al. (2008a), have used Eq. 9a,
which leads to a heat capacity with a conformation
dependent term proportional to the second derivative
of the overall chain spring constant, K′′(T)trc. In our
toy model, in contrast, et is completely independent
of c, and the term that contains the local structure
through λ is athermal. As a result, in our case, the heat
capacity et,T is not affected by the chain conformation,
neither through c, nor through λ. Due to the absence of
such couplings, the heat capacity is rather insensitive to
flow. If this is found to be in conflict with experimental

1Note that experimental values for the heat capacity include,
in addition to the change in the vibrational behavior described
by the derivative et,T at constant λ, also the change of the
trans/gauche population with respect to temperature. With the
above numbers, one obtains for that contribution ρCV − et,T =
et,λdλeq/dT � 4.2 × 104 J m−3 K−1. As this is less than 3% of the
total value, this correction has been neglected in the estimation
of ρCV .

findings, one concludes that the weak dependence of
the local Helmholtz free energy Floc on n discussed
in Eq. 40 is too drastic a simplification, and must,
hence, be relaxed. Nevertheless, a formal connection
to Dressler et al. (1999) and Ionescu et al. (2008a)
can be made by completely relaxing the fast local vari-
able n. Doing so leads to the c dependence of the
energy Eq. 10, which in turn amounts to a heat capacity
that depends on the conformation tensor. However, as
pointed out previously, we emphasize again the need
to explicitly use the local structural variable as an in-
dependent quantity, since the degrees of freedom that
carry conformational energy are local and have differ-
ent dynamics compared to the conformation tensor.

Summary and perspectives

A suitable and manageable treatment of energy elas-
tic effects in flowing polymeric systems requires a
thoughtful discussion of the set of independent vari-
ables, namely due to the significant departure from
equilibrium conditions. In this paper, we advocate the
use of a local structural variable for capturing the en-
ergetic contributions in a direct manner, in addition to
a tensorial variable that accounts for the slow, large
scale features. By calculating the generalized canonical
partition function for a simple microscopic toy model,
the microscopic understanding of the energetics was
translated into two out-of-equilibrium thermodynamic
functions, the energy density et and the entropy density
st. The latter then enter into the formulation of a set
of thermodynamically admissible evolution equations.
In the most general case, the driving force for struc-
tural relaxation and the conformational contributions
to the stress tensor have been found not to be propor-
tional to the derivatives of the Helmholtz free energy
density; rather, combinations of the derivatives of the
energy and entropy densities are the more fundamen-
tal quantities. Furthermore, it has been demonstrated
that the common use of the temperature as a dynamic
variable is indeed possible for these systems. In par-
ticular, it has been shown that the temperature used
in the definition of the heat flux is directly related to
the Lagrange multiplier of the microscopic energy in
the generalized canonical partition function. Specifi-
cally, with regard to the microscopic toy model, the
following points are important: First, upon complete
relaxation of the local structural variable, the energy
of the toy model has been shown to reduce to known
expressions in literature where only a conformation
tensor is used. Second, the prediction about the change
in the size of the polymer coil with temperature, which
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is due to energetic effects, for polyethylene is in agree-
ment with experimental data. Third, the heat capacity
occurring naturally in the temperature equation does
not depend on the polymer conformation. Fourth, it is
predicted for polyethylene that, after stopping the flow,
the rate of relaxation λ̇ of the relative gauche popula-
tion, λ = n/N, leads to a temperature change Ṫ caused
by the conformational energetic effects of the order
Ṫ � −λ̇/0.013 K−1, under adiabatic conditions. In or-
der to discuss the absolute magnitude of the expected
temperature changes during relaxation, further studies
are needed to understand how strongly λ can depart
from its equilibrium value as a result of certain flow
situations. Finally, based on the general evolution equa-
tions, the exchange between local and conformational
energy (and entropy, respectively) upon deformation
has also been addressed.

The range of applicability of the GENERIC model
developed above goes far beyond the microscopic toy
model in several respects. The latter was specific in the
sense that the local structural variable was chosen as
the number of gauche states λ = n and the tensorial
variable as c = 〈RR〉 with R the end-to-end vector.
However, there already exist several models in litera-
ture that use a scalar and a tensorial variable to describe
polymeric liquids. For example, the pompon model
for melts of multiply branched polymers (McLeish and
Larson 1998; Öttinger 2001) is included in the above
GENERIC model (Öttinger 2002, 2005; Soulages
et al. 2006), and also some versions of the reptation
model (Ianniruberto and Marrucci 2001; Marrucci and
Ianniruberto 2003) fall into the same class. In both of
these examples, the scalar structural variable represents
local chain (segment) stretch that relaxes substantially
faster than the tensorial variable. Therefore, the above
general set of evolution equations push the door wide
open for studying energy elastic effects also in branched
and entangled polymer melts. The relevance of the
local chain stretch for describing energetic effects is
particularly clear in the case of polyethylene, where the
number of gauche states is intimately related to the
persistence length. In this respect, it is helpful to ex-
tend Monte Carlo simulations used by Mavrantzas and
Theodorou (1998), Mavrantzas and Öttinger (2002),
and Ionescu et al. (2008b) as to configurationally bias
rather local structural variables, in contrast or in ad-
dition to the conformation tensor. Significant steps in
this direction have recently been made by the so-called
semigrand canonical Monte Carlo method of Bernardin
and Rutledge (2007a, b).

In the toy model, conformational energetic effects
entered only through the intrachain torsional degrees
of freedom. Certainly, there are other conformational

energies to be considered for realistic polymers, e.g.,
nonbonded intrachain and interchain Lennard-Jones
interactions, as discussed in detail by Gao and Weiner
(1992, 1994) and Ionescu et al. (2008b). As far as their
representation in the energy and entropy densities et

and st is concerned, it seems clear that density (or pres-
sure) effects are important. As for the conformation
of the polymer chains, it is to be expected that local
structural features are more relevant than long-range
ones. As an extreme example, crystallizable polymers
hint in this direction since local orientation and packing
effects are much more relevant than the large-scale
conformation tensor for the formation of nuclei and
crystallization (Ko et al. 2004; Van Meerveld et al.
2004). Therefore, again, one is led to use a local struc-
tural variable, λ, for an adequate description of such
nonbonded energetic effects. In this regard, it is evident
that, with the GENERIC model presented here, a large
and rich class of models can now be considered in
a setting that is appropriate for beyond equilibrium
situations.

Appendix

A Toy model: calculation of the energy
and the entropy for a single chain

For describing the polymer chain in situations out of
equilibrium, we introduce α and μ as the Lagrange mul-
tipliers to the structural variables X1 = RR and X2 =
n, respectively, and calculate the generalized canonical
partition function Z (β, α, μ). If R and Q denote the
end-to-end vectors of a specific RIS conformation j
with and without vibrations r, respectively, i.e., R =
Q + r, and z the Cartesian microscopic positions of the
N atoms relative to the RIS conformation, the partition
function Eq. 1 can be written in the form

Z (β, α, μ) =
N−2∑

n=0

e−μn−βHn

×
∑

j∈Jn

∫

C j

e−β Ĥ(z;RIS)−α:( Q+r)( Q+r)dz , (31)

with Jn the set of RIS states that consists of n gauche
states, and C j is the domain in configuration space in
the vicinity of the RIS state j. Note that vibrations
are better characterized with z interpreted as Cartesian
deviations from the RIS state, since even small vari-
ations in bond angles and torsion angles would lead
to (unphysically) large Cartesian displacements of the
atoms for long chains. The right-hand side in Eq. 31
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illustrates the decomposition of phase space into (1) a
sum over the number of gauche states, which, in turn, is
refined to (2) a summation over all RIS conformations
with n gauche states, followed by (3) the local vibra-
tions around each RIS state [see also Öttinger (2007)
for a similar splitting in the context of glasses]. The
energy H is decomposed into the energy associated
with the number of gauche states, Hn = εn, and a term
that accounts for the local vibrations around the RIS
conformation, Ĥ with Ĥ(z = 0) = 0. For rather stiff
interaction potentials, the integration domain C j can be
extended to R

3N without changing the integral signifi-
cantly. Therefore, one can interchange the summation∑

j∈Jn
and the integration

∫
. . . dz.

To proceed, we make the plausible assumption that
Ĥ(z; RIS) depends on local aspects of the RIS con-
formation, and not on the corresponding end-to-end
vector that is a large-scale quantity. Therefore, the first
and second terms in the second exponential in Eq. 31
feel different aspects of the RIS conformation. For
large N, Q is Gaussian distributed with zero mean and
a variance that depends not only on N but also on the
number of gauche states n, i.e., 〈 Q〉 = 0 and 〈 Q Q〉 =
c0(n; N)1. With the assumption that the energy Ĥ and
the α-term are mutually uncorrelated and that the local
fluctuations z are primarily relevant for the energy Ĥ
but not for R, i.e., R → Q by virtue of stiff interaction
potentials, one can treat the β and α terms in the
integral in Eq. 31 separately. In particular, e−α: Q Q for
given j ∈ Jn, can be replaced by its average with respect
to the Gaussian distribution function for Q, i.e., by√

det (c/c0), where we have defined the n-dependent
quantity

c−1 = 2α + 1

c0(n; N)
1 . (32)

The partition function Eq. 31 can be rewritten further
by introducing the definitions for the n contribution to
the conformational entropy and the local Helmholtz
free energy,

Sconf(n) = kB lnN (n) , (33)

Floc(n, β) = −β−1 ln

⎧
⎨

⎩
1

N (n)

∑

j∈Jn

Zj

⎫
⎬

⎭ , (34)

with N the number of possible RIS conformations for
given n, and Zj the partition function accounting for the
local vibrations around the RIS state j,

N (n) = 2n
(

N − 2
n

)
, (35)

Zj =
∫

e−β Ĥ(z;RIS)dz . (36)

Since the summand in the partition function Eq. 31
is strongly peaked with respect to n, a saddle-point
approximation can be used, leading to the condition for
n = n(β, α, μ),

μ=−βε+ ∂(Sconf/kB)

∂n
− β

∂ Floc

∂n
− (c/c0) : α

∂c0

∂n
. (37)

The partition function then assumes the form

Z (β, α, μ) = e−μn−βHn+ Sconf
kB

−βFloc− 1
2 ln det(c0c−1)

, (38)

with Hn = nε, and Sconf(n) and Floc(n, β) given by
Eqs. 33 and 34, respectively.

According to Eq. 2 and using the condition Eq. 37,
one arrives at the main result of this toy model, namely
the expressions for the energy and entropy, and the
averages of the conformational variables,

E=
(

Floc − T
∂ Floc

∂T

∣∣∣∣
n

)
+ εn , (39a)

S=− ∂ Floc

∂T

∣∣∣∣
n
+Sconf+ kB

2

[(
3− tr(c)

c0

)
−ln det

(
c0c−1

)]
,

(39b)

〈RR〉= c , (39c)

〈n〉=n . (39d)

While the expressions on the right-hand side of Eq. 39
are expressed in terms of the variables (μ, β, α), one
can eliminate (μ, α) in favor of (n, c) and express E and
S in terms of the variables (n, β, c).

In order to obtain fully explicit expressions for the
energy and entropy, the local Helmholtz free energy
Floc defined by Eqs. 34–36 must be specified. Since we
concentrate on the effects of conformation, we shall not
delve into this point. We just mention that the most
promising route in this respect seems to be the use of
Monte Carlo simulations of (united) atoms in an en-
semble with the control parameters β and n, for a single
chain. The influence of the number n of gauche states
on Floc can be examined by looking at the derivative
∂ Floc(β, n)/∂n, which can be approximated by

β
∂ Floc(β, n)

∂n
�
∑

j∈Jn

∫
e−β Ĥ(z;RIS)

(
e−β
Ĥ −1

)
dz

∑
j∈Jn

∫
e−β Ĥ(z;RIS)dz

, (40)

where 
Ĥ stands for the energy difference arising in Ĥ
as a result of flipping one bond along the chain from the
trans state into a gauche state. If that energy difference
is significantly smaller than the thermal energy kBT for
all values of z that contribute to the integral in Eq. 40,
then the local energy and entropy can be considered
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effectively independent of n. That condition is fulfilled
if the form of the atomistic potentials around z = 0 is
insensitive to n.

In order to discuss whether the ensemble chosen
above at constant (β, α, μ) is equivalent to other en-
sembles that control H, RR, and n, respectively, one
must examine if the fluctuations in the above ensemble
are small,

∣∣∣∣
∂2 ln Z
∂γi∂γk

∣∣∣∣ �
∣∣∣∣
∂ ln Z
∂γi

∣∣∣∣

∣∣∣∣
∂ ln Z
∂γk

∣∣∣∣ , (41)

where γi and γk are any of the Lagrange parameters
(β, α, μ). Except if both γi and γk represent elements of
α, the conditions Eq. 41 can indeed be shown to hold for
large N, i.e., fluctuations are small. For the conforma-
tion tensor c, however, the fluctuations are not small;
these fluctuations are given by the Gaussian nature of
the distribution of R. A generalized microcanonical
distribution for the conformation, for example, would
destroy long fluctuations expressing Gaussian behavior.
The generalized canonical distribution based on the
dyadic RR, on the other hand, nicely represents the
underlying Gaussian statistics.

B Formulation of the evolution equations
in the GENERIC framework

Functional derivatives

The functional derivatives of Eq. 14, that drive the re-
versible and irreversible contributions in the evolution
equation (Eq. 11), are given by

δE
δx

=

⎛

⎜⎜⎜⎜⎝

v

− 1
2v2 + et,ρ

et,θ

et,c

et,λ

⎞

⎟⎟⎟⎟⎠
,

δS
δx

=

⎛

⎜⎜⎜⎜⎝

0
st,ρ

st,θ

st,c

st,λ

⎞

⎟⎟⎟⎟⎠
, (42)

with the velocity field defined by v = u/ρ. In Eq. 42, as
well as in the remainder of the manuscript, we use the
notation y(x),xi ≡ (∂y/∂xi)|xk �=i for partial derivatives.

Reversible dynamics

The reversible contributions to the full evolution equa-
tions of the variables x are of purely kinematic origin,
and, hence, directly related to the velocity field. For our
specific choice of variables and in view of the functional
derivatives Eq. 42, one arrives at the following expres-

sion for the Poisson operator (see also Dressler et al.
1999; Öttinger 2002)

L = −

⎛

⎜⎜⎜⎜⎜⎝

∇γ uα + uγ ∇α ρ∇α L(uθ)
α L(uc)

αγ ε L(uλ)
α

∇γ ρ 0 0 0 0
L(θu)

γ 0 0 0 0

L(cu)
αβγ 0 0 0 0

L(λu)
γ 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
, (43a)

with

L(uc)
αγ ε ≡ −(∇αcγ ε) − ∇μcμγ δαε − ∇μcμεδαγ , (43b)

L(cu)
αβγ ≡ (∇γ cαβ) − cαμ∇μδβγ − cβμ∇μδαγ , (43c)

L(uλ)
α = −(∇αλ) − ∇μgαμ , (43d)

L(λu)
γ = (∇γ λ) − gγμ∇μ , (43e)

L(uθ)
α = −ρ∇α

st,ρ

st,θ
+ st∇α

1

st,θ

−L(uc)
αγ ε

st,cγ ε

st,θ
− L(uλ)

α

st,λ

st,θ
, (43f)

L(θu)
γ = − st,ρ

st,θ
∇γ ρ + 1

st,θ
∇γ st

− st,cαβ

st,θ
L(cu)

αβγ − st,λ

st,θ
L(λu)

γ . (43g)

Subscripts (α, β) and (γ, ε) imply contraction with ten-
sors multiplied from the left and from the right, re-
spectively. All derivative operators act on everything to
their right, also on functions multiplied to the right of L,
except when placed inside of parentheses (. . .). The el-
ement L(cu) dictates the convection of the tensor c, i.e.,
upper convected Maxwell behavior. The convection of
λ, determined by L(λu), is coupled to c through g, that
is a function of λ and c. Since λ is a scalar, such cou-
pling is required to describe, for example, orientation-
dependent local chain stretching upon the application
of flow. The complicated expression for L(uθ) is given
by the degeneracy requirement Eq. 12a, which in turn
fixes L(θu) by the antisymmetry condition. In the middle
term of L(uθ), the prefactor st is chosen for dimensional
reasons and in view of the evolution equation for the
total entropy density, st, see Eq. 19.

The Poisson operator Eq. 43 is antisymmetric and
satisfies the degeneracy requirement by construction. It
can also be shown that the Jacobi identity is satisfied
under the following condition (Öttinger 2002). Using
the representation theorem of tensor functions, the
most general form of g is given by

g = g1c + g21 + g3c−1 , (44)
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with the scalar coefficient functions

gj = gj(λ, I1, I2, I3) (45)

depending on λ and the three independent invariants

I1 = trc , (46a)

I2 = ln det c , (46b)

I3 = −tr
(
c−1

)
. (46c)

It can be shown that the Jacobi identity is satisfied
under the conditions

gi
∂gk

∂λ
− gk

∂gi

∂λ
= 2

(
∂gi

∂ Ik
− ∂gk

∂ Ii

)
, (47)

for all pairs (i, k). Applying L to δE/δx leads to the
reversible contributions to the evolution equations of
x, which are summarized in Eq. 17.

Irreversible dynamics

We discuss the irreversible effects arising as a result
of anisotropic heat conduction, and relaxation of the
conformational variables. For simplicity, anisotropic
viscous flow and slip effects on the conformation tensor,
as occurring in Schowalter derivatives, are not included.
In view of the GENERIC formalism (Eq. 11), all these
irreversible effects come into play through the metric
matrix M. In order to present the procedure in a trans-
parent form, we split the metric matrix according to
Edwards (1998)

M = C · D · CT . (48)

The special construction Eq. 48 ensures that M is
symmetric and positive semidefinite if D has these
properties. The splitting Eq. 48 is done in such a way
that the degeneracy requirement Eq. 12b is satis-
fied by the condition CT · δE/δx = 0, and the quantity
CT · δS/δx can be interpreted as the driving force for
the irreversible processes. Since both viscous flow and
slip effects are neglected, we expect the thermodynamic
driving forces to be independent of the velocity field. In
order to achieve that, we choose the u- and ρ-columns
of CT to vanish, since otherwise, the degeneracy condi-
tion would bring about spurious velocity terms into the
driving forces. Due to the restriction to heat conduction
and structural relaxation, only three thermodynamic
driving forces are relevant. For all these reasons, we

propose the following form of the operator CT , and
hence, of C,

CT =
⎛

⎜⎝
0 0 ∇i

1
et,θ

0 0

0 0 − et,cαβ

et,θ
δαγ δβε 0

0 0 − et,λ

et,θ
0 1

⎞

⎟⎠ , (49a)

C =

⎛

⎜⎜⎜⎜⎝

0 0 0
0 0 0

− 1
et,θ

∇k − et,cγ ε

et,θ
− et,λ

et,θ

0 δαγ δβε 0
0 0 1

⎞

⎟⎟⎟⎟⎠
. (49b)

The three rows in Eq. 49a are unique in that they
lead to sensible driving forces for heat conduction and
conformational relaxation, that are given by

CT · δS
δx

=
⎛

⎝
∇ 1

T
st,c − 1

T et,c

st,λ − 1
T et,λ

⎞

⎠ , (50)

where we have used the abbreviation T = et,θ /st,θ . For
the matrix of transport coefficients, we write

D =
⎛

⎝
T2k T Z1 0
T ZT

1 � Z2

0 ZT
2 R

⎞

⎠ ≥ 0 , (51)

where the second rank tensor k takes the meaning
of the anisotropic thermal conductivity and the fourth
rank tensor � and R describe the relaxation of the con-
formation tensor c and scalar variable λ, respectively.
The off-diagonal elements are inserted to account for
possible cross-effects in the force-flux relations. Due
to the disparities in length scales, it is assumed here
that the local structural features captured by λ are
not affected by temperature gradients, and hence, the
corresponding off-diagonal element is zero. Any ansatz
for the quantities k, �, R, Z1, and Z2 must comply
with the positive semidefiniteness of D. Applying M
to δS/δx leads to the irreversible contributions to the
evolution equations of x.

References

Astarita G (1974) Thermodynamics of dissipative materials with
entropic elasticity. Polym Eng Sci 14:730–733

Astarita G, Sarti GC (1976) The dissipative mechanism in flow-
ing polymers: theory and experiments. J Non-Newton Fluid
Mech 1:39–50

Baig C, Mavrantzas VG (2007) Thermodynamically guided non-
equilibrium Monte Carlo method for generating realistic
shear flows in polymeric systems. Phys Rev Lett 99:257801

Beris AN, Edwards BJ (1994) Thermodynamics of flowing sys-
tems with internal microstructure. Oxford University Press,
Oxford



316 Rheol Acta (2009) 48:301–316

Bernardin III FE, Rutledge GC (2007a) Semi-grand canonical
Monte Carlo (SGMC) simulations to interpret experimental
data on processed polymer melts and glasses. Macromole-
cules 40:4691–4702

Bernardin III FE, Rutledge GC (2007b) Simulation of me-
chanical properties of oriented glassy polystyrene. Polymer
48:7211–7220

Bird RB, Armstrong RC, Hassager O, Curtiss CF (1977) Dy-
namics of polymeric liquids. Kinetic theory, vol 2. Wiley,
New York

Boothroyd AT, Rennie AR, Boothroyd CB (1991) Direct mea-
surement of the temperature dependence of the unperturbed
dimensions of a polymer. Europhys Lett 15:715–719

Braun H, Friedrich C (1990) Dissipative behavior of viscoelas-
tic fluids derived from rheological constitutive equations.
J Non-Newton Fluid Mech 38:81–91

Callen HB (1985) Thermodynamics and an introduction to ther-
mostatistics. Wiley, New York

Casas-Vázquez J, Jou D (2003) Temperature in non-equilibrium
states: a review of open problems and current proposals. Rep
Prog Phys 66:1937–2023

Dressler M, Edwards BJ, Öttinger HC (1999) Macroscopic
thermodynamics of flowing polymeric liquids. Rheol Acta
38:117–136

Edwards BJ (1998) An analysis of single and double gener-
ator thermodynamic formalisms for the macroscopic de-
scription of complex fluids. J Non-equilib Thermodyn 23:
301–333

Edwards BJ, Öttinger HC (1997) Time-structure invariance cri-
teria for closure approximations. Phys Rev E 56:4097–4103

Flory PJ (1988) Statistical mechanics of chain molecules. Hanser,
Munich

Gao J, Weiner JH (1992) Stress relaxation in a polymer melt of
freely-rotating chains. J Chem Phys 97:8698–8704

Gao J, Weiner JH (1994) Simulation of viscoelasticity in polymer
melts: effect of torsional potential. Model Simul Mater Sci
Eng 2:755–766

Grmela M (1998) Letter to the editor: comment on “thermo-
dynamics of viscoelastic fluids: the temperature equation
[J. Rheol. 42, 999 (1998)]”. J Rheol 42:1565–1567

Grmela M, Öttinger HC (1997) Dynamics and thermodynamics
of complex fluids. I. Development of a general formalism.
Phys Rev E 56:6620–6632

Hoeve CAJ (1961) Unperturbed mean-square end-to-end dis-
tance of polyethylene. J Chem Phys 35:1266–1267

Ianniruberto G, Marrucci G (2001) A simple constitutive equa-
tion for entangled polymers with chain stretch. J Rheol
45:1305–1318

Ionescu TC, Edwards BJ, Keffer DJ (2008a) Energetic and en-
tropic elasticity of nonisothermal flowing polymers: experi-
ment, theory, and simulation. J Rheol 52:105–140

Ionescu TC, Mavrantzas VG, Keffer DJ, Edwards BJ (2008b)
Atomistic simulation of energetic and entropic elasticity in
short-chain polyethylenes. J Rheol 52:567–589

In ’t Veld PJ, Hütter M, Rutledge GC (2006) Temperature-
dependent thermal and elastic properties of the interlamellar
phase of semicrystalline polyethylene by molecular simula-
tion. Macromolecules 39:439–447

Ko MJ, Waheed N, Lavine MS, Rutledge GC (2004) Charac-
terization of polyethylene crystallization from an oriented
melt by molecular dynamics simulation. J Chem Phys 121:
2823–2832

Krishnamoorti R, Graessley WW, Zirkel A, Richter D,
Hadjichristidis N, Fetters LJ, Lohse DJ (2002) Melt-state
polymer chain dimensions as a function of temperature.
J Polym Sci Polym Phys 40:1768–1776

Landau LD, Lifshitz EM (1980) Course of theoretical physics
(vols 5 & 9) (3rd ed). Pergamon, Oxford

Larson RG (1988) Constitutive equations for polymer melts and
solutions. Butterworth, Stoneham

Marrucci G, Ianniruberto G (2003) Flow-induced orientation and
stretching of entangled polymers. Philos Trans R Soc A
361:677–688

Mattice WL, Suter UW (1994) Conformational theory of large
molecules: the rotational isomeric state model in macro-
molecular systems. New York, Wiley

Mavrantzas VG, Öttinger HC (2002) Atomistic Monte Carlo
simulations of polymer melt elasticity: their nonequilibrium
thermodynamics GENERIC formulation in a generalized
canonical ensemble. Macromolecules 35:960–975

Mavrantzas VG, Theodorou DN (1998) Atomistic simulation of
polymer melt elasticity: calculation of the free energy of an
oriented polymer melt. Macromolecules 31:6310–6332

McLeish TCB, Larson RG (1998) Molecular constitutive equa-
tions for a class of branched polymers: the pom-pom poly-
mer. J Rheol 42:81–110

Orwoll RA (1996) Densities, coefficients of thermal expansion,
and compressibilities of amorphous polymers. In: Mark JE
(ed) Physical properties of polymers handbook, chap. 7.
American Institute of Physics, Woodbury

Öttinger HC (1999) A thermodynamically admissible reptation
model for fast flows of entangled polymers. J Rheol 43:
1461–1493

Öttinger HC (2001) Thermodynamic admissibility of the pompon
model for branched polymers. Rheol Acta 40:317–321

Öttinger HC (2002) Modeling complex fluids with a tensor and
a scalar as structural variables. Rev Mex Fis 48(Suppl 1):
220–229

Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley,
Hobroken

Öttinger HC (2007) Nonequilibrium thermodynamics of glasses.
Phys Rev E 74:011113(1–25)

Öttinger HC, Grmela M (1997) Dynamics and thermodynamics
of complex fluids. II. Illustrations of a general formalism.
Phys Rev E 56:6633–6655

Paul W, Yoon DY, Smith GD (1995) An optimized united atom
model for simulations of polymethylene melts. J Chem Phys
103:1702–1709

Peters GWM, Baaijens FPT (1997) Modelling of non-isothermal
viscoelastic flows. J Non-Newton Fluid Mech 68:205–224

Reichl LE (1980) A modern course in statistical physics.
University of Texas Press, Austin

Sarti GC, Marrucci G (1973) Thermomechanics of dilute polymer-
solutions—multiple bead-spring model. Chem Eng Sci 28:
1053–1059

Sarti GC, Esposito N (1977) Testing thermodynamic constitu-
tive equations for polymers by adiabatic deformation exper-
iments. J Non-Newton Fluid Mech 3:65–76

Schieber JD, Venerus DC, Bush K, Balasubramanian V,
Smoukov S (2004) Measurement of anisotropic energy trans-
port in flowing polymers by using a holographic technique.
Proc Natl Acad Sci U S A 101:13142–13146

Soulages J, Hütter M, Öttinger HC (2006) Thermodynamic ad-
missibility of the extended Pom-Pom model for branched
polymers. J Non-Newton Fluid Mech 139:209–213

Treloar LRG (1975) The physics of rubber elasticity (3rd ed).
Clarendon, Oxford

Van Meerveld, Peters GWM, Hütter M (2004) Towards a rhe-
ological classification of flow induced crystallization experi-
ments of polymer melts. Rheol Acta 44:119–134

Wapperom P, Hulsen MA (1998) Thermodynamics of viscoelas-
tic fluids: the temperature equation. J Rheol 42:999–1019


	Energy elastic effects and the concept of temperature in flowing polymeric liquids
	Abstract
	Introduction
	Toy model
	Formulation of the dynamics
	Strategy
	Choice of variables x, generating functionals E and S
	Operators L and M
	Time-evolution equations
	Discussion
	Implications of the model

	Summary and perspectives
	Appendix
	A Toy model: calculation of the energy and the entropy for a single chain
	B Formulation of the evolution equations in the GENERIC framework
	Functional derivatives
	Reversible dynamics
	Irreversible dynamics


	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


