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Abstract Boundary layer flows driven by permeable plane surfaces, stretching with power–law velocities are
considered in the presence of an applied lateral mass flux. The relationship between the wall shear stress and
the entrainment velocity (the transversal velocity at the outer edge of the boundary layer) as a function of the
mass transfer parameter fw is examined analytically by using the Merkin transformation method. It is shown
that at the value of fw where the wall shear stress vanishes, the entrainment velocity reaches a minimum
or maximum value. This relationship between two characteristic quantities at the outer and inner edge of the
boundary layer, respectively, is referred to as entrainment theorem. Its physical content is analyzed in the paper
in some detail.

1 Introduction

Flows driven by moving boundaries belong to the classical issues of fluid mechanics. Stokes’ celebrated first
and second problem are the oldest examples of such flows. The well-known Couette flows also belong to this
class of phenomena.

In addition to these classical cases, in some modern mechanical manufacturing and forming processes, as,
e.g., during the drawing of plastic sheets by extrusion of a molten material through a narrow slot, the glass-fiber
and paper production, the melt spinning, the cooling of large metallic plates in a bath, etc., in the stagnant
ambient fluid a further important class of wall driven flows with boundary layer aspects (far downstream from
the slot) arises. Usually, the steady regimes of such processes are of practical relevance.

The first investigation of the steady boundary layer flows induced by continuous stretching surfaces was
conducted by Sakiadis [1]. Since the pioneering work of Sakiadis, the theory of these wall driven flows has
been much generalized and refined (see, e.g., [2]). Following the papers of [3–8] and of many other authors,
the first comprehensive mathematical investigation of the similar “Sakiadis flows” has been reported by Banks
[9].

The present paper revisits the problem of the (forward and backward) boundary layer flows induced by
permeable plane surfaces stretching with power–law velocities [9], in the presence of an applied lateral mass
flux [10]. Its focus is a specific physical and mathematical feature of these flows, namely on the relationship
between the wall shear stress and the entrainment velocity as a function of the mass transfer parameter
(suction/injection parameter). The main result of the paper is summarized in a short statement referred to as
entrainment theorem, which asserts that at the value of the mass transfer parameter where the wall shear stress
vanishes, the entrainment velocity of the flow reaches a minimum or maximum value. The converse statement
of the entrainment theorem is also true. Its physical content is analyzed in this paper in some detail.
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2 Basic equations and problem formulation

The steady boundary layer flow induced by a permeable plane surface stretching with velocity Uw(x) in a
quiescent incompressible fluid is governed by equations [9,10],

∂ u

∂x
+ ∂ v

∂y
= 0,

u
∂ u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2

(1)

subject to the boundary conditions

u(x, 0) = Uw(x), v(x, 0) = Vw(x), u(x, ∞) = 0. (2)

The positive x-axis points in the direction of motion of the surface issuing from the slot (z-axis). The y-axis
is perpendicular to x and to the direction of the slot. u and v are the x and y components of the velocity field,
respectively, and υ denotes the kinematic viscosity of the fluid. It is further assumed that the stretching velocity
has the power–law form

Uw(x) = U0 ·
( x

L

)m
(3)

where −∞ < m < +∞ and −∞ < U0 < +∞. The reference length L denotes the distance x from the
slot where the stretching velocity has the prescribed value U0, i.e., Uw (L) = U0. Concerning the variation of
Uw (x) /U0 with increasing values of x in the range x > L , the following stretching regimes as functions of
the power–law exponent m can be distinguished:

m < −1 : rapidly decreasing stretching velocity Uw(x)/U0,

m = −1 : inverse linearly decreasing stretching velocity Uw(x)/U0,

−1 < m < 0 : slowly decreasing stretching velocity Uw(x)/U0,

m = 0 : uniformly moving surface, Uw(x)/U0 = 1,

0 < m < 1 : slowly increasing stretching velocity Uw(x)/U0

m = +1 : linearly increasing stretching velocity Uw(x)/U0,

m > +1 : rapidly increasing stretching velocity Uw(x)/U0.

(4)

As it is well known, the problem (1)–(3) admits similarity solutions for all −∞ < m < +∞ when the
suction/injection velocity Vw (x) is proportional to x (m−1)/2. When m �= −1, the components of the velocity
field can be written in the form [9,10],

u (x, y) = Uw (x) f ′ (η) , η =
√ |(m + 1) x Uw (x)|

2υ

y

x
,

(5)

v (x, y) = −s

√
υ |(m + 1) Uw (x)|

2x

[
f (η) + m − 1

m + 1
η f ′(η)

]

where the dimensionless stream function f = f (η) is obtained as solution of the two-point boundary value
problem

s f ′′′ + f f ′′ − β f ′2 = 0, (6)

f (0) = fw, f ′(0) = 1, f ′(∞) = 0. (7)

In the above equations the prime denotes differentiations with respect to the similarity variable η, fw is the
mass transfer parameter (or, the dimensionless suction/injection velocity), β ≡ 2m/ (m + 1) and s stands for
the sign

s = sgn(U0) sgn(m + 1). (8)
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The dimensional suction/injection velocity v(x, 0)= Vw(x) and the dimensional entrainment velocity
v(x, ∞) = V∞(x) are

Vw(x) = V0 ·
( x

L

)m−1
2

, V0 = −s

√
υ |(m + 1) U0|

2
fw,

V∞(x) = V∞ ·
( x

L

)m−1
2

, V∞ = −s

√
υ |(m + 1) U0|

2
f∞

(9)

where f∞ ≡ f (∞) denotes the dimensionless entrainment velocity.
As shown in [11], the case of inverse linear stretching velocity Uw(x) = U0L/x corresponding to m = −1

requires a special approach and will not further be considered here. We throughout assume in this paper that
m �= −1.

The scale factor U0 of the stretching velocity is positive when the surface issues from the slot and moves
toward +∞, and negative when the surface moves from +∞ toward 0, where it enters the slot. These motions
induce in the fluid two basically different velocity boundary layers, which, according to the nomenclature
introduced by Goldstein [12], will be called forward (or usual) and backward boundary layers, respectively.
The main difference between these types of boundary layers originates from the fact that in the former case
the slot plays the role of a well definite leading edge, while in the latter one the leading edge recedes to an
indefinite station far upstream. As a consequence, in the backward boundary layer the fluid loses any memory
of the perturbation introduced by this indefinite leading edge. In this case, the slot at x = 0 plays the role
of a trailing edge. This is the reason why the forward and backward boundary layer flows corresponding,
respectively, to sgn(U0) = +1 and sgn(U0) = −1, represent quite distinct physical phenomena. In the
industrial manufacturing processes, both of these two types of boundary layers are of engineering interest.
Forward boundary layers are generated in the ambient fluid, e.g., during the drawing of plastic sheets from
a molten material, while, as described by Kuiken [8], during the cooling of a low-heat-resistance sheet, e.g.,
backward free convection boundary layers may occur.

A simple inspection of the basic differential equation (6) as well as of the various stretching regimes specified
by the scheme (4) show that the four different flow regimes associated with the four possible combinations
of sgn(U0)= ± 1 and sgn(m + 1) = ± 1 lead to two basically different boundary value problems (6), (7),
corresponding to s = + 1 and s = − 1, respectively. To the best of our knowledge, in the literature no
comprehensive investigation of all these forward and backward boundary layers exists. Even in the seminal
paper of [9], only the impermeable case fw = 0 with s = +1 for the forward boundary layers (sgn(U0) = +1)
in the range m > −1, and the backward ones (sgn(U0) = −1) in the range m < −1 have been investigated. In
[13] the case s = −1 for the forward boundary layers in the range m < −1 of the rapidly decreasing stretching
velocities was considered, and in [11] results for the forward boundary layers for inverse linear stretching
velocity, m = −1, were reported.

In the present paper we first consider both the forward and backward boundary layers, sgn(U0) = ±1,
in the whole range −∞ < m < +∞ , except for m = −1. Our aim is to investigate a special physical and
mathematical feature of the problem (6), (7), namely the relationship between the dimensionless wall shear
stress

f ′′(0) ≡ −S (10)

and the dimensionless entrainment velocity f∞ = f∞(m; fw) in the parameter plane (m, fw) specified by
the stretching exponent m and the mass transfer parameter fw. As we are aware, this problem has not yet
been examined in detail. Concerning the effect of fw on S = S(m; fw) and f∞ = f∞(m; fw), the following
theorem will be proven below.

At the value fw = f ∗
w of the mass transfer parameter where the wall shear stress S vanishes, the first

derivative of the dimensionless entrainment velocity f∞ with respect to fw also vanishes, and conversely.
This theorem, which builds a bridge between two physical quantities at the outer and inner edge of wall

driven boundary layers, will be referred to for short as entrainment theorem, and it is the main finding of the
paper. Its physical content will be analyzed in Sect. 4 in some detail.
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3 Analytical solutions of the problem (6), (7)

3.1 The special cases m = −1/3 and m = −1/2

As it is well known [10], in the special cases m = −1/3 and −1/2 the solution of the boundary value problem
(6), (7) can be given for forward boundary layers, sgn(U0)= + 1, in terms of elementary transcendental
functions.

Case m = −1/3

S = fw, −∞ < fw < +∞,

f∞ =
√

f 2
w + 2 =

√
S2 + 2,

f (η) = f∞ tanh

(
1

2
f∞ η + ln

√
f∞ + fw

f∞ − fw

)
,

(11)

Case m = −1/2

S = 2 f 2
w − 1

2 fw
, 0 < fw < +∞,

f∞ =
(

f 3
w + 3 fw + 9

4 fw

)1/3

.

(12)

The solution for the dimensionless stream function f = f (η) can be obtained in this case only in the implicit
form

η = 1

f∞
· ln

[
F(W0)

F(W )

]
(13)

where

W =
√

f

f∞
, W0 =

√
fw

f∞
,

F(W ) = (1 − W )(1 + W + W 2)−1/2 exp

[
−31/2 · arctan

(
1 + 2W

31/2

)]
.

(14)

It is worth emphasizing here that while the solution (11) exists for all values −∞ < fw < +∞ of the mass
transfer parameter, the implicit solution η = η( f ) corresponding to m = −1/2 does only exist when a lateral
suction (0 < fw < +∞) is applied [10].

3.2 The Merkin transformation

To prove the entrainment theorem, an extension of the Merkin transformation approach [14] to the present
boundary value problem (6), (7) will be applied.

The basic feature of the Merkin transformation is that it reverses the role of the stream function f in the
boundary value problem (6), (7) from that of the old dependent variable to that of a new independent variable
φ ≡ f∞ − f and at the same time, it transfers the role of the dependent variable from f to p(φ) ≡ d f/dη.
The main advantage of this order-lowering transformation is that it enables the calculation of the wall shear
stress S = S(m; fw) and the entrainment velocity f∞ = f∞(m; fw) without needing to know the solution
f = f (η; m, fw) of the boundary value problem (6), (7), neither in an explicit nor in an implicit form.

First, we extend the Merkin transformation method [14] developed originally for an impermeable surface
fw = 0 and s = +1 to the cases s = ±1 and fw �= 0 in which a lateral mass flux is present. To this end, we
modify the transformation slightly by changing to a new independent variable z and to a new dependent one,
Y = Y (z), which we define as follows:

z = 1 − f

f∞
, Y = 1

f 2∞
d f

dη
. (15)
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Thus, the third-order boundary value problem (6), (7) reduces to the second-order one

s
d

dz

(
Y

dY

dz

)
+ (z − 1)

dY

dz
− βY = 0, (16)

Y (0) = 0, Y (z0) = 1

f 2∞
(17)

where

z0 = z|η=0 = 1 − fw

f∞
. (18)

The first condition (17) has been obtained from f ′(∞) = 0, and the second one from f (0) = fw and f ′(0) = 1.
The wall shear stress S is obtained in this approach as

S = f∞
dY

dz

∣∣∣∣
z=z0

. (19)

After the solution Y = Y (z) of the transformed boundary value problem (16), (17) has been found, the solution
f = f (η) of the original problem (6), (7) can be obtained in the implicit form η = η( f ) by quadratures,

η = − 1

f∞

1− f
f∞∫

z0

dz

Y (z)
. (20)

3.3 The series solution

Looking for the solution of the boundary value problem (16), (17) in the power series form

Y =
∞∑

n=0

Anzn (21)

one obtains for the coefficients An the system of equations (see also [15])

s
k∑

n=0

(n + 1)
[
(n + 2) An+2 Ak−n +(k − n+1) An+1 Ak−n+1

]=(k + 1) Ak+1+(β − k) Ak, k = 0, 1, 2, . . .

(22)

The boundary condition Y (0) = 0 implies A0 = 0. Thus, one obtains from Eq. (22) for the next two coefficients
the expressions

A1 = s, A2 = s

4
(β − 1). (23)

The subsequent coefficients A3, A4, A5, . . . can then be obtained recursively according to

Ak = β − k + 1

k2 Ak−1 − s
k + 1

2k
·

k−1∑
n=2

An Ak−n+1, k = 3, 4, 5, . . . (24)

Specifically,

A3 = s

72
(1 − β2),

A4 = s

576
(1 − β2)(1 − 2β),

A5 = s

86400

(
1 − β2) (

11 − 81β + 88β2) ,

A6 = s

1036800

(
1 − β2) (−9 − 125β + 447β2 − 337β3) .

(25)
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Then, the second boundary condition (17) yields for f∞ the equation

f 2∞
∞∑

k=1

Ak

(
1 − fw

f∞

)k

− 1 = 0. (26)

For the wall shear stress S = S(m; fw) one obtains from Eq. (19) the expression

S = f∞
∞∑

k=1

k Ak

(
1 − fw

f∞

)k−1

. (27)

Equations (26) and (27) will play a key role in proving the entrainment theorem (see Sect. 4.1 below).
It is worth mentioning here that to the advantages of the Merkin transformation method belongs also

the circumstance that the recurrence Eq. (24) allows for a rapid numerical and symbolical evaluation of the
coefficients An for any given value of β. In general, the absolute values of the coefficients Ak decrease with
increasing k quite rapidly, except for the neighborhood of β = −2 (i.e., λ = −1/2). For instance, the terms
of the sequence |Ak | become smaller than 10−6 already after its 8th term for β = 0 (remember that |A1| = 1
for any β), after its 20th term for β = 2, after its 27th term for β = −1.5, but for β = −1.9 they do only so
after the 110th term of the series (21). The rate of convergence of the series occurring in Eqs. (26) and (27)
can be accelerated with the aid of the classical Euler–Knopp type series transformation [16]. In the present
calculations, following the work of [17], an improved form of the Euler–Knopp transformation has been used.
Applied, e.g., to the series (21), the transformation of Gabutti and Lyness gives

Y (z) =
∞∑

n=0

n!
(1 − ε)n+1

⎛
⎝

n∑
j=0

(−ε)n− j

(n − j)! j ! A j z j

⎞
⎠. (28)

Here ε is a tuning parameter which can be chosen at convenience (for ε = −1 one recovers the classical
Euler–Knopp type transformation). The other series Eqs. (26) and (27) can be transformed similarly. In order
to check the convergence of the initial and of the transformed series for specified values of the parameters
involved, it is useful to plot their respective terms in the increasing order of the summation indices. This
procedure provides at the same time information about the number of terms which has to be considered for a
required accuracy of the results [15].

4 Discussion

4.1 The proof

A straightforward analytical proof of the entrainment theorem can be given with the aid of Eqs. (26) and (27).
Indeed, differentiating Eq. (26) once with respect to fw one obtains

2 f∞
d f∞
d fw

∞∑
k=1

Ak

(
1 − fw

f∞

)k

−
(

f∞ − fw
d f∞
d fw

) ∞∑
k=1

k Ak

(
1 − fw

f∞

)k−1

= 0. (29)

Solving this equation with respect to d f∞/d fw and taking into account Eqs. (26) and (27) again, one obtains
the relationship

d f∞
d fw

= f∞S

fwS + 2
. (30)

Now, Eq. (30) shows at the first glance that, when at some value fw = f ∗
w of the mass transfer parameter

the wall shear stress S = S(m; fw) possesses (for a specified m) a zero, then, fw = f ∗
w yields at the same

time a zero of the derivative d f∞/d fw of the entrainment velocity and conversely, in full agreement with
the statement of the entrainment theorem. It is an elementary exercise to show that in the case of the special
solutions (11) and (12) the derivative d f∞/d fw can also be put into the (generally valid) form (30).
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Fig. 1 Plots of the dimensionless entrainment velocity f∞ = f∞(m; fw) and the wall shear stress S = S(m; fw) as functions
of the mass transfer parameter fw for m = −1/3 and −1/2, respectively. At fw = f ∗

w, where f∞ = f∞(m; fw) reaches its
(absolute) minimum, the wall shear stress becomes zero and changes sign, in full agreement with the entrainment theorem

Table 1 Validity ranges of the entrainment theorem

m s Boundary layer fw f∞
m < −1 −1 Forward (U0 > 0) Suction: fw < 0 f∞ < 0

Injection: fw > 0
−1 < m < 0 +1 Forward (U0 > 0) Suction: fw > 0 f∞ > 0

Injection: fw < 0
m > 0 −1 Backward (U0 < 0) Suction: fw < 0 f∞ < 0

Injection: fw > 0

4.2 Validity range of the entrainment theorem

The special solutions given in Sect. 3.1 offer a good opportunity for a simple preliminary validation of the
entrainment theorem.

In the case m = −1/3, the statement of this theorem becomes evident by a simple inspection of Eqs. (11).
Indeed, according to the first Eq. (11), the wall shear stress S becomes zero for fw ≡ f ∗

w = 0 (impermeable
surface), where, according to the second Eq. (11), the entrainment velocity f∞ actually reaches its minimum
value, f∞,min = √

2. In the case m = −1/2, elementary calculations show that both the wall shear stress
S and the first derivative of f∞ with respect to fw, d f∞/d fw = (

2 f 2
w − 1

) (
2 f 2

w + 3
)
/ (2 fw f∞)2 become

zero for fw = 1/
√

2. Thus, f ∗
w = 1/

√
2, and the corresponding minimum value of the entrainment velocity

is f∞,min = 25/6 = 1.781797. These two particular cases of the entrainment theorem are illustrated in Fig. 1
where the respective quantities f∞ = f∞(m; fw) and S = S(m; fw) have been plotted as functions of fw. One
sees that f∞(m; f ∗

w), with f ∗
w = 0 for m = −1/3, and f ∗

w = 1/
√

2 for m = −1/2 are absolute minima of the
respective entrainment velocities, and at the same time S(m; f ∗

w) = 0, in full agreement with the entrainment
theorem.

For other values of the stretching exponent m, it is obvious from the very beginning that the entrainment
theorem can only become effective when, for a specified s(s = +1 or − 1), the boundary value problem (6),
(7) admits solutions for vanishing value of the wall shear stress, S = 0. In this respect, a heuristic analysis of
the problem (6), (7) based on a point-mechanical analogy leads (similarly to procedure applied in [11,18,19])
to the results summarized in Table 1 below.

In Figs. 2, 3, 4 the correlation between the zeros of the wall shear stress S = S(m; fw) and the maxima/
minima of the dimensionless entrainment velocity f∞ = f∞(m; fw) is illustrated for some selected values of
the power law exponent m in the ranges specified in Table 1. All these Figures confirm the statement of the
entrainment theorem again. The special cases m = −1/3 and −1/2 shown in Fig. 1 belong to the m-range of the
second row, −1 < m < 0, of Table 1 (forward boundary layers, U0 > 0, s = +1). For more transparency,
the cases of Fig. 1 have been included in Fig. 3 again. The values f ∗

w of the mass transfer parameter fw and of
the corresponding extrema f∞,extr = f∞(m; f ∗

w) of the dimensionless entrainment velocity f∞(m; fw) are
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Fig. 2 Illustration of the entrainment theorem for three selected values of the power–law exponent in the range m < −1 (forward
boundary layers, U0 > 0, s = −1, see Tables 1, 2). The dots mark the absolute maxima of the entrainment velocities f∞ =
f∞(m; fw) (curves in the lower half-plane), associated according to the entrainment theorem with zeros of the corresponding
wall shear stresses S = S(m; fw)
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Fig. 3 Illustration of the entrainment theorem for six selected values of the power–law exponent in the range −1 < m < 0 (forward
boundary layers, U0 > 0, s = +1, see Tables 1, 2). The dots mark the absolute minima of the entrainment velocities f∞ =
f∞(m; fw) (curves in the upper half-plane), associated according to the entrainment theorem with zeros of the corresponding
wall shear stresses S = S (m; fw)

collected in Table 2 for all the m values selected for the Figs. 1, 2, 3, 4. The families of entrainment velocity
curves f∞ = f∞(m; fw) shown in Figs. 1, 2, 3, 4 represent the contour plots (topographic maps) of Eq. (26)
for the specified values of m. The family of the corresponding wall shear stress curves S = S(m; fw) has
then be obtained by substituting the explicit (numerical) solution of Eq. (26) into Eq. (27), and plotting the
resulting expressions of S as functions of the mass transfer parameter fw. There actually turns out that, for all
specified values of m, the extrema f∞,extr = f∞(m; f ∗

w) of the entrainment velocity on the one hand, and the
vanishing values S(m; f ∗

w) of the wall shear stress on the other hand, are reached at the same values f ∗
w(m) of

the mass transfer parameter fw, in full agreement with the entrainment theorem. In the range m > 0 of Fig. 4,
the absolute maximum of the entrainment velocity f∞. max = f∞

(
m; f ∗

w

)
goes to zero when m → 1, and it

is reached for f ∗
w → −∞. The corresponding backward boundary layer solution is available in an explicit

analytical form [20], and yields for f∞ and S the expressions

f∞ = 1

2

(
fw +

√
f 2
w − 4

)
, S = − f∞, fw ≤ −2. (31)



The entrainment theorem for wall driven boundary layer flows 127
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Fig. 4 Illustration of the entrainment theorem for three selected values of the power–law exponent in the range m > 0 (backward
boundary layers, U0 < 0, s = +1, see Tables 1, 2). The dots mark the absolute maxima of the entrainment velocities f∞ =
f∞(m; fw) (curves in the lower half-plane), associated according to the entrainment theorem with zeros of the corresponding
wall shear stresses S = S(m; fw). In the case m = 1, f∞,max = 0 and f ∗

w = −∞

Table 2 Values f ∗
w of the mass transfer parameter fw and of the corresponding extrema f∞,extr = f∞(m; f ∗

w) of the dimensionless
entrainment velocity f∞(m; fw), for the m values selected in Figs. 1, 2, 3, 4

m f ∗
w f∞,extr Comment

−3 −2.66878 −1.61727 Absolute maxima of f∞, Fig. 2
−2 −2.83431 −1.94555
−1.5 −3.18326 −2.47355
−0.75 2.14190 2.80044 Absolute minima of f∞, Figs. 1, 3
−0.65 1.45465 2.27539
−1/2 2−1/2 = 0.70711 25/ 6 = 1.78180
−0.45 0.49043 1.65792
−1/3 0

√
2 = 1.41421

−0.25 −0.36667 1.26664
+1 −∞ 0 Absolute maxima of f∞, Fig. 4
+1.5 −2.78856 −0.67845
+3 −2.60892 −0.91601
+10 −2.56337 −1.10569

These equations show clearly that for fw → −∞, f∞ → f∞,max = 0 and S → 0 as mentioned above, and
are in full agreement with the entrainment theorem. These limiting features (i.e., f∞ → f∞,max = 0 and
S → 0 when fw → −∞) still persist in the whole interval 0 < m ≤ 1, while finite values of f∞,max only for
m > 1 occur (see Fig. 4, Table 2).

It is worth mentioning here that, in addition to the entrainment theorem, Figs. 2, 3, 4 also illustrate
the abundant occurrence of dual solutions associated with different values of S, for specified values of the
parameters m and fw. Dual and multiple solutions are frequently encountered in the boundary layer theory. In
the prominent case of the mixed convection over a horizontal plate, e.g., this feature has first been reported by
Schneider [21]. Professor Schneider’s seminal work [21] has also inspired several subsequent papers concerned
with various specific aspects and extensions of this basic phenomenon [22–26].

The physical origin of the entrainment theorem has to be sought in the sign change of the wall shear
stress. This phenomenon is illustrated in Fig. 5, where the dimensionless velocity profiles corresponding to
five selected values of the mass transfer parameter fw have been plotted as functions of η for m = −1/2. One
of them (profile 3) corresponds to a vanishing value of the wall shear stress, S = S

(
m; f ∗

w

) = 0, and to the
smallest value of the entrainment velocity, f∞ = f∞,min = f∞

(
m; f ∗

w

) = 25/ 6 = 1.7818, with f ∗
w = 1/

√
2.

The other four profiles correspond to the indicated values of fw, below of fw = f ∗
w = 1/

√
2 (profiles 1 and

2) and above of fw = f ∗
w = 1/

√
2 (profiles 4 and 5) they are associated with larger values of f∞ than f∞,min.

Having in mind that in the case of profiles 1 and 2 the fluid velocity f ′(η) is smaller than the wall velocity
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0.25;  1.75;  2.1375wf S f∞= = − =

( )f η′

0.4;  0.85;  1.9028wf H f∞= = − =
1/ 2

,min2 ;  0;  1.7818w wf f S f f∗ −
∞ ∞= = = = =

1;  0.5;  1.8420wf S f∞= = + =
2;  1.75;  2.4730wf S f∞= = + =

1/ 2m = −

2

1

3

4

5

Fig. 5 Five dimensionless velocity profiles for m = −1/2. The middle one represents the profile with vanishing wall shear stress,
S = 0, and with the smallest entrainment velocity, f∞ = f∞,min, and corresponds to fw = f ∗

w = 1/
√

2. The upper two profiles
with fw < f ∗

w, are associated with negative values of S and the lower ones with fw > f ∗
w, correspond to positive values of S

f ′(0) = 1 at all stations η > 0, the positive sign of wall shear stress, S = − f ′′(0) > 0, corresponds to our
physical expectation. It is also clear that in this case, the larger the value of the suction parameter fw, the
larger the corresponding entrainment velocity f∞ and wall shear stress S. However, in the case of temperature
profiles 4 and 5, it is not immediately clear why the wall shear stress has changed its sign from S > 0 to S < 0,
and why the entrainment velocities become larger than f∞,min, although in this case the respective values of
the suction parameter fw are smaller than f ∗

w.
Obviously, the reversed wall shear stresses (negative S values) are related to the “velocity hills” of the

profiles 4 and 5. But, where do these velocity hills come from? Having in mind that for m < 0 the local
wall velocity Uw(x)/U0 = (x/L)m decreases with increasing x , the fluid accelerated upstream arrives to
slowly moving portions of the wall at all the downstream stations. Consequently, for small values of the
suction parameter fw “velocity spots” may occur which in turn lead to a reversed wall shear stress and, at
the same time, to larger values of the entrainment velocity than f∞,min. The smaller the suction parameter
the higher the velocity hills and the larger the corresponding entrainment velocities f∞ in the low suction
range 0 < fw < f ∗

w. In the strong suction range fw > f ∗
w of the profiles 1 and 2 on the other hand, the

velocity hills are “sucked out” from the fluid and, consequently, “usual” wall shear stress and entrainment
mechanisms become effective. A similar behavior occurs in the case of backward boundary layers in the range
m > 1.

5 Summary and conclusions

In the present paper the forward and backward boundary layer flows driven by permeable plane surfaces
stretching with power–law velocities have been considered in the presence of an applied lateral mass flux. The
relationship between the dimensionless entrainment velocity and the wall shear stress has been investigated
in detail. The main result of the paper is summarized in the entrainment theorem which asserts that, at the
value of the mass transfer parameter where the wall shear stress vanishes, the entrainment velocity reaches
a minimum or maximum value. The entrainment theorem builds a bridge between two flow characteristics
at the outer and inner edge of the wall driven boundary layer, respectively, and applies for all values of the
stretching exponent m (according to the specifications of Table 1). The converse of its statement is also true.
The physical reason for this relationship resides in the velocity overshoot occurring for negative values of
the wall temperature exponent m in the case of the forward, and for positive m′s in the case of the backward
boundary layers, respectively. We mention that in the physically different but mathematically identical context
of the Darcy free convection over a vertical plate with power law temperature distribution a similar theorem
holds.
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