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Abstract. In this article, we prove new rigidity results for compact Riemannian spin mani-
folds with boundary whose scalar curvature is bounded from below by a nonpositive con-
stant. In particular, we obtain generalizations of a result of Hang–Wang (Pac J Math
232(2):283–288, 2007) based on a conjecture of Schroeder and Strake (Comment Math
Helv 64:173–186, 1989).
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1. Introduction

The well-known spinorial proof of the positive mass theorem for asymptotically
flat manifolds given by Witten [26] is based on a subtle use of the Weitzenböck
type formula for the hypersurface Dirac-type operator. In this setting, asymptotic
flatness provides a boundary condition for the metric at infinity. A corollary of
the positive mass theorem is that there is no Riemannian metric on R

n with non-
negative scalar curvature which is Euclidean outside a compact set, except the
Euclidean one. Using Witten’s approach, rigidity results for noncompact manifolds
whose metric behaviour is prescribed at infinity were intensively studied (see for
example [1,8,18]).

More recently, rigidity results for compact manifolds with boundary have been
proved using generalizations of Witten’s positive mass theorem (see [17,23] for
example). In this setting, the conditions on the metric at infinity are replaced with
natural conditions on the metric of the boundary. The latter are tightly related to
the notion of quasi-local mass in General Relativity.

On the other hand, recent papers by Hijazi, Montiel, Roldán and Zhang (see
[9,11,12]) emphasize the fact that Spin geometry provides an adapted framework
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for the study of hypersurfaces. In particular, they show that under intrinsic and
extrinsic curvature assumptions on a Riemannian spin manifold with boundary,
there is an isomorphism between the restriction to the boundary of parallel spinors
and extrinsic Killing spinors.

In this paper, we generalize the results of [9]. We prove that, under suitable
assumptions, a solution of the Dirac equation:

D�= n −1
2

H0�, (1)

can be extend to a parallel spinor field on the whole manifold. Here D is the
extrinsic Dirac operator of the boundary (see Section 2) and H0 is a nonnegative
(and nonidentically zero) function on ∂M . Several rigidity results follow by not-
ing that the existence of a spinor field satisfying Equation (1) is tightly related to
the existence of an isometric immersion of the boundary in a manifold carrying
a parallel spinor field. One of these applications is given by a generalization of a
theorem in [14] which improves a conjecture of Schroeder and Strake [24] in the
spinorial setting.

In the last part of this paper, we study the hyperbolic version of the results
obtained in the previous paragraph.

2. Geometric Preliminaries

Let (Mn, g) be an n-dimensional Riemannian spin manifold. We denote by �M
the bundle of complex spinor fields over M and by ∇ the Riemannian and the spin
Levi–Civita connections. The Clifford multiplication, that is the action of the Clif-
ford bundle Cl(M) on the spinor bundle, will be denoted by

γ :Cl(M)−→End (�M)

and the natural Hermitian product on �M compatible with ∇ and γ by 〈 , 〉. The
Dirac operator is defined by taking the composition of the Clifford multiplication
with the spinorial Levi–Civita connection that is D =γ ◦∇. It is an elliptic differ-
ential operator of order one acting on the sections of the spinor bundle and it is
locally given by

D =
n∑

i=1

γ (ei )∇ei ,

where {e1, . . . , en} is a local g-orthonormal frame of T M .
Assume now that M has a smooth boundary ∂M . Since ∂M is an oriented

hypersurface of M , its normal bundle is trivial and thus one can define a spin
structure on ∂M . Then we can build the intrinsic spinor bundle over ∂M denoted
by �(∂M) which is naturally endowed with the spin Levi–Civita connection ∇∂M ,
a Clifford multiplication γ ∂M and also the Dirac operator D∂M , called the intrin-
sic Dirac operator of ∂M . One can also define (see [3] for example) an extrinsic



RIGIDITY OF COMPACT RIEMANNIAN SPIN MANIFOLDS 179

spinor bundle over ∂M by putting S :=�M|∂M . This bundle is also endowed with
the spin Levi–Civita connection ∇S and a Clifford multiplication γ S which can be
related with these acting on �M by

∇X =∇S
X + 1

2
γ S (A(X)) (Spinorial Gauss Formula)

(2)
γ S(X)=γ (X)γ (ν),

for all X ∈� (T (∂M)) and where ν is the inward unit vector field normal to ∂M
and A is the (symmetric) Weingarten map given by A(X) = −∇Xν. As for the
intrinsic case, one can define a Dirac operator acting on S by D := γ S ◦∇S. This
operator will be called the extrinsic Dirac operator of ∂M . A straightforward cal-
culation using the spinorial Gauss formula (2) allows to obtain a relation between
this operator and the Dirac operator of M , namely:

Dψ= n −1
2

Hψ−γ (ν)Dψ−∇νψ. (3)

for all ψ ∈�(S) and where H := 1
n−1 Trace (A) is the mean curvature of ∂M in M .

The hypersurface ∂M has thus two spinor bundles which can be identified in a
canonical way. Indeed the extrinsic spinor bundle (S, γ S,∇S,D) is isometric to

(
�(∂M), γ ∂M ,∇∂M , D∂M

)
(4)

if n is odd and to
(
�(∂M)⊕�(∂M), γ ∂M ⊕−γ ∂M ,∇∂M ⊕∇∂M , D∂M ⊕−D∂M

)
. (5)

if n is even. For more details on these identifications, we refer to [3,12,19]. On the
other hand, using the relation:

Dγ (ν)=−γ (ν)D (6)

one can easily check that the spectrum of the extrinsic Dirac operator is symmetric
with respect to zero. Using these identifications, O. Hijazi and S. Montiel [9] define
the notion of extrinsic Killing spinor, generalizing Killing spinors to the frame of
hypersurfaces. More precisely, a spinor field ϕ∈�(S) is an extrinsic Killing spinor
if for all X ∈� (T (∂M)), we have

∇S
Xϕ=−αγ S(X)ϕ, (7)

where α ∈R. Under some curvature assumptions, the authors prove that the exis-
tence of such a spinor field on a hypersurface bounding a compact domain implies
that the domain carries a parallel spinor (and hence is Ricci flat) and forces the
boundary to be totally umbilical with constant mean curvature. In this article, we
study this question for spinors solutions of the Dirac equation.
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Convention In the following we assume that if �n−1 is a compact manifold which
is isometrically immersed in two n-dimensional manifolds, then these immersions
induce the same spin structure on �n−1.

3. Domains with Positive Scalar Curvature

In this section, we consider an n-dimensional compact Riemannian spin manifold
(Mn, g) with nonnegative scalar curvature R. Assume that M has a smooth bound-
ary ∂M which has p connected components ∂M j with nonnegative mean curvature
H ( j) for all 1 ≤ j ≤ p. We first prove that under suitable assumptions on the mean
curvature of the boundary, we can extend a spinor field satisfying the Dirac equa-
tion (1) to a parallel spinor field on M . Then we apply this result to obtain several
rigidity results for compact Riemannian spin manifolds with boundary. The first
result we get is the following:

THEOREM 1. Let (Mn, g) be an n-dimensional compact and connected Riemannian
spin manifold with smooth boundary ∂M . Assume that the scalar curvature of M is
nonnegative, that the mean curvature of each connected component ∂M j of ∂M is
nonnegative (and nonidentically zero). If there exists a smooth spinor field �∈�(S j0)

satisfying:

D�= n −1
2

H0�, (8)

where H0 is a smooth function on ∂M| j0 such that 0 ≤ H0 ≤ H ( j0), then (Mn, g) has
a parallel spinor field, the boundary is connected and H ( j0)= H0.

In this theorem, we let S j0 :=�M|∂M j0
. The proof of this result relies on the

Schrödinger–Lichnerowicz formula [16] which gives a relation between the square
of the Dirac operator and the spin Laplacian. More precisely, we have

D2 =∇∗∇ + R

4
, (9)

and when integrated over M (see [12]) yields to
∫

M

(
|∇ψ |2 −|Dψ |2 + 1

4
R|ψ |2

)
dv=

∫

∂M

(
〈Dψ,ψ〉− n −1

2
H |ψ |2

)
ds (10)

for all ψ ∈�(�M). In comparison with the classical Reilly formula on functions
(see [21]), Formula (10) is called the spinorial Reilly formula. The other key point
in the proof of Theorem 1 is an adapted choice of boundary conditions for the
Dirac operator on M . For more details on this subject, we refer to [7,10]. We con-
sider here the MIT condition defined by the pointwise orthogonal projection:

P± : L2(S) −→ L2(V ±)

ϕ 
−→ 1
2
(I d ± iγ (ν))ϕ
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where V ± is the subbundle of S whose fiber is the eigenspace associated with the
eigenvalue ±1 of the involution iγ (ν). One can then check that this map defines
an elliptic boundary condition for the Dirac operator D of M and we can prove
(see [13]):

LEMMA 2. Let (Mn, g) be an n-dimensional compact Riemannian spin manifold
with smooth boundary ∂M , then the map

D :
{
ϕ∈ H2

1 (�M) : P±ϕ|∂M =0
}

−→ L2(�M)

is invertible.

We can now give the proof of our first result.

Proof of Theorem 1. Let �∈�(S j0) a solution of the Dirac equation (8) and we
extend this spinor field on M by �̃ in such a way that it vanishes on the other
components of ∂M , that is

�̃ j := �̃|∂M j =
{
� if j = j0
0 if j �= j0.

(11)

Lemma 2 ensures the existence of a unique smooth spinor field 	 ∈�(�M) sat-
isfying the boundary problem:

{
D	=0 on M
P±	|∂M = P±�̃|∂M along ∂M,

(12)

which by (11) gives:
⎧
⎪⎨

⎪⎩

D	=0 on M
P±	|∂M j0

= P±� along ∂M j0

P±	|∂M j =0 along ∂M j for j �= j0.
(13)

In the sequel, we will denote equally a spinor field on M and its restriction on
the boundary. Using the spinorial Reilly formula (10) and since R ≥ 0, we get

0 ≤
∫

M

(
|∇	|2 + 1

4
R|	|2

)
dv=

p∑

j=1

∫

∂M j

(
〈D	,	〉− n −1

2
H ( j)|	|2

)
ds. (14)

We now prove that the boundary term in the preceding formula is nonpositive.
First we observe that since the spinor � satisfies the Dirac equation (8) on ∂M j0 ,
we obtain with the help of (6) that:

D(P±�)= n −1
2

H0 P∓�. (15)
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On the other hand, for all ϕ∈�(S), an integration by parts using the symmetry
of the Dirac operator D and the decomposition ϕ= P+ϕ+ P−ϕ yield:

∫

∂M

〈Dϕ,ϕ〉ds = 2
∫

∂M

Re〈D(P±ϕ), P∓ϕ〉ds.

Now for ϕ=	, we get with (12) and (15):
∫

∂M j0

〈D	,	〉ds = (n −1)
∫

∂M j0

H0 Re〈P∓�, P∓	〉ds. (16)

Moreover, since |P∓	− P∓�|2 ≥ 0, we have

2 Re〈P∓�, P∓	〉 ≤ |P∓	|2 +|P∓�|2, (17)

which leads to
∫

∂M j0

〈D	,	〉ds ≤ n −1
2

∫

∂M j0

H0

(
|P∓	|2 +|P∓�|2

)
ds. (18)

We also remark that the symmetry of D and (15) give:
∫

∂M j0

H0|P±�|2ds =
∫

∂M j0

H0|P∓�|2ds.

Using this relation in (18) and since P±	= P±� on ∂M j0 , we get
∫

∂M j0

〈D	,	〉ds ≤ n −1
2

∫

∂M j0

H0|	|2ds

with equality if and only if P∓	= P∓� on ∂M j0 . Since we assumed that 0 ≤ H0 ≤
H ( j0):

∫

∂M j0

(
〈D	,	〉− n −1

2
H ( j0)|	|2

)
ds ≤ 0. (19)

Now if we look at the boundary term in (14) for j �= j0, we have
∫

∂M j

(
〈D	,	〉− n −1

2
H ( j)|	|2

)
ds =−n −1

2

∫

∂M j

H ( j)|P∓	|2ds

because (11) gives P±	= P±�̃ j =0 and so

∑

j �= j0

∫

∂M j

(
〈D	,	〉− n −1

2
H ( j)|	|2

)
ds ≤ 0 (20)
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since H ( j) ≥ 0. Moreover, equality occurs in (20) if and only if P∓	=0 (because
H ( j) is a nonzero smooth function on ∂M j ). Using (17) and (20), we conclude that
the boundary term in (14) is nonpositive and so we have equality in the spinorial
Reilly formula. Finally we have shown that the spinor field 	 ∈�(�M) satisfies:

∇	=0 and 	|∂M = �̃|∂M . (21)

In this case, the boundary has to be connected. Indeed, since the spinor 	 is
parallel, it has a nonzero constant norm on M (since M is connected), hence on
every connected component of ∂M . However since �̃ j =0 for j �= j0 and 	|∂M j0

=
�, (21) holds only if the boundary is connected (otherwise the norm of 	 is not
constant). On the other hand, using the spinorial Gauss formula (2) and since 	
is parallel, we easily check that D	= n−1

2 H ( j0)	 and H ( j0)= H0 since 	 satisfies
(8) and has no zeros. �

Remark 1. Under the assumptions of Theorem 1, the second fundamental form of
(∂M, g) is completely determined by the spinor field �∈�(S) which satisfies (8)
and more precisely by its energy-momentum tensor T�. Indeed, we proved that the
spinor � is a generalized Killing spinor field (in the sense of [4]), that is it satisfies:

∇S
X�=−1

2
γ S (A(X))�,

for all X ∈� (T (∂M)). Thus we can easily check that (see [19]):

A(X,Y ) := g (A(X),Y )=2T�(X,Y ),

where T� is the energy-momentum tensor associated with � defined (on the com-
plement set of zeros of �) by

T�(X,Y ) := 1
2

Re
〈
γ (X)∇S

Y�+γ (Y )∇S
X�,

�

|�|2
〉

for X ∈� (T (∂M)).

Remark 2. In the 3-dimensional case, one can refine the conclusion of Theorem 1.
In fact, if (M3, g) is a manifold satisfying these assumptions then its Ricci tensor
vanishes and we can conclude that (M3, g) is flat.

Thanks to Theorem 1, we obtain new rigidity results for compact manifolds
with boundary which highlight that the boundary behaviour of the metric has an
influence on the metric in the interior of the manifold. The main argument is to
observe that the Dirac equation (8) has a nice geometric interpretation. Indeed,
it is quite easy to show that if (�n−1, g) is a smooth oriented hypersurface with
mean curvature H0 in a Riemannian spin manifold (N n, g̃) carrying a parallel
spinor field �∈�(�N ) then �|� satisfies the Dirac equation (8). As a consequence
of this remark, we get a counterpart of results of Ros [22] and Hang–Wang [14] in
the spinorial setting:
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THEOREM 3. Let (Mn, g1) be an n-dimensional complete Riemannian spin mani-
fold with nonnegative scalar curvature and (�n−1, g) a compact hypersurface endowed
with the induced Riemannian and spin structures. Assume that there exists an isomet-
ric immersion

F1 : (�n−1, g)→ (Mn, g1)

with mean curvature H1 and such that F1(�
n−1) bounds a compact domain 
 in M .

Then if there is another isometric immersion

F2 : (�n−1, g)→ (N n, g2)

where (N n, g2) is a Riemannian manifold carrying a parallel spinor and such that the
mean curvature H2 ≥ 0 of F2 satisfies H1 ≥ H2, then the domain (
, g1) carries a
parallel spinor.

Proof. The restriction of the parallel spinor field by F2 yields a solution of the
Dirac equation (8) with H0 = H2 and thus Theorem 1 allows to conclude.

Remark 3. The simply connected manifolds carrying parallel spinor fields are clas-
sified in [25] and thus Theorem 3 can be applied for manifolds with boundary
whose boundary can be isometrically immersed in this class of manifolds.

Remark 4. In the statement of Theorem 3, if we assume that F2 is an isometric
immersion in R

n endowed with its Euclidean metric, one can check that (
, g1) is
flat. If moreover F2 is an isometric embedding, an argument similar to Proposition
2 of [14] allows to conclude that (
, g1) is isometric to a domain in R

n .

As a corollary of Theorems 1 and 3, we give a proof of a conjecture by
Schroeder and Strake [24]. More precisely, they prove:

THEOREM [24] . Let (Mn, g) a compact and connected Riemannian manifold with
nonnegative Ricci curvature and with convex boundary (that is A ≥ 0). Assume that
the sectional curvature of M vanishes on a neighbourhood of ∂M and that one of the
following conditions holds:

1. ∂M is simply connected,
2. the dimension of ∂M is even and ∂M is strictly convex at some point p ∈∂M .

Then (Mn, g) is flat.

As pointed out in [24], the condition on the sectional curvature is very strong
and the authors conjecture that their results should hold under the weaker con-
dition of vanishing of the sectional curvature along the boundary. In [14], Hang
and Wang proved the part (1) of this conjecture. In fact, they observe that it is
enough to impose the nonnegativity of the mean curvature of the boundary and
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not necessarily its convexity. If the manifold is spin, they can relax the condition
on the Ricci curvature by only assuming the nonnegativity of the scalar curva-
ture. However, in this case they need the convexity of the boundary. Here the spin
assumption is essentially technical because their proof relies on some positive mass
theorems (see [23]) proved with spinors [26]. We give here a generalization of Hang
and Wang’s result and thus of a part of the Schroeder and Strake’s conjecture.
More precisely, we get:

COROLLARY 4. Let (Mn, g) an n-dimensional compact, connected Riemannian
spin manifold with boundary and with nonnegative scalar curvature. If every compo-
nent of the boundary of M is simply connected with nonnegative mean curvature and
the sectional curvature vanishes on ∂M , then the boundary has only one connected
component and (Mn, g) is flat.

Proof. We first remark that since the sectional curvature κM of M is identically
zero on ∂M , the Weingarten map A satisfies the Gauss and Codazzi equations:

(∇∂M
X A)Y = (∇∂M

Y A)X

R∂M (X,Y )Z = g (A(Y ), Z) A(X)− g (A(X), Z) A(Y ),

for X,Y, Z ∈� (T (∂M)). On the other hand, the boundary ∂M is simply connected,
then the fundamental theorem for hypersurfaces (see [15] for example) ensures the
existence of an isometric immersion F of (∂M, g) in (Rn, eucl) with Weingarten
map given by A. With this immersion, we get 2[n/2] spinor fields �i ∈�(S) such
that

∇S
X�i =−1

2
γ S (A(X))�i

for all X ∈� (T (∂M)) and thus D�i = n−1
2 H�i . These spinor fields are the restric-

tion (by F) on S of 2[n/2] parallel spinor fields on �R
n . Thus the assumptions

of Theorem 1 (or Theorem 3) are fulfilled and one concludes that the boundary
is connected and that each spinor field �i comes from a parallel spinor field on
M . Finally, we get a maximal number of parallel spinor fields and thus (Mn, g) is
flat.

Another application of Theorems 1 and 3 is given by a simple proof of a rigid-
ity result for the unit Euclidean ball. This result has been proved by Miao [17]
as a consequence of a positive mass theorem for asymptotically flat manifolds for
which the metric is not smooth along a hypersurface. The proof we give here relies
only on Spin Geometry and does not use this strong but quite technical result. We
show:

COROLLARY 5. Let (Mn, g) be a compact and connected Riemannian spin man-
ifold with smooth boundary. Assume that the scalar curvature of M is nonnegative
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and that the boundary is isometric to the standard sphere S
n−1 with mean curvature

satisfying H ≥ 1. Then (Mn, g) is isometric to the unit ball of R
n .

Proof. From Theorem 1 (or 3), we have a basis of �M made of parallel spinor
fields whose restrictions correspond to extrinsic Killing spinors on the boundary
(in the sense of [9]). On the other hand, using the spinorial Gauss formula (2) we
see that the boundary has to be totally umbilical with constant mean curvature.
As a conclusion, M is a compact flat Riemannian spin manifold whose boundary
is a totally geodesic round sphere, then (Mn, g) is isometric to the unit Euclidean
ball of (Rn, eucl).

Remark 5. One can check that the assumptions of Corollary 5 are not covered in
the work of Hijazi and Montiel [9].

Remark 6. It is clear that Corollary 5 holds if the boundary is isometric to the
sphere S

n−1(r) with radius r > 0 and with mean curvature satisfying H ≥ 1/r . In
this case, (Mn, g) is isometric to the Euclidean ball with radius r .

Under the assumptions (and notations) of Theorem 3, one can also ask the fol-
lowing question: can the domain (
, g1) be isometrically immersed in (N n, g2)? We
don’t give an answer to this question here but give some ideas for further inves-
tigations. For this, we assume that the image of (�n−1, g) by F2 also bounds a
compact domain in (N n, g2). With the help of Remark 1, one concludes that if Ai

denotes the second fundamental form of � for Fi with i = 1,2, we get A1 = A2.
Using the recent work of Anderson and Herzlich [2] on the unique continuation
properties for Einstein manifolds with boundary, we get:

COROLLARY 6. Let (
n, g1) a compact and connected Riemannian spin manifold
with nonnegative scalar curvature. Assume that its boundary �n−1 with mean cur-
vature H1 can be isometrically embedded in a Riemannian spin manifold (N n, g2)

carrying a parallel spinor field with mean curvature less than H1. Then there exists
a neighborhood of (�n−1, g) in (
n, g1) which can be isometrically embedded in
(N n, g2).

4. Domains with Negative Scalar Curvature

In this section, we prove rigidity results similar to Theorems 1 and 3 in the hyper-
bolic setting. More precisely, we consider an n-dimensional connected and compact
Riemannian spin manifold (Mn, g) with smooth boundary ∂M . We also assume
that the scalar curvature of M (for the metric g) satisfies R ≥ −n(n − 1) and that
the mean curvature H of the boundary ∂M is nonnegative (and nonidentically
zero).
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Here it is important to note that the proof of Theorem 1 lies on two important
facts: the Schrödinger–Lichnerowicz formula and a suitable boundary condition
for the Dirac operator of M . So we first recall the hyperbolic version of the
Schrödinger–Lichnerowicz formula where a proof can be found in [1,11,18]:

∫

M

(
|Pψ |2 + 1

4
R̃|ψ |2 − n −1

n
|D̃±ψ |2

)
dv=

∫

∂M

(
〈D̃±ψ,ψ〉− n −1

2
H |ψ |2

)
ds

(22)

where R̃ := R +n(n −1), D̃± := D ∓ n
2 i and D̃± :=D± n−1

2 iγ (ν). The operator P in
(22) is the twistor operator (or Penrose operator) locally given by

PXψ :=∇Xψ+ 1
n
γ (X)Dψ, (23)

for ψ ∈�(�M) and X ∈�(T M). A spinor ψ such Pψ=0 is called a twistor spinor.
On the other hand, one can check that the operator D̃± which appears in the
boundary term of (22) is an elliptic first order self-adjoint differential operator and
its spectrum is an unbounded sequence of real numbers. Observe now that the
choice of the boundary condition deeply lies on its behaviour with respect to the
twisted Dirac operator D̃±. The condition used in Section 3 is not appropriate and
that is why we will use another elliptic boundary condition for the Dirac operator
D: the condition associated with a chirality operator. This kind of condition does
not exist on all manifolds since it needs a chirality operator, that is a linear map:

G :�(�M)−→�(�M),

such that:

G2 = I d, 〈Gψ,Gϕ〉=〈ψ,ϕ〉 (24)

∇X (Gψ)= G(∇Xψ), γ (X)G(ψ)=−G(γ (X)ψ), (25)

for all X ∈�(T M) and for all spinor fields ψ,ϕ ∈�(�M). If we assume the exis-
tence of such an operator, we can define an involution on S by

γ (ν)G :�(S)−→�(S),

which gives a decomposition of the spinor bundle S into the direct sum of two
eigensubbundle associated with the eigenvalues 1 and −1. The pointwise orthogo-
nal projection:

B± := 1
2
(I d ±γ (ν)G)

on the eigensubbundle associated with the eigenvalue ±1 defines an elliptic bound-
ary condition for the Dirac operator D of M . For more details on this boundary
condition, we refer to [10,20] for example.

We can now state the main result of this section which can be seen as a hyper-
bolic counterpart of Theorem 1 of Section 3. Indeed, we have:
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THEOREM 7. Let (Mn, g) a connected and compact Riemannian spin manifold
with smooth boundary equipped with a chirality operator G. Assume that the scalar
curvature of M satisfies R ≥ −n(n −1) and that every connected component ∂M j of
∂M in M has nonnegative mean curvature H ( j) ≥ 0. If there exists a smooth spinor
field �∈�(S j0) such that

D̃±�= n −1
2

H0�, (26)

where H0 is a nonnegative (and nonzero) smooth function on ∂M with 0 ≤ H0 ≤
H ( j0), the manifold (Mn, g) carries an imaginary Killing spinor, the boundary is con-
nected and H ( j0)= H0.

In order to prove this result, we first show the following lemma:

LEMMA 8. Under the assumptions of Theorem 7, the Dirac operator with domain:

D̃± :
{
ψ ∈ H2

1 (�M) : B±ψ|∂M =0
}

−→ L2(�M)

is invertible.

Proof. Suppose that there exists a non-trivial spinor field ϕ0 ∈�(�M) solution
of the boundary value problem:

{
D̃+ϕ0 =0 on M
B±ϕ0 |∂M =0 along∂M

that is
{

Dϕ0 = n
2 iϕ0 on M

B±ϕ0 |∂M =0 along∂M.

The Green formula gives for all ψ ∈�(�M):
∫

M

〈Dψ,ψ〉dv−
∫

M

〈ψ, Dψ〉dv=−
∫

∂M

〈γ (ν)ψ,ψ〉ds (27)

and by sesquilinearity of the Hermitian product on �M , we get for ψ=ϕ0:
∫

M

|ϕ0|2dv=0,

which implies that ϕ0 ≡0 on M and so a contradiction with our assumptions. The
conclusion follows from the fact that

(D̃+)∗ = D̃− =⇒ CoKer (D̃+)�Ker (D̃−)={0},
where we used (27).
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In the following lemma, we study the behaviour of the twisted Dirac operator
D̃+ with respect to the boundary condition associated with a chirality operator.

LEMMA 9. If �∈�(S) is a smooth spinor field satisfying the Dirac equation (26),
we have

1. D̃+(B±�)= n−1
2 H0 B∓�

2.
∫
∂M H0|B±�|2ds =∫

∂M H0|B∓�|2ds

Proof. For (1), it is sufficient to note that

D̃+(B±ψ)= B∓(D̃+ψ),

and since � is a solution of (26), a simple identification of the components of a
spinor field with respect to the decomposition associated with the orthogonal pro-
jections B± gives the result. Point (2) follows from (1) and from the symmetry of
the operator D̃+.

The proof of Theorem 7 is then similar to the one of Theorem 1. We do not give
the details here since Lemmas 8 and 9 show that the condition associated with a
chirality operator has the same behaviour with respect to the twisted Dirac oper-
ator D̃± as the MIT boundary condition with respect to the extrinsic Dirac oper-
ator D.

As a consequence of Theorem 7, we get rigidity results for manifolds with
boundary with scalar curvature bounded by below by a negative constant. The
main geometric result we prove in this setting is

THEOREM 10. Let (Mn, g1) be an n-dimensional complete Riemannian spin man-
ifold with scalar curvature satisfying R ≥ −n(n −1) and let (�n−1, g) be a compact
hypersurface endowed with the induced Riemannian and spin structures. Assume that
there exists an isometric immersion

F1 : (�n−1, g)→ (Mn, g1)

with mean curvature H1 and such that F1(�
n−1) bounds a compact domain 
 in M .

Then if there is another isometric immersion

F2 : (�n−1, g)→ (N n, g2)

where (N n, g2) is a Riemannian manifold carrying an imaginary Killing spinor (with
constant ∓(i/2)) and such that the mean curvature H2 ≥ 0 of F2 satisfies H1 ≥ H2,
then the domain (
, g1) carries an imaginary Killing spinor (with same constant).

Proof. It is sufficient to note that the immersion F2 of (�n−1, g) in (N n, g2)

yields to the existence of a smooth spinor field on S satisfying the Dirac equation
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(26). Moreover the assumptions on the mean curvatures H1 and H2 enable us to
apply Theorem 7 and thus one concludes that the domain (
, g1) carries an imag-
inary Killing spinor.

From this result, we obtain a hyperbolic version of Corollary 4 which gives a
counterpart of Schroeder and Strake’s conjecture in this setting. More precisely, we
have:

COROLLARY 11. Let (Mn, g) be a connected and compact Riemannian spin man-
ifold such that the scalar curvature satisfies R ≥ −n(n − 1). If every component of
the boundary of M is simply connected with nonnegative mean curvature and the sec-
tional curvature is −1 on ∂M , then the boundary has only one connected component
and (Mn, g) is hyperbolic.

Proof. Since ∂M is simply connected and the sectional curvature κM of M is
−1 on ∂M , the boundary (∂M, g) can be isometrically immersed in the standard
hyperbolic space (Hn, gst ) which is endowed with a maximal number of imaginary
Killing spinors. Thus using Theorem 10 (or Theorem 7), we get the existence of a
maximal number of imaginary Killing spinors on (Mn, g) and thus by [5,6] it has
to be hyperbolic.

Remark 7. All the preceding results hold for even dimensional manifolds since in
these dimensions, the spinor bundle is endowed with a chirality operator (the vol-
ume element of the spinor bundle).

Remark 8. It is clear that with Theorem 7, we can prove a rigidity result for geo-
desic balls of the hyperbolic space H

n . However in this case we need the existence
of a chirality operator which is in fact not necessary as explained below. Indeed,
one can obtain such a result from an estimate on the first eigenvalue of the twisted
Dirac operator D̃± proved by Hijazi et al. [11]. In fact, they show that if (Mn, g) is
a connected compact Riemannian spin manifold with smooth boundary ∂M such
that the scalar curvature of M is bounded from below by −n(n −1) and the mean
curvature H of ∂M in M is nonnegative:

λ±
1 ≥ n −1

2
inf
∂M

H (28)

where λ±
1 denotes the first eigenvalue of D̃±. Moreover equality occurs if and only

if the eigenspinors associated with the eigenvalue λ±
1 consist of restrictions to ∂M

of imaginary Killing spinors on M . With this result, we can prove:
“Let (Mn, g) a compact domain in a complete Riemannian spin manifold with

scalar curvature satisfying R ≥ −n(n −1). Assume that the boundary of M is iso-

metric to the standard round sphere S
n−1

(
1√
α2−1

)
(α > 1) and that its mean
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curvature is such that H ≥ α. Then (Mn, g) is isometric to the standard ball of
H

n whose boundary is totally umbilical (and isometric to the standard sphere of
radius 1√

α2−1
).”

Indeed, it is enough to note that for each real Killing spinor on the boundary
(which exists since the boundary is isometric to a round sphere), we can construct
an eigenspinor for the Dirac operator D̃± associated with the eigenvalue n−1

2 α.

More precisely, if 	 denotes a real Killing spinor with Killing number 1

2
√
α2−1

then the spinor field defined by

	± :=	±
(
α−

√
α2 −1

)
iγ (ν)	,

satisfies

D̃±	± = n −1
2

α	±. (29)

Thus the assumption H ≥ α shows that the equality case in (28) is reached and
then from [11] the spinor field 	± is the restriction of an imaginary Killing spinor
on (Mn, g). Since there is a maximal number of real Killing spinors on ∂M , one
easily check that there is a maximal number of imaginary Killing spinors on M
and [5,6] give the result.
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