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Abstract The no-wait job shop (NWJS) considered here is a version of the job shop
scheduling problem where, for any two operations of a job, a fixed time lag between
their starting times is given. Also, sequence-dependent set-up times between consec-
utive operations on a machine can be present. The NWJS problem consists in finding
a schedule that minimizes the makespan.

We address here the so-called optimal job insertion problem (OJI) in the NWJS.
While the OJI is NP-hard in the classical job shop, it was shown by Gröflin & Klinkert
to be solvable in polynomial time in the NWJS. We present a highly efficient algo-
rithm with running time O(n2 · max{n,m}) for this problem. The algorithm is based
on a compact formulation of the NWJS problem and a characterization of all feasi-
ble insertions as the stable sets (of prescribed cardinality) in a derived comparability
graph.

As an application of our algorithm, we propose a heuristic for the NWJS problem
based on optimal job insertion and present numerical results that compare favorably
with current benchmarks.

Keywords No-wait job shop · Optimal job insertion · Stable sets · Comparability
graph

1 Introduction

Job insertion in job shop scheduling problems is the process of inserting a job in a
given “schedule” of other jobs specified by their sequences on the machines. The
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optimal job insertion problem (OJI) consists in finding a job insertion minimizing
some objective, usually makespan or maximum tardiness.

Job insertion is of interest for applications as well as for method development and
scheduling theory. In some environments, jobs arrive successively and scheduling is
done in a rolling fashion, inserting a job at its arrival into the current schedule.

Methodologically, job insertion has been used by several authors as a tool in de-
vising scheduling heuristics. These methods build up a schedule by successive job
insertion or improve it by repeatedly extracting and reinserting a job. As examples,
we mention in the classical job shop the work of Werner and Winkler (1995), in the
blocking job shop Gröflin and Klinkert (2009) and in the no-wait job shop Schuster
(2006). More references will be given in Sect. 5.

In these methods, a job is usually not inserted optimally. Indeed, finding an optimal
job insertion is in general a nontrivial problem in scheduling theory. A pioneering
contribution was the work by Kis (2001) and Kis and Hertz (2003) on the OJI-JS,
the optimal job insertion problem in the classical job shop. They gave a polyhedral
characterization of the family of feasible job insertions as well as a procedure yielding
lower and upper bounds for the OJI-JS, which is a NP-hard problem.

In a different approach, we defined in Gröflin and Klinkert (2007) more generally
“insertions” (of a set of operations) as selections in so-called (disjunctive) insertion
graphs. We showed that if these graphs have certain properties, the feasible insertions
can be characterized as stable sets (of prescribed cardinality) in a bipartite graph and
devised an algorithm for deriving lower and upper bounds for the optimal insertion
problem. These general results apply in particular to job insertion, and not only in the
classical job shop. As examples, we examined job insertion in the multi-processor
task job shop, the blocking job shop and the no-wait job shop. Moreover we showed
that the algorithm for deriving lower and upper bounds solves optimally the OJI-
NWJS, the optimal job insertion problem in the no-wait job shop.

This last result established that the OJI-NWJS is solvable in polynomial time. It
provided the motivation for this work to study the OJI-NWJS in more detail and to
find a specialized algorithm for this problem that is more efficient from both a theoret-
ical and practical point of view. Indeed, the algorithm of Gröflin and Klinkert (2007)
is weakly polynomial, due to a binary search component. Also, its computation time
is relatively high, precluding its frequent use as a subroutine in good heuristics for
the NWJS problem.

We propose in this paper an algorithm for the OJI-NWJS that is strongly polyno-
mial and highly efficient, so that optimal job insertion can be implemented with rea-
sonable computational effort in constructive and improving heuristics for the NWJS
problem. The algorithm necessitates some structural developments which seem to be
also of interest for themselves and which are sketched below.

The paper is organized as follows. The next section describes the NWJS problem
and gives a classical disjunctive graph formulation. In Sect. 3, a new compact formu-
lation of the NWJS problem is derived that captures two key properties of the NWJS.
In Sect. 4, the OJI-NWJS is first formulated in a compact insertion graph. It is then
shown that, for any bound ρ, the family of all job insertions yielding a makespan
smaller than ρ is in 1-to-1 correspondence with the stable sets (of prescribed cardi-
nality) of a derived graph Hρ which turns out to be a comparability graph. These
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results and some additional properties (of antichains in a poset) form the main in-
gredients of the OJI-NWJS algorithm. In Sect. 5, as an application, a new heuristic
for the NWJS problem based on the OJI-NWJS algorithm is proposed and numerical
results are presented showing that the method is competitive. The Appendix provides
a detailed implementation of the algorithm and a complexity analysis.

We conclude this introduction with some notation and terminology. All graphs will
be directed and the following standard notation will be used. In the graph G = (V ,E),
an arc e ∈ E has a tail (node) t (e) and a head h(e). For any disjoint sets M , N ⊆ V ,
δ(M,N) = {e ∈ E : t (e) ∈ M and h(e) ∈ N}, and for any N ⊆ V , δ(N) = δ(N,V −
N)∪ δ(V − N,N). If an arc length vector c ∈ RE is given, G will be denoted by the
triplet G = (V ,E, c). Sometimes a triplet alone is used to identify a graph, usually a
subgraph of a given graph. In G = (V ,E, c), a cycle is called positive if its length is
positive. Finally, some concepts defined for undirected graphs, such as clique, stable
set and comparability graph, are used with directed graphs, with the meaning that they
apply to the corresponding undirected graphs obtained by ignoring arc orientation.

2 The no-wait job shop

2.1 Formulation, notation and data

The NWJS can be described as follows. Let I be a set of operations i ∈ I and J ⊆ 2I

a set of jobs such that J forms a partition of I , i.e. a job J ∈ J is a set of operations
{i : i ∈ J } and any operation i ∈ I is in exactly one job J ∈ J . We assume that the set
of operations of a job is ordered in a sequence and denote sometimes {i : i ∈ J } as the
ordered set {J1, J2, . . . , J|J |}, Jr denoting the r-th operation of job J . Two operations
i, j of job J are consecutive if i = Jr and j = Jr+1 for some r , 1 ≤ r < |J |. Further-
more, let M be a set of machines. Each operation i ∈ I needs a specific machine, say
mi ∈ M , for its execution of duration pi > 0.

In the NWJS considered here, for each job J ∈ J and any two operations i and
j ∈ J , a fixed time lag γij of arbitrary sign is imposed between the starting times
of i and j . Without loss of generality, we may assume that the order of operations
J1, J2, . . . , J|J | of job J is such that γJr ,Jr+1 ≥ 0, 1 ≤ r < |J |. Also, only time lags
between consecutive operations need to be specified since for any i = Js and j = Jt

with s < t , γij = ∑
s≤r<tγJr ,Jr+1 and γji = −γij . Note that this feature slightly gen-

eralizes the no-wait constraint present in the “classical” no-wait job shop (case where
γij = pi for a pair i, j of consecutive operations of a job) and allows to capture some
scheduling problems arising typically in the process industry, e.g. in the pharmaceu-
tical and chemical sector.

Another feature of the NWJS considered here is to allow for sequence-dependent
set-up times: if i and j are two operations on a same machine and j follows i, then
a set-up of duration sij occurs between completion of i and start of j . Also, for
each operation i, an initial set-up of duration sσ i can be specified, signifying that the
starting time of i is at least sσ i (earliest starting time), as well as a final set-up (or tail)
of duration siτ , meaning that a time of at least siτ lapses between completion time of
i and the overall finish time (makespan).
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Fig. 1 Example with four jobs
and five machines

The NWJS problem consists in finding starting times for all operations so that each
machine is occupied by at most one operation at a time and the makespan is minimal.
In the three-field notation, the problem could be denoted as J |sij , t l|Cmax, where sij
refers to the sequence-dependent setup times, and t l to the fixed time lags.

Figure 1 displays in a Gantt chart an example with four jobs J , K , L, N and five
machines m1, . . . ,m5. For simplicity, no set-ups are present. The numerical data can
be read directly in the chart, e.g. for J , the duration of its first operation is 3 and the
time lag between its first and second operation is 4. The example will be used in the
sequel.

2.2 A disjunctive graph formulation

The disjunctive graph G = (I+,A,E,E , d) for the NWJS is constructed as follows.
Each operation i ∈ I , as well as a fictive start operation σ and end operation τ is
represented by a node. σ and τ are of duration 0 and must occur before, respectively
after, all operations of I . We identify a node with the operation it represents and
denote the node set by I+ = I ∪ {σ, τ }.

The set A of conjunctive arcs consists of the following arcs: (i) for each i ∈ I , an
initial set-up arc (σ, i) and a final set-up arc (i, τ ) of respective length dσi = sσ i and
diτ = pi + siτ ; (ii) for each job J and each ordered pair of consecutive operations
i, j ∈ J , a pair of arcs (i, j) and (j, i) with respective length dij := γij and dji :=
γji = −dij .

The set E of disjunctive arcs consists of all arcs (i, j) and (j, i) between op-
erations i and j on a same machine and of different jobs. Formally, define for
all m ∈ M , Im := {i ∈ I : mi = m} and Em := {(i, j) : i, j ∈ Im such that i ∈ J ,
j ∈ J ′ ⇒ J 	= J ′}. Then E := ⋃

m∈M Em. The lengths are dij = pi + sij for all
(i, j) ∈ E.

For any m ∈ M and i, j ∈ Im, arcs (i, j) and (j, i) form a (unordered) pair of
disjunctive arcs. The family E is the collection of all such pairs. A general element
of E , i.e. a pair of disjunctive arcs, will be denoted by {e, e}.

The following definitions in G = (I+,A,E,E , d) will be useful. Any subset of
disjunctive arcs S ⊆ E is called a selection. A selection S is positive acyclic if the
subgraph G(S) = (I+,A ∪ S,d) contains no positive cycle, and is positive cyclic
otherwise. A selection S is complete if S ∩ {e, e} 	= ∅ for all {e, e} ∈ E . A selection S

is feasible if it is positive acyclic and complete.
The NWJS can be formulated as follows: “Among all feasible selections, find a

selection S minimizing the length of a longest path from σ to τ in G(S) = (I+,A ∪
S,d)”.
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3 A compact formulation of the NWJS

In this section, we will define for any selection S a so-called job-graph F(S) which
can be seen as a compact representation of G(S). Theorem 1 will formalize this
notion and two structural properties will follow as corollaries. Then a disjunctive
job-graph F will be introduced which leads to a compact formulation of the NWJS.

3.1 The job-graph F(S)

Given any selection S ⊆ E in the disjunctive graph G = (I+,A,E,E , d) and any
distinct J , K ∈ J , define the subsets

SJK = S ∩ δ(J,K),SKJ = S ∩ δ(K,J )

S[JK] = SJK ∪ SKJ

(1)

and distances

cS
JK = max

{
γJ1,i + dij + γj,K1 : (i, j) ∈ SJK

}
, (2)

convening cS
JK = −∞ if SJK = ∅ and γii = 0 for all i ∈ I .

Observe that
⋃

J,K∈J S[JK] is a partition of S. Also, a distance cS
JK (> −∞) is

the length of a longest path in the subgraph (I+,A ∪ SJK,d) from the first operation
J1 of J to the first operation K1 of K , and similarly cS

KJ > −∞ is the length of a
longest path in (I+,A ∪ SKJ , d) from K1 to J1. For future use, we denote by eJK

the arc (i, j) ∈ SJK being the argument in (2).
The distances from σ to J and from J to τ for all J ∈ J are defined as:

cσJ = cS
σJ = max{dσi + γi,J1 : i ∈ J }, (3)

cJτ = cS
Jτ = max{γJ1,i + diτ : i ∈ J }. (4)

Note that the superscript S can be omitted here since cS
σJ and cS

Jτ do not depend on
S; it has been kept as we also refer to the length vector cS in the sequel. For future
use, the arcs (σ, i) and (i, τ ) for the indexes i being the arguments in (3) and (4) are
denoted eσJ and eJτ .

Let F(S) = (J +,B ∪ U(S), cS) be the digraph whose node set J + = J ∪
{σ, τ } comprises a node for each job J ∈ J , and two nodes representing σ and τ .
We will identify these nodes with J , σ and τ . The arc set B consists of the arcs (σ, J )

and (J, τ ) for all J ∈ J , with length cS
σJ and cS

Jτ given by (3) and (4). The arc set
U(S) comprises arcs (J,K) and (K,J ) for all distinct J and K ∈ J , with length
cS
JK and cS

KJ given by (2). F(S) will be called the job-graph with respect to S.
Figure 2 illustrates on the left the subgraph G(S) for the selection S corresponding

to the schedule displayed in Fig. 1. For clarity, only the arcs from σ and to τ that are
incident to J have been drawn. The job-graph F(S) is depicted on the right.

Theorem 1 (i) G(S) = (I+,A ∪ S,d) contains no positive cycle if and only if
F(S) = (J +,B ∪ U(S), cS) contains no positive cycle. (ii) Assuming G(S) and
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Fig. 2 Subgraph G(S) and F(S)

F (S) contain no positive cycle, the length of a longest σ -τ -path is the same in both
graphs. If P with node sequence σ,J 1, . . . , J p, τ is a longest σ -τ -path in F(S), the
σ -τ -path P ′ in G(S) visiting J 1, . . . , J p , entering J 1 through arc eσJ 1 , and, for
1 < r ≤ p, entering J r through eJ r−1J r , and exiting Jp through eJpτ is a longest
σ -τ -path in G(S).

Proof (i) By a classic result of combinatorial optimization (see for instance Cook
et al. (1997), p. 25), G(S) contains no positive cycle if and only if there exists a
feasible potential, i.e. y′ ∈ RI+

such that y′
j − y′

i ≥ dij for all (i, j) ∈ A ∪ S, and

similarly, F(S) contains no positive cycle if and only if there exists y ∈ RJ +
such

that yw − yv ≥ cS
vw for all (v,w) ∈ B ∪ U(S). We show that G(S) has a feasible

potential if and only if F(S) has a feasible potential.
Let y′ ∈ RI+

be a feasible potential in G(S). Then clearly, for any J ∈ J ,

y′
j − y′

i = γij for all i, j ∈ J. (5)

Define y ∈ RJ +
by:

yσ = y′
σ , yτ = y′

τ and yJ = y′
J1

for all J ∈ J , (6)

where we recall that J1 denotes the first operation of J . Then y is a feasible potential
in F(S). Indeed, let i ∈ J be such that cS

σJ = dσi + γi,J1 . By (5), yJ = y′
J1

= y′
i +

γi,J1 . Then yJ − yσ = y′
i + γi,J1 − yσ = y′

i − y′
σ + γi,J1 ≥ dσi + γi,J1 = cS

σJ . Hence
yJ − yσ ≥ cS

σJ for all J ∈ J . Similarly, one shows yτ − yJ ≥ cS
Jτ for all J ∈ J .

Finally, given any distinct J and K , let i ∈ J and j ∈ K be such (i, j) ∈ SJK and
cS
JK = γJ1,i + dij + γj,K1 . By (5), y′

K1
= y′

j + γj,K1 and −y′
J1

= γJ1,i − y′
i . Then

yK − yJ = y′
K1

− y′
J1

= y′
j − y′

i + γj,K1 + γJ1,i ≥ di,j + γJ1,i + γj,K1 = cS
JK . Hence

for any feasible potential y′ in G(S), there is a feasible potential y in F(S) given
by (6).

Conversely, let y ∈ RJ +
be a feasible potential in F(S). Define y′ ∈ RI+

by:

y′
σ = yσ , y′

τ = yτ and for all J ∈ J : (7)

y′
J1

= yJ and y′
i = y′

J1
+ γJ1,i for all i ∈ J − {J1}. (8)
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We show that y′ is a feasible potential in G(S). First, y′
j − y′

i ≥ dij for all (i, j) ∈ A.
Indeed,

y′
j − y′

i = dij if both i and j ∈ J for some J ∈ J . (9)

Also, y′
i − y′

σ ≥ dσi for all i ∈ I , since y′
i − y′

σ = yJ + γJ1,i − yσ ≥ cS
σJ + γJ1,i ≥

(dσ i + γi,J1) + γJ1,i = dσi , where the last inequality follows from the definition of
cS
σJ . Similarly, y′

τ − y′
i ≥ diτ for all i ∈ I , since, y′

τ − y′
i = yτ − (yJ + γJ1,i ) ≥

cS
Jτ − γJ1,i ≥ γJ1,i + diτ − γJ1,i = diτ . Finally, consider any (i, j) ∈ S. (i, j) ∈ SJK

for some J , K . Then y′
j − y′

i = yK + γK1,j − (yJ + γJ1,i ) ≥ cS
JK + γK1,j − γJ1,i ≥

(γJ1,i +dij +γj,K1)+γK1,j −γJ1,i = dij . Hence for any feasible potential y in F(S),
there is a feasible potential y′ in G(S) given by (7)–(8).

Proof of (ii). Assume G(S) and F(S) contain no positive cycle and let ωG and
ωF be the length of a longest σ -τ -path in G(S) and F(S) respectively. We show
ωG = ωF . For all v ∈ I+, let y′

v be the length of a longest σ -v-path in G(S). y′ is
a feasible potential in G(S) with y′

σ = 0 and y′
τ = ωG. Hence y defined by (6) is

a feasible potential in F(S) with yσ = 0, yτ = y′
τ . This potential yields an upper

bound yτ on ωF , therefore ωG = y′
τ = yτ ≥ ωF . Similarly, ωF ≥ ωG is shown using

a “longest σ -w-path-potential” y in F(S) and deriving from it with (7)–(8) a feasible
potential y′ in G(S).

Finally, we prove that P ′ constructed from path P as indicated, is a longest σ -τ -
path in G(S). First note that P ′ is fully specified since its entry and exit arcs into and
out of a job are specified, and, if P ′ enters a job through, say, arc (i, j) and leaves it
through arc (k, l), the subpath of P ′ from j to k in the job is unique. Let y in F(S)

be the “longest σ -w-path potential” in F(S) and y′ in G(S) be determined from y

by (7)–(8). We prove that d(P ′) = y′
τ = ωF = ωG by showing that for any arc (v,w)

of P ′, y′
w − y′

v = dvw . This is easily shown, using that (a) in F(S), yu − yt = cS
tu for

each arc (t, u) of P , (b) equalities (9) and (c) the choice of the arcs eσJ 1 , eJ r−1J r ,
1 < r ≤ p, and eJpτ . Since the derivation is similar to the feasibility proof for y′
above, the details are omitted. �

From the theorem follow immediately two key properties of G derived in Gröflin
and Klinkert (2007) and stated here as a corollary.

Corollary 1 (i) For any positive cycle Z in (I+,A ∪ E,d), there exists a positive
cycle Z′ with Z′ ∩ E ⊆ Z ∩ E and Z′ visits each job at most once. (ii) For any
feasible selection S, there exists a longest σ -τ -path in G(S) visiting each job at most
once.

Proof (i) Choose selection S = Z. Since S is positive cyclic, by Theorem 1, F(S)

contains a positive cycle which is expanded (similarly to the expansion of path P

into P ′) into a positive cycle Z′ with Z′ ∩ E ⊆ Z ∩ E and Z′ visits each job at most
once.

(ii) P ′ in Theorem 1 is such a path. �
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3.2 A compact disjunctive graph formulation

Given distinct J,K ∈ J , let S
p
[JK] ⊆ δ(J,K) ∪ δ(K,J ), p = 1, . . . , qJK , be all

selections that are positive acyclic and complete on δ(J,K) ∪ δ(K,J ), i.e. S
p
[JK] ∩

{e, e} 	= ∅ for all {e, e} ⊆ δ(J,K) ∪ δ(K,J ). In other words, selections S
p
[JK], p =

1, . . . , qJK , represent all feasible ways of positioning J and K with respect to each
other.

The number qJK of these selections is “small”. If rJm denotes the number of op-
erations of J on machine m, it is easy to see that qJK ≤ 1 + ∑

m∈MrJm · rKm . In
particular, in the case of a classical NWJS where rJm ≤ 1 for all J ∈ J and m ∈ M ,
qJK ≤ |M| + 1.

We may assume that the S
p
[JK]’s are indexed with p = 1, . . . , qJK in such a way

that

S1
JK = S1[JK], S1

KJ = ∅,

S
p
JK ⊃ S

q
JK and S

p
KJ ⊂ S

q
KJ for 1 ≤ p < q ≤ qJK , (10)

S
qJK

JK = ∅, S
qJK

KJ = S
qJK

[JK]

i.e. S1[JK] places job J “fully before” K , and, with increasing p, K moves ahead of

an operation of J on some machine, until with selection S
qJK

[JK], K is fully before J .
Figure 3 illustrates these selections for the two jobs J and K in the example.

The three positionings of J and K are depicted in the Gantt charts (left) and the
corresponding selections S

p
[JK],p = 1,2,3 are shown in the center (sets of dashed

arcs).

Proposition 1 Let c
p
JK and c

p
KJ be the lengths cS

JK and cS
KJ defined by (2) for S =

S
p
[JK], p = 1, . . . , qJK . The following holds.

(i) c1
JK > c2

JK > · · · > c
qJK

JK and c1
KJ < c2

KJ < · · · < c
qJK

KJ ,
(ii) c

p
JK + c

p
KJ ≤ 0 for p = 1, . . . , qJK ,

(iii) c
p
JK + c

q
KJ ≤ 0 for 1 ≤ q < p ≤ qJK ,

(iv) c
p
JK + c

q
KJ > 0 for 1 ≤ p < q ≤ qJK .

Proof (i) Clearly, in view of (10), c
p
JK ≥ c

p+1
JK for 1 ≤ p < qJK . Suppose c

p
JK =

c
p+1
JK . Then there exist (i, j) ∈ S

p+1
JK and (k, l) ∈ S

p
JK −S

p+1
JK such that c

p
JK = c

p+1
JK =

γJ1,i +dij +γj,K1 ≥ γJ1,k +dkl +γl,K1 , therefore γJ1,i −γJ1,k +dij +γj,K1 −γl,K1 =
γki + dij + γjl ≥ dkl . But then γki + dij + γjl + dlk ≥ dkl + dlk > 0, and there is a

positive cycle (through i, j , l and k) contained in (I+,A ∪ S
p+1
[JK], d), a contradiction

to S
p+1
[JK] being positive acyclic.

(ii) follows from the S
p
[JK]’s being positive acyclic and (iii) results from (i)

and (ii). To show (iv), observe that for any p < q , S
p
[JK] ∪ S

q
[JK] is positive

cyclic in G since {e, e} ⊆ S
p
[JK] ∪ S

q
[JK] for e ∈ S

p
JK − S

q
JK , hence by Theorem 1,

{(J,K)p, (K,J )p, (J,K)q, (K,J )q} contains a positive cycle whose arcs, in view
of ii) and iii), are (J,K)p and (K,J )q , hence c

p
JK + c

q
KJ > 0. �
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Fig. 3 Positionings of J and K (left) and corresponding selections (set of dashed arcs) in G (center) and
F (right)

The disjunctive job-graph F = (J +,B,U, P , c) is now constructed. As in F(S),
the node set J + = J ∪ {σ, τ } consists of all nodes representing a job or a fictive
operation. The conjunctive arc set B comprises the arcs (σ, J ) and (J, τ ) with lengths
cσJ and cJτ defined by (3) and (4) for all J ∈ J . The set U of disjunctive arcs com-
prises the following arcs. Between any distinct nodes J,K of J , two arcs (J,K)p
and (K,J )p with length c

p
JK and c

p
KJ are introduced for each p = 1, . . . , qJK . In the

example, considering jobs J and K , two arcs (J,K)p and (K,J )p are introduced
for p = 1,2,3. Each pair is displayed separately in Fig. 3, right. The disjunctive job-
graph F is depicted in Fig. 4.

For any distinct J,K and p ∈ {1, . . . , qJK}, denote by [J,K]p the (unordered)
pair of arcs ((J,K)p , (K,J )p) ∈ U ×U . The pair [J,K]p represents selection S

p
[JK].

Let P be the set of all such pairs, i.e.

P = {[J,K]p : J,K ∈ J , J 	= K and 1 ≤ p ≤ qJK},
and for any distinct J and K ∈ J , let

DJK = {[J,K]p : 1 ≤ p ≤ qJK}.
The family P (of sets of arc pairs) is the family {DJK : J,K ∈ J , J 	= K}.

An F -selection is any set T ⊆ P of arc pairs and UT ⊆ U denotes the set of
all arcs used by T . An F -selection T is complete if T ∩ DJK 	= ∅ for all distinct
J,K ∈ J . T is positive acyclic if F(T ) = (J +,B ∪ UT , c) contains no positive
cycle, and feasible if it is complete and positive acyclic.

Note that, by definition, a complete F -selection T contains at least one pair
[J,K]p for any distinct jobs J and K . If additionally T is positive acyclic, i.e. if
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Fig. 4 The disjunctive job-graph F of the example

T is feasible, then by Proposition 1, T contains exactly one pair [J,K]p for distinct
J and K .

Now, for any feasible selection S, distinct J,K ∈ J and S[JK] defined by (1),
S[JK] is one of the selections S

p
[JK], p ∈ {1, . . . , qJK }, therefore to S corresponds an

F -selection which is unique by construction, and is complete and positive acyclic.
Conversely, to a complete and positive acyclic F -selection T corresponds a unique
feasible selection S. (Note that Theorem 1 is used in both directions.)

The NWJS problem can therefore be formulated as the following problem in
the disjunctive job-graph F : “Among all feasible F -selections, find an F -selection
T minimizing the length of a longest path from σ to τ in the subgraph F(T ) =
(J +,B ∪ UT , c)”.

4 Optimal job insertion in the NWJS

4.1 Formulation in the job insertion graph FJ

We studied in Gröflin and Klinkert (2007) general insertion problems whose so-
called insertion graphs have certain properties (so-called through-connectedness and
bi-connectedness). We showed that the optimal insertion problem in a bi-connected
insertion graph can be solved in polynomial time, and mentioned as an application of
this result the optimal job insertion problem in the NWJS (OJI-NWJS).

We formulate here the OJI-NWJS in the framework of our compact formulation
of the NWJS and solve it with a highly efficient algorithm.

Inserting optimally a job can be thought of as the following problem. Given a
feasible schedule for all other jobs, insert the job in such a way that the resulting
schedule is feasible and its makespan is minimal.

In this section, we will consider the OJI-NWJS problem for a specific job J ∈ J
and, for brevity, denote J − J by J − and qJK by qK .
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In the disjunctive job-graph F , a given feasible schedule for all other jobs K ∈
J − is specified by an F -selection R that is positive acyclic and “complete”, i.e.
for any distinct K,L ∈ J −, [K,L]p ⊆ R for some p ∈ {1, . . . , qKL}. Let UJ =
U ∩ δ(J ) and PJ be the family of sets DJK for all K ∈ J −. One can define the
disjunctive graph FJ = (J +,B ∪ UR,UJ ,PJ , c)—where the restriction of c to
B ∪ UR ∪ UJ is denoted again by c. FJ can be called the insertion graph for J and
a FJ -selection T an insertion of job J . Note that T is a (positive acyclic, complete,
feasible) insertion if and only if T ∪ R is a (positive acyclic, complete, feasible) F -
selection in F = (J +,B,U,P, c).

Assume in the example that K,L and N are scheduled as in Fig. 1. The corre-
sponding F -selection R consists of the arc pairs labeled a, b and c in the graph F of
Fig. 4. The insertion graph FJ is obtained from F by retaining only a, b and c as arc
pairs between K,L and N .

The OJI-NWJS can then be stated as follows: “Among all feasible insertions, find
an insertion T minimizing the makespan, i.e. the length of a longest path from σ to
τ in the subgraph (J +,B ∪ UR ∪ UT , c)”.

4.2 The conflict graph Hρ

In the graph (J +,B ∪UR, c) which contains no positive cycle, let lKL be the length
of a longest K-L-path for any nodes K , L ∈ J +, with the convention lKL = 0 if
K = L and lKL = −∞ if K 	= L and there is no K-L-path. Obviously,

lKL + lLK ≤ 0 and lKL + lLN ≤ lKN for all K,L,N ∈ J +. (11)

Also, lσJ = cσJ and lJ τ = cJτ where cσJ and cJτ are defined by (3) and (4).

Definition 1 For any ρ > lστ , the conflict graph at ρ is the graph Hρ = (Wρ,Y ρ)

with the node set Wρ and the arc set Yρ defined by:

for all p = 1, . . . , qK and K ∈ J −:

w
p
K ∈ Wρ ⇔

{
cσJ + c

p
JK + lKτ < ρ and

lσK + c
p
KJ + cJτ < ρ

(12)

for all pairs of distinct nodes w
p
K , w

q
L ∈ Wρ :

(w
p
K,w

q
L) ∈ Yρ ⇔

{
c
p
JK + c

q
LJ + lKL > 0 or

c
p
JK + c

q
LJ + lKτ + lσL ≥ ρ.

(13)

Three observations are in order. First, given any K ∈ J −, let α
ρ
K be the smallest

p ∈ {1, . . . , qK } such that cσJ +c
p
JK + lKτ < ρ, and β

ρ
K be the largest p ∈ {1, . . . , qK}

such that lσK + c
p
KJ + cJτ < ρ. From Proposition 1 and (12) follows that the node

subset W
ρ
K := {wp

K ∈ Wρ} rewrites as

W
ρ
K =

{∅ if α
ρ
K or β

ρ
K does not exist, or if α

ρ
K > β

ρ
K ;

{wp
K : αρ

K ≤ p ≤ β
ρ
K} otherwise.

(14)
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Fig. 5 Two conflict graphs

Second, K and L can be identical in the above definition of the arc set. In fact, if
K = L, (13) is equivalent to:

(
w

p
K,w

q
K

) ∈ Yρ ⇔ p < q. (15)

Indeed, by Proposition 1, c
p
JK + c

q
KJ > 0 if and only if p < q . Also, lKK = 0 so

that in (13) c
p
JK + c

q
LJ + lKL > 0 for K = L is equivalent to p < q . Moreover,

c
p
JK + c

q
LJ + lKτ + lσL ≥ ρ for K = L implies c

p
JK + c

q
KJ ≥ ρ − (lKτ + lσK) ≥

ρ − lστ > 0, hence c
p
JK + c

q
KJ > 0.

Finally, in view of (14) and (15), any non-empty W
ρ
K , K ∈ J −, is (the node set

of) a clique in Hρ .
Figure 5 displays two conflict graphs Hρ for ρ = 28 and 16 in the example.
Conflict graphs allow to characterize feasible insertions as the following result

holds.

Theorem 2 For any ρ > lστ , let F ρ be the family of all feasible insertions T of
makespan ω(T ) < ρ. There is a 1 to 1-correspondence between the feasible inser-
tions T ∈ F ρ and the stable sets of size |J −| in Hρ .

Proof Let T ∈ F ρ . Since T is complete and positive acyclic, given any K ∈ J −,
[J,K]p ⊆ T for exactly one p ∈ {1, . . . , qK }, say pK . We show first that w

pK

K ∈ Wρ .
Indeed, if w

pK

K /∈ Wρ , cσJ + c
pK

JK + lKτ ≥ ρ or lσK + c
pK

KJ + cJτ ≥ ρ. In both cases,
there is a σ -τ -path in (J +,B ∪ UR ∪ UT , c) of length ≥ ρ, a contradiction to ρ >

ω(T ), ω(T ) being the length of a longest σ -τ -path in (J +,B ∪UR ∪UT , c). Hence
to T ∈ F ρ corresponds node set T ′ = {wpK

K : K ∈ J −} ⊆ Wρ of size |J −| in Hρ .
T ′ is a stable set in Hρ . Indeed, suppose the contrary: for some K 	= L,

(w
pK

K ,w
pL

L ) ∈ Yρ , i.e. c
pK

JK + c
pL

LJ + lKL > 0 or c
pK

JK + c
pL

LJ + lKτ + lσL ≥ ρ. In
the first case, the positive cyclic insertion {[J,K]pK

, [L,J ]pL
} is contained in T ,

contradicting T being positive acyclic. In the second case, there is a σ -τ -path in
(J +,B ∪ UR ∪ UT , c) of length ≥ ρ, contradicting ρ > ω(T ).

Conversely, let T ′ be a stable set of size |J −| in Hρ . T ′ picks up at most one node,
say w

pK

K , from each clique W
ρ
K , K ∈ J − and, since ∪K∈J −W

ρ
K is a partition of Wρ

and |T ′| = |J −|, T ′ = {wpK

K : K ∈ J −}. The insertion T = ⋃
K∈J −[J,K]pK

is
obviously complete. T is also positive acyclic, otherwise there is a positive cycle
in (J +,B ∪ UR ∪ UT , c) which must go through J , entering J , through, say, arc
(L,J )pL

and leaving J through (J,K)pK
, implying c

pK

JK + c
pL

LJ + lKL > 0, hence
(w

pK

K ,w
pL

L ) ∈ Yρ , a contradiction to the stability of T ′. Finally, T has makespan
ω(T ) < ρ, otherwise there is a longest σ -τ -path in (J +,B ∪ UR ∪ UT , c) of length
≥ ρ. This path must visit at least two jobs, otherwise it is in (J +,B ∪ UR, c) and
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its length is at most lστ < ρ. If J is the first and K the second job on this path,
its length is cσJ + c

pK

JK + lKτ . If J is the last and K the second to last job on the
path, its length is lσK + c

pK

KJ + cJτ . If J is between L and K on the path, its length is
c
pK

JK +c
pL

LJ + lKτ + lσL. The first two cases imply w
pK

K /∈ Wρ , contradicting T ′ ⊆ Wρ ,
the third case implies (w

pK

K ,w
pL

L ) ∈ Yρ , contradicting the stability of T ′. �

An immediate consequence of Theorem 2 is the following characterization of all
feasible insertions, regardless of makespan.

Corollary 2 There is a 1 to 1-correspondence between the feasible insertions and
the stable sets of size |J −| in graph H = (W,Y ) with node set W = {wp

K : K ∈
J −, p = 1, . . . , qK } and the arc set Y defined by

for all p = 1, . . . , qK, q = 1, . . . , qL,K and L ∈ J − :
if K = L : (wp

K,w
q
L

) ∈ Yρ ⇔ p < q

if K 	= L : (wp
K,w

q
L

) ∈ Yρ ⇔ c
p
JK + c

q
LJ + lKL > 0.

Proof The result follows immediately from Theorem 2, choosing ρ0 such that ρ0 >

ω(T ) for any feasible insertion T . Then H = Hρ0 . �

Theorem 2 can also be expressed as follows.

Corollary 3 For any ρ > lστ , let α(Hρ) denote the stability number of Hρ and F ρ

the family of all feasible insertions T of makespan ω(T ) < ρ. Either α(Hρ) < |J −|
and F ρ = ∅, or α(Hρ) = |J −| and the maximum size stable sets of Hρ are in
1-to-1 correspondence with the members of F ρ .

Proof Since
⋃

K∈J − W
ρ
K is a partition of Wρ into |J −| cliques, α(Hρ) ≤ |J −|.

Also, |T | ≤ α(Hρ) for any stable set T . Therefore if T is a stable set of size |J −|,
|T | = α(Hρ). �

Finding a feasible insertion T of makespan ω(T ) < ρ or determining that no such
insertion exists amounts therefore to finding a maximum size stable set in graph Hρ ,
a difficult problem in a general graph. Fortunately, Hρ is a so-called comparability
graph.

Theorem 3 Hρ = (Wρ,Y ρ) is acyclic and transitively oriented.

Proof (a) We show that Hρ is transitively oriented, i.e. for any triple of distinct nodes
w, w′, w′′ ∈ Wρ

(
w,w′) ∈ Yρ and

(
w′,w′′) ∈ Yρ ⇒ (

w,w′′) ∈ Yρ.

Assume (w,w′) = (w
p
K,w

q
L) ∈ Yρ and (w′,w′′) = (w

q
L,wr

N) ∈ Yρ . Then (16) or (17)
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and (18) or (19) must hold:

c
p
JK + c

q
LJ + lKL > 0, (16)

c
p
JK + c

q
LJ + lKτ + lσL ≥ ρ, (17)

c
q
JL + cr

NJ + lLN > 0, (18)

c
q
JL + cr

NJ + lLτ + lσN ≥ ρ. (19)

Assume (16) and (18) hold. Then adding both left and right hand sides and using
c
q
JL + c

q
LJ ≤ 0 and lKL + lLN ≤ lKN , yields c

p
JK + cr

NJ + lKN > 0. If (16) and (19)
hold, then adding and using c

q
JL + c

q
LJ ≤ 0 and lKL + lLτ ≤ lKτ , yields c

p
JK + cr

NJ +
lKτ + lσN > ρ. If (17) and (18) hold, c

p
JK + cr

NJ + lKτ + lσN > ρ and if (17) and
(19) hold, c

p
JK + cr

NJ + lKτ + lσN ≥ ρ + (ρ − (lσL + lLτ )) ≥ ρ + (ρ − lστ ) > ρ.
In each case, c

p
JK + cr

NJ + lKN > 0 or c
p
JK + cr

NJ + lKτ + lσN ≥ ρ holds, so that
(w

p
K,wr

N) ∈ Yρ .
(b) We prove that Hρ is acyclic. Since Hρ is transitively oriented, it suffices to

show that Hρ contains no w,w′ ∈ Wρ with both (w,w′) and (w′,w) ∈ Yρ . Assume
the contrary and let w = w

p
K and w′ = w

q
L. (w

p
K,w

q
L) ∈ Yρ implies that (16) or (17)

holds and (w
q
L,w

p
K) ∈ Yρ implies

c
q
JL + c

p
KJ + lLK > 0 (20)

or

c
q
JL + c

p
KJ + lLτ + lσK ≥ ρ. (21)

Since c
p
JK +c

p
KJ ≤ 0 and c

q
JL+c

q
LJ ≤ 0, if (16) and (20) hold, then lKL+ lLK > 0.

If (16) and (21) hold, then lστ ≥ lσK + lKL+ lLτ > ρ. If (17) and (20) hold, then lστ ≥
lσL + lLK + lKτ > ρ. If (17)and (21) hold, then 2lστ ≥ lσL + lLτ + lσK + lKτ ≥ 2ρ.
Therefore in each case (11) or ρ > lστ is contradicted. �

4.3 The OJI-NWJS algorithm

Corollary 3 and Theorem 3 suggest the following general approach for solving the
OJI-NWJS.

In an initialization step, let T be a stable set in H = Hρ0 , for instance T := {wqK

K :
K ∈ J −}, the insertion placing J after all other jobs. Set ρ := ω(T ). Then execute
the following loop. Determine a maximum size stable set T ′ in Hρ . If α(Hρ) :=
|T ′| < |J −|, then stop: T corresponds to an optimal insertion. Else reset T := T ′
and ρ := ω(T ).

Figure 6 depicts a possible run of this approach in the example. The initialization
step is depicted in (i). In H = H 28, T is the stable set (grey nodes) which corresponds
to the insertion placing J after all other jobs, with makespan 16 (see Gantt chart).
(ii) illustrates the first pass of the loop. T is updated to a maximum size stable set
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Fig. 6 A possible run of the general approach

in H 16. The corresponding insertion has makespan 15. The next pass is depicted
in (iii) leading to an insertion with makespan 13. This is an optimal insertion since
α(H 13) < |J −|, see (iv).

At this point, we remark that this general approach yields a polynomial-time al-
gorithm. Indeed, finding a maximum size stable set in a comparability graph can
be found via network flow methods. Also, a (rough) upper bound on the number
of iterations of the loop is |Wρ0 |3 = (

∑
K∈J −qK)3, observing that for graphs, say

Hρr = (Wρr , Y ρr ) and Hρr+1 = (Wρr+1 , Y ρr+1) of two consecutive iterations r and
r + 1, Wρr+1 ⊆ Wρr , and if Wρr+1 = Wρr , then Yρr ⊂ Yρr+1 .

We propose however a substantially more efficient implementation which relies on
the following two propositions. The first uses the fact that the maximum size stable
sets of a comparability graph form a lattice (see for instance Schrijver (2003), p. 235).
Assume α(Hρ) = |J −|.

Proposition 2 The maximum size stable sets of Hρ form a lattice L ρ with order ≺,
meet ∨ and join ∧ defined as follows. For any two stable sets T := {wpK

K : K ∈ J −}
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and T ′ := {wp′
K

K : K ∈ J −},
T � T ′ ⇔ pK ≤ p′

K for all K ∈ J −

T ∨ T ′ = {
w

max{pK,p′
K }

K : K ∈ J −}

T ∧ T ′ = {
w

min{pK,p′
K }

K : K ∈ J −}

Proof Clearly, ≺ is a partial order. T ∨ T ′ is stable, otherwise there exist w and
w′ ∈ T ∨ T ′ with (w,w′) ∈ Yρ or (w′,w) ∈ Yρ . We may assume w ∈ T − T ′

and w′ ∈ T ′ − T so that w = w
pK

K for some K and p′
K < pK and w′ = w

p′
L

L for

some L 	= K and pL < p′
L. If (w,w′) = (w

pK

K ,w
p′

L

L ) ∈ Yρ , then (w
p′

K

K ,w
p′

L

L ) ∈ Yρ

by (w
p′

K

K ,w
pK

K ) ∈ Yρ and transitivity, and if (w′,w) = (w
p′

L

L ,w
pK

K ) ∈ Yρ , then
(w

pL

L ,w
pK

K ) ∈ Yρ , contradicting the stability of T ′ or T . Similarly, one can show
that T ∧ T ′ is stable. Finally, |T ∨ T ′| = |T ∧ T ′| = |T | = |T ′|. �

Assume now ρ′ > ρ > lστ and α(Hρ) = α(Hρ′
) = |J −|, and let L ρ and L ρ′

be the respective lattices of the maximum size stable sets in Hρ and Hρ′
.

Proposition 3 L ρ is a sublattice of L ρ′
.

Proof By definition of Hρ = (Wρ,Y ρ), Hρ′ = (Wρ′
, Y ρ′

) and ρ < ρ′, Wρ ⊆
Wρ′

,w, w′ ∈ Wρ and (w,w′) ∈ Yρ′
implies (w,w′) ∈ Yρ . Therefore any member

T ∈ L ρ is a member of L ρ′
. �

A version of the general approach described previously for solving the OJI-NWJS
is now the following algorithm.

OJI-NWJS algorithm In an initialization step, set T := {wqK

K : K ∈ J −} and ρ :=
ω(T ). T is the maximal member of L ρ0 and corresponds to the insertion placing
J after all other jobs. Then repeat the following loop: While L ρ 	= ∅, determine
the maximal member T ′ of L ρ and set T := T ′ and ρ := ω(T ′). At completion, if
T = {wpK

K : K ∈ J −}, the insertion
⋃

K∈J −[J,K]pK
is optimal.

The validity of the algorithm can be asserted as follows. Let T (0), T (1), . . . , be
the sequence of sets T generated by the algorithm. By Propositions 2 and 3, T (s) �
T (s−1), s = 1,2, . . . , and since T (s) ∈ L ω(T (s−1)), T (s) ≺ T (s−1), so that the number
of generated sets is bounded by

∑
K∈J −qK .

It remains to be shown how an iteration of the while loop is performed, i.e. how to
solve the problem:

Given T maximal in L ρ′
, let ρ := ω(T ).

Determine that L ρ = ∅ or find T ′ maximal in L ρ .
(22)

Let a node set T ⊆ Wρ be called complete if |T ∩W
ρ
K | = 1 for all K ∈ J −. Note

that T ∈ L ρ if and only if T is complete and stable. (22) is solved by a procedure
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which successively generates complete sets T 1, . . . , T R in Wρ , such that for r =
1,2, . . . ,R,

T r ≺ T r−1 and (23)

T � T r for all T ∈ L ρ (24)

and R is the smallest r such that T r is stable in Hρ or L ρ = ∅ can be asserted.
At completion of the procedure, either L ρ = ∅ or T R is the sought set T ′, since

T R is stable and complete, hence T R ∈ L ρ , and T R is maximal in L ρ by (24).
Postponing temporarily the determination of the initial complete set T 0, we show

how, given a non-stable set T r−1 such that T � T r−1 for all T ∈ L ρ , we either
assert L ρ = ∅ or construct T r fulfilling (23) and (24). Assume T r−1 = {wpK

K : K ∈
J −} ⊆ Wρ . Since T r−1 is not stable, there exists (w

pK

K ,w
pL

L ) ∈ Yρ for some K and
L. Let 
(w

pK

K ) = {wp
L : (wpK

K ,w
p
L) ∈ Yρ} be the set of all successors of w

pK

K .

Proposition 4 T ∩ 
(w
pK

K ) = ∅ for all T ∈ L ρ

Proof Suppose there is T ′ ∈ L ρ with T ′ ∩ 
(w
pK

K ) 	= ∅, i.e. letting T ′ = {wp′
L

L : L ∈
J −}, (w

pK

K ,w
p′

L

L ) ∈ Yρ for some L ∈ J −. Since T � T r−1 for all T ∈ L ρ , T ′ �
T r−1 and therefore p′

K ≤ pK . Hence p′
K = pK or (w

p′
K

K ,w
pK

K ) ∈ Yρ . In both cases,

using transitivity in the second, (w
p′

K

K ,w
p′

L

L ) ∈ Yρ , contradicting the stability of T ′. �

Hence given a non-stable T r−1 = {wpK

K : K ∈ J −}, find a node w
pK

K having a
successor in T r−1, and delete all successors of w

pK

K . This deletion does not affect
any T ∈ L ρ by Proposition 4. If after deletion, some W

ρ
K is empty, then obviously

L ρ = ∅; otherwise determine for all K ∈ J − the node w
p
K ∈ W

ρ
K with largest p,

say w
p′

K

K . Then T r := {wp′
K

K : K ∈ J −} satisfies (23) and (24) by Proposition 4.
The initial set T 0 ⊆ Wρ can be determined as follows. Assuming T = {wpK

K : K ∈
J −} in (22) and ρ := ω(T ), determine for all K ∈ J − the largest p ≤ pK , say
p′

K , such that w
p
K ∈ W

ρ
K . If for some K , p′

K does not exists, then L ρ = ∅, otherwise

T 0 := {wp′
K

K : K ∈ J −}. There is however a better choice for T 0 (see Appendix).
In order to determine its computational complexity, the OJI-NWJS algorithm

needs to be specified in more detail. This is done in the Appendix where a pseudo-
code implementation together with a proof of the following complexity result is pro-
vided.

Theorem 4 The OJI-NWJS algorithm runs in time O(n · max{n2,
∑

KqK}).

Herein n denotes the number of jobs. We remark that in the “classical” case where
a job has at most one operation on a given machine, this complexity can be related to
the number m of machines. Then

∑
K∈J − qK ≤ (n − 1)(m + 1), and the OJI-NWJS

algorithm runs in time O(n2 · max{n,m}).
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Table 1 Performance analysis of the OJI-NWJS algorithm

Problem
size

Number of
job insertions

Millisec. per job insertion Performance
ratioGK-Ins. Alg. OJI-NWJS Alg.

20 × 5 31130 3.212 0.359 9

15 × 10 14947 6.690 0.094 71

20 × 10 7392 13.528 0.175 77

30 × 10 2677 37.355 0.544 69

50 × 10 797 125.471 2.304 54

15 × 15 5839 17.126 0.081 211

20 × 15 2898 34.507 0.162 213

20 × 20 1565 63.898 0.171 374

5 An optimal job insertion-based heuristic for the NWJS problem

Prior to this work, we devised a job insertion algorithm for the NWJS that is a
straightforward implementation of our general insertion algorithm described in Gröf-
lin and Klinkert (2007). This implementation, which we refer to as the GK-insertion
algorithm, yielded optimal insertions, however its computation time was relatively
high and limited its use, for instance within a heuristic for the NWJS problem.

It is of interest to compare the computation times of the OJI-NWJS algorithm
developed in the previous section and the GK-insertion algorithm. For this purpose,
we measured the average computation time per job insertion in NWJS problems of
size n × m, where the numbers n of jobs and m of machines range from 20 to 50 and
5 to 20. The sample size (number of job insertions) ranges from 31130 for size 20×5
to 797 for size 50 × 10.

The average time per job insertion for the GK-insertion algorithm and the OJI-
NWJS algorithm, as well as the ratio of the first to the second, are recorded in Table 1,
columns 3, 4 and 5. The OJI-NWJS algorithm is many times faster than the GK-
insertion algorithm as the ratios show.

The high performance of the OJI-NWJS algorithm motivated the development of
a heuristic for the NWJS problem that is based on optimal job insertion. This method
can be described as follows.

A feasible initial selection S is built up by successively inserting optimally a job.
Then, a simple descent local search is used to improve the initial selection. A neighbor
is generated by extracting and reinserting optimally a job. For each job on a longest
path from σ to τ in graph F(S), one such neighbor is generated. If a neighbor yields
a lower makespan, the current selection is reset to this neighbor. The algorithm stops
if a local optimum is reached. The neighborhood just described will be referred to
as N1. This neighborhood is rather small (of size |J | at most) and tests showed
that local search using N1 reaches a local optimal solution relatively fast. For this
reason, we also examined a larger neighborhood N2. A neighbor in N2 is gener-
ated by extracting two jobs and reinserting them successively. One such neighbor
is generated for each ordered pair of jobs. Our second local search algorithm uses
neighborhood N1 until a local optimal selection is found and continues then with
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neighborhood N2. If a neighbor in N2 yields a lower makespan, the current selec-
tion is reset to this neighbor and local search continues again with neighborhood N1.
The algorithm stops if no better neighbor is found in N2. Local search is repeated
from various initial selections generated by random job insertion orders until a given
computation time limit is reached.

The two described algorithms, based on optimal job insertion (using job inser-
tion algorithm OJI-NWJS) and local search with neighborhoods N1 and N1 ∪ N2

respectively, will be referred to as OJILS1 and OJILS2.

6 Computational results

OJILS1 and OJILS2 have been implemented in Java and run on a PC with 2.83 GHz
processor and 2 GB memory. Extensive tests have been performed on the following
well-known benchmark instances for job shop scheduling problems: abz7-9 proposed
by Adams et al. (1988), la11-15/21-40 by Lawrence (1984), swv01-20 by Storer et
al. (1992) and yn1-4 by Yamada and Nakano (1992). These instances are interpreted
as “classical” no-wait job shop instances without setup times, i.e. γij = pi for a pair
i, j of consecutive operations of a job. For each instance, five independent runs were
performed.

We first compared the algorithms OJILS1 and OJILS2 with each other. Table 2
shows numerical results for a time limit of 1800 seconds per run. The first block (col-
umn 2-3) displays the average results (over five runs) and the second block (column
4-5) the best results (over five runs) achieved by OJILS1 and OJILS2. The instances
are grouped according to size, e.g. the group 20 × 5 contains instances with 20 jobs
and 5 machines. The best values (between OJILS1 and OJILS2) are in boldface and
values known to be optimal are annotated by an asterisk.

Compared with OJILS1, the average results (avg) of OJILS2 are better, equal and
worse in 35, 16 and 1 instances, respectively. Over all instances, OJILS2 is 1.0% bet-
ter. The best results (best) of OJILS2 are better, equal and worse in 20, 27 and 5 in-
stances, respectively. Altogether, these numbers suggest that OJILS2 should be given
preference over OJILS1.

We then compared the results of OJILS2 with the best current benchmarks for the
NWJS to our knowledge, namely the results of Bozejko and Makuchowski (2009),
van den Broek (2009) and Zhu et al. (2009). Before presenting this comparison, we
briefly sketch the approaches taken by these authors.

Bożejko and Makuchowski (BM) apply a hybrid tabu search algorithm. A feasi-
ble schedule is built by successively inserting each job as early as possible without
changing the starting times of already scheduled jobs. This procedure is repeated with
various job insertion orders generated within a tabu search.

Zhu et al. (Zhu) propose a complete local search with limited memory based on a
so-called shift timetabling procedure. This procedure builds a feasible schedule again
by successively inserting each job without changing the starting times of already
scheduled jobs. A job is either placed as early as possible or after all other jobs.

Van den Broek (vdB) proposes a heuristic which successively inserts optimally a
job. He formulates each job insertion as a mixed integer linear programming problem
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Table 2 Numerical results of OJILS1 and OJILS2 (bold: best, *: optimal)

avg best

OJILS1 OJILS2 OJILS1 OJILS2

(20 × 5)

la11 1620 1619* 1619* 1619*

la12 1429 1422 1414* 1414*

la13 1590 1584 1587 1580*

la14 1588 1591 1578* 1578*

la15 1673 1671* 1671* 1671*

(15 × 10)

la21 2030* 2030* 2030* 2030*

la22 1852* 1852* 1852* 1852*

la23 2021* 2021* 2021* 2021*

la24 1972* 1972* 1972* 1972*

la25 1906* 1906* 1906* 1906*

(20 × 10)

la26 2531 2485 2506 2477

la27 2673 2656 2649 2649

la28 2571 2552 2554 2546*

la29 2362 2335 2300* 2300*

la30 2527 2472 2452* 2452*

swv01 2318* 2318* 2318* 2318*

swv02 2417* 2417* 2417* 2417*

swv03 2381* 2381* 2381* 2381*

swv04 2462* 2462* 2462* 2462*

swv05 2333* 2333* 2333* 2333*

(30 × 10)

la31 3636 3583 3604 3559

la32 3982 3901 3964 3863

la33 3605 3543 3580 3510

la34 3695 3602 3670 3583

la35 3733 3627 3716 3591

avg best

OJILS1 OJILS2 OJILS1 OJILS2

(50 × 10)

swv11 5694 5514 5679 5456

swv12 5658 5537 5601 5481

swv13 5769 5628 5701 5571

swv14 5519 5403 5404 5382

swv15 5493 5382 5420 5351

swv16 6108 5936 6026 5857

swv17 5881 5729 5839 5689

swv18 5950 5758 5922 5668

swv19 6178 5965 6064 5885

swv20 5859 5752 5818 5624

(15 × 15)

la36 2685* 2685* 2685* 2685*

la37 2831* 2831* 2831* 2831*

la38 2525* 2525* 2525* 2525*

la39 2660* 2660* 2660* 2660*

la40 2564* 2564* 2564* 2564*

(20 × 15)

abz7 1573 1572 1528 1555

abz8 1643 1639 1569 1627

abz9 1593 1561 1572 1549

swv06 3280 3278* 3278* 3278*

swv07 3202 3188 3188 3188

swv08 3423 3423 3423 3423

swv09 3251 3246 3246 3246

swv10 3458 3455 3451 3451

(20 × 20)

yn1 2401 2392 2378 2366

yn2 2387 2320 2293 2295

yn3 2338 2319 2288 2294

yn4 2485 2463 2424 2430

and solves it with CPLEX. He also develops an exact approach based on branch &
bound, using his heuristic solution as an initial upper bound. The branch & bound
method solves smaller instances within minutes and is also used for larger instances
as a heuristic providing good solutions within a given run-time.

Table 3 displays for each instance average and best results over five runs (denoted
below avg and best) achieved by OJILS2, together with benchmarks of BM, Zhu
and vdB. We tried to use the same computation time as reported by these authors. For
this reason, Table 3 has been divided into three blocks. The first block (column 2-4)



J Comb Optim (2013) 26:345–371 365

Table 3 Comparison of OJILS2 results avg1, avg2, avg3 and best with benchmarks BM, vdB, Zhu, BM2
and Zhu2 (bold: best, *: optimal)

instance avg1 BM T1 avg2 vdB Zhu T2 avg3 best BM2 Zhu2 opt

(20 × 5)

la11 1646 1704 11 1625 1654 1716 447 1619* 1619* 1621 1671 1619

la12 1480 1500 10 1441 1451 1506 498 1421 1414* 1434 1452 1414

la13 1614 1696 17 1592 1595 1661 640 1582 1580* 1580* 1624 1580

la14 1670 1722 10 1617 1578* 1721 465 1578* 1578* 1610 1691 1578

la15 1717 1747 7 1680 1686 1749 484 1671* 1671* 1686 1694 1671

(15 × 10)

la21 2043 2191 5 2030* 2030* 2104 306 2030* 2030* 2030* 2048 2030

la22 1891 1922 3 1852* 1852* 1912 354 1852* 1852* 1852* 1887 1852

la23 2071 2126 5 2021* 2021* 2098 307 2021* 2021* 2021* 2032 2021

la24 2006 2132 5 1972* 1972* 2048 422 1972* 1972* 1972* 2015 1972

la25 1911 2020 6 1906* 1906* 1971 297 1906* 1906* 1906* 1917 1906

(20 × 10)

la26 2580 2738 14 2495 2598 2707 812 2478 2477 2506 2553 2467

la27 2728 2794 27 2666 2755 2838 834 2638 2611* 2675 2747 2611

la28 2662 2741 24 2557 2722 2752 810 2551 2546* 2552 2624 2546

la29 2425 2596 12 2340 2427 2539 778 2320 2300* 2300* 2489 2300

la30 2642 2791 12 2507 2572 2743 822 2452* 2452* 2452* 2665 2452

swv01 2338 2424 11 2318* 2344 2389 641 2318* 2318* 2318* 2328 2318

swv02 2433 2484 16 2417* 2430 2493 777 2417* 2417* 2417* 2418 2417

swv03 2411 2404 17 2381* 2517 2483 757 2381* 2381* 2381* 2415 2381

swv04 2509 2545 23 2462* 2635 2562 675 2462* 2462* 2462* 2542 2462

swv05 2365 2489 22 2333* 2555 2495 712 2333* 2333* 2333* 2333* 2333

(30 × 10)

la31 3627 3869 151 3578 3708 3884 2588 3578 3556 3498 3745 –

la32 3990 4045 176 3873 4337 4259 2698 3849 3776 3882 4028 –

la33 3644 3751 120 3524 3976 3842 2587 3521 3501 3454 3749 –

la34 3695 3936 102 3601 4161 3932 2754 3589 3568 3659 3824 –

la35 3750 3918 120 3627 3945 3984 2615 3627 3591 3552 3760 –

(50 × 10)

swv11 5514 5634 1736 – – – – 5512 5456 5564 – –

swv12 5519 5465 2212 – – – – 5518 5481 5441 – –

swv13 5621 5807 2360 – – – – 5606 5571 5628 – –

swv14 5417 5458 1602 – – – – 5388 5369 5401 – –

swv15 5372 5619 2076 – – – – 5366 5334 5435 – –

swv16 5943 6233 1348 – – – – 5886 5779 5843 – –

swv17 5729 5900 1760 – – – – 5689 5646 5780 – –
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Table 3 (Continued)

instance avg1 BM T1 avg2 vdB Zhu T2 avg3 best BM2 Zhu2 opt

swv18 5785 5931 1430 – – – – 5731 5668 5785 – –

swv19 5967 6283 1481 – – – – 5956 5885 5997 – –

swv20 5752 5945 1843 – – – – 5721 5620 5724 – –

(15 × 15)

la36 2757 2893 9 2685* 2692 2778 535 2685* 2685* 2685* 2685* 2685

la37 2931 3107 7 2831* 2977 3019 505 2831* 2831* 2831* 2962 2831

la38 2593 2706 6 2525* 2571 2676 497 2525* 2525* 2525* 2617 2525

la39 2687 2725 9 2660* 2706 2776 558 2660* 2660* 2687 2697 2660

la40 2573 2804 12 2564* 2709 2709 283 2564* 2564* 2580 2594 2564

(20 × 15)

abz7 1643 1775 20 – – – – 1559 1528 1592 – –

abz8 1686 1727 51 – – – – 1628 1606 1642 – –

abz9 1619 1705 52 – – – – 1561 1549 1562 – –

swv06 3312 3463 29 3278* 3449 3457 1136 3278* 3278* 3290 3376 3278

swv07 3225 3299 32 3188 3357 3321 1176 3188 3188 3188 3271 –

swv08 3428 3567 29 3423 3949 3634 1149 3423 3423 3423 3530 –

swv09 3293 3439 39 3246 3355 3362 1053 3246 3246 3270 3307 –

swv10 3511 3561 23 3455 3790 3564 1142 3451 3451 3462 3488 –

(20 × 20)

yn1 2461 2630 68 – – – – 2374 2366 2360 – –

yn2 2457 2647 41 – – – – 2317 2295 2370 – –

yn3 2397 2465 134 – – – – 2299 2288 2320 – –

yn4 2542 2630 53 – – – – 2443 2402 2513 – –

reports OJILS2 results (avg1) and results of BM with their run-time T1. The second
block of four columns compares OJILS2 results (avg2), results of vdB and average
results of Zhu over 20 runs with their run-time T2. The third block of four columns
shows results with high run-times. Column avg3 and best report OJILS2 average and
best results after a computation time of 3600 seconds. Column BM2 shows results
of Bożejko and Makuchowski with so-called “unlimited” run-time and column Zhu2
contains the best results over 20 runs of Zhu et al. The last column opt displays
optimal values for some instances taken from (van den Broek 2009). The best values
of each block are put in boldface and optimal values are annotated by an asterisk.

Results avg1 are in 50 (out of 52) instances better than BM and, on average over
all instances, they are 3.7% better. Results avg2 systematically dominate Zhu and
are better than vdB in 29 out of 35 instances. vdB reports a better value only for
one instance (la14). On average, avg2 is 4.0% and 5.4% better than vdB and Zhu,
respectively. Results avg3 are slightly better than BM2. Indeed, out of 52 instances,
avg3 is better, equal and worse in respectively 28, 16 and 8 instances. On average,
avg3 is 0.3% better than BM2. Finally, observing the values best, in 25 out of 26
instances with known optimum, OJILS2 reached the optimum, and in the remaining
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26 instances with unknown optimum, it improved the best benchmark 19 times and
matched it two times.

Altogether, the algorithm OJILS2 appears competitive when compared to the best
current approaches.

7 Concluding remarks

We provided a new compact formulation of the no-wait job shop problem (NWJS)
and formulated in that framework the optimal job insertion problem (OJI-NWJS). We
characterized all feasible insertions of makespan less than ρ (for any given bound ρ)
as all stable sets of prescribed cardinality in an associated comparability graph and
presented a strongly polynomial and efficient algorithm for the OJI-NWJS.

The new compact formulation of the NWJS is certainly in part accountable for
the high efficiency of the proposed OJI-NWJS algorithm. We believe it also to be
valuable in future solution approaches for the NWJS. Preliminary tests on (smaller)
NWJS instances formulated as ILP’s (based on the compact formulation) and com-
puted with commercial solvers support this belief.

The high efficiency of the OJI-NWJS algorithm allowed it to be implemented in
a simple local search scheme, as described in Sect. 5. The achieved improvements
in many benchmarks provide support for this approach, and suggest that similar ap-
proaches in other job shop problems using optimal or “near-optimal” job insertion
might be worth studying.

Acknowledgements We thank the anonymous referees for their constructive remarks which led to sev-
eral improvements in the exposition of the paper.

Appendix

We provide an implementation of the OJI-NWJS algorithm, describe some algorith-
mic details necessary to achieve running time O(n · max{n2,

∑
KqK }) and prove this

complexity.
Before proceeding, we observe that, considering the sequence of all complete sets

generated in the OJI-NWJS algorithm, for any set T in the sequence, the next set
T ′ is such that T ′ � T . Therefore finding T ′ in Wρ given T = {wpK

K : K ∈ J −}
can be restricted to Wρ |T , the node set Wρ where for each K ∈ J −, all nodes
w

p
K ∈ W

ρ
K with p > pK are deleted from W

ρ
K , obtaining W

ρ
K |T . We now sketch our

implementation. A pseudo-code with line numbers is provided in Listing 1, to which
we will refer in the text.

In an initialization step (lines 1 to 3), the all-pairs longest paths in graph (J +,B ∪
UR, c) are computed, e.g. with the algorithm of Floyd and Warshall, and T is set as
T := {wqK

K : K ∈ J −}, the insertion placing J after all other jobs. Then, as long as
optimality of T is not established, the while loop (lines 6 to 38) is executed.

A generic loop iteration starts with T := {wpK

K : K ∈ J −} maximal in L ρ , cal-
culates its makespan ω(T ), resets ρ to ω(T ), and determines an initial complete set
T ′ ⊆ Wρ with T ′ ≺ T . T ′ is then successively updated on the basis of Proposition 4
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1 / / I n i t i a l i z a t i o n
2 Compute lKL f o r a l l K,L ∈ J + ; o p t i m a l := f a l s e ;
3 f o r _ a l l K ∈ J − do pK := qK ; end_for
4

5 whi le o p t i m a l = f a l s e do
6 / / C a l c u l a t e makespan ρ o f T := {wpK

K : K ∈ J −} .
7 l1 := max{lσK + c

pK

KJ : K ∈ J −} ;
8 J 1 := {K ∈ J − : lσK + c

pK

KJ = l1} ;
9 l2 = max{cpK

JK + lKτ : K ∈ J −} ;
10 ρ := max{lστ ; cσJ + cJτ ; l1 + cJτ ; cσJ + l2; l1 + l2} ;
11

12 / / I n i t i a l i z e s e t T ′ and s e t S o f nodes t o be scanned .
13 i f ρ = max{lστ ; cσJ + cJτ ; cσJ + l2} then
14 o p t i m a l := t rue ; re turn ;
15 e n d _ i f
16 f o r _ a l l K ∈ J − do p′

K := pK ; end_for

17 T ′ := {wp′
K

K : K ∈ J −} ;
18 S := ∅ ;
19 f o r _ a l l K ∈ J 1 do

20 i f p′
K = 1 or cσJ + c

p′
K−1

JK + lKτ ≥ ρ then
21 o p t i m a l := t rue ; re turn ;

22 e l s e p′
K := p′

K − 1 ; S := S ∪ w
p′

K

K ;
23 e n d _ i f
24 end_for
25

26 / / Scann ing Phase

27 whi le S ∩ T ′ 	= ∅ , ge t , say , w
p′

K

K ∈ S ∩ T ′ and sc a n i t :
28 f o r _ a l l L ∈ J − − K do
29 p := p′

L ;

30 whi le (w
p′

K

K ,w
p
L) ∈ Yρ do

31 p := p − 1;
32 i f w

p
L /∈ Wρ then o p t i m a l := t rue ; re turn ; e n d _ i f

33 end_whi le

34 i f p < p′
L then p′

L := p ; S := S ∪ w
p′

L

L ; e n d _ i f
35 end_for

36 S := S − w
p′

K

K ;
37 end_whi le
38 f o r _ a l l K ∈ J − do pK := p′

K ; end_for
39 end_whi le
40 / / T := {wpK

K : K ∈ J −} w i t h makespan ρ

41 / / c o r r e s p o n d s t o an o p t i m a l i n s e r t i o n .

Listing 1 OJI-NWJS algorithm
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until T ′ is maximal in L ρ or L ρ = ∅. This is achieved by repeatedly applying a
scanning operation to an unscanned node w of T ′, which in effect deletes all succes-
sor nodes of w from Wρ |T ′. If in the process for some K , W

ρ
K |T ′ becomes empty,

L ρ = ∅, otherwise T ′ is updated. Eventually, either L ρ = ∅ or T ′ is such that its
nodes have been scanned without changing T ′, hence T ′ is stable and therefore max-
imal in L ρ .

A straightforward implementation of the scanning operation does not yield how-
ever the claimed computational complexity, as a node might be scanned more than
once. Fortunately, with the calculation of the makespan ω(T ), either L ρ = ∅ is de-
tected or an initial set T ′ ≺ T can be determined whose only nodes to be scanned are
in T ′ − T (lines 6 to 24).

Proposition 5 Let T := {wpK

K : K ∈ J −}, l1 := max{lσK + c
pK

KJ : K ∈ J −} and
l2 := max{cpK

JK + lKτ : K ∈ J −}.
(i) ω(T ) = max{lστ ; cσJ + cJτ ; cσJ + l2; l1 + cJτ ; l1 + l2}

(ii) If ρ := ω(T ) = max{lστ ; cσJ + cJτ ; cσJ + l2}, then L ρ = ∅.

Proof (i) A longest στ -path either avoids J , or goes through J , visiting only one job
(J ), or more than one job, with J being first or last, or between two jobs on the path.

(ii) If ω(T ) = lστ or cσJ + cJτ , T is optimal since both lστ and cσJ + cJτ are
lower bounds on ω(T ). If ω(T ) = cσJ + l2 = cσJ + c

pK

JK + lKτ for some K ∈ J −,
by Proposition 1 and (12), w

p
K /∈ Wρ for all p ∈ {1, . . . , pK }, hence L ρ = ∅. �

Assume now ρ := ω(T ) > max{lστ ; cσJ +cJτ ; cσJ + l2}, therefore ρ = max{l1 +
cJτ ; l1 + l2}, and let

J 1 := {
K ∈ J − : lσK + c

pK

KJ = l1}, T1 := {
w

pK

K : K ∈ J 1} ⊆ T

J 2 := {
K ∈ J − : cpK

JK + lKτ = l2}, T2 := {
w

pK

K : K ∈ J 2} ⊆ T .

Lemma 1 Let T := {wpK

K : K ∈ J −}. Either (i) or (ii) holds:

(i) T 	⊆ Wρ : then T −Wρ = T1 and for all v ∈ T ∩Wρ = T −T1, v has no successor
in Hρ |T .

(ii) T ⊆ Wρ : then for any v ∈ T , (v,w) ∈ Yρ |T ⇔ v ∈ T2 and w ∈ T1.

Proof (a) We show first that

for any w
pK

K ∈ T ∩ Wρ , there is no (w
pK

K ,w
p
L) ∈ Yρ with p < pL. (25)

Assume the contrary. By (15), K 	= L and by (13)

(
w

pK

K ,w
p
L

) ∈ Yρ ⇔
{

c
pK

JK + c
p
LJ + lKL > 0 or

c
pK

JK + c
p
LJ + lKτ + lσL ≥ ρ.

(26)

By Proposition 1, c
p
LJ < c

pL

LJ . If the first inequality in (26) holds, c
pK

JK + c
pL

LJ + lKL >

0, contradicting the stability of T in H . Hence c
pK

JK + c
pL

LJ + lKτ + lσL > ρ. But then
l1 + l2 ≥ c

pK

JK + c
pL

LJ + lKτ + lσL > ρ, a contradiction to ρ = max
{
l1 + cJτ ; l1 + l2

}
.
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(b) Assume now T 	⊆ Wρ . We show that ρ = l1 + cJτ , T − Wρ = T1 and T ∩ Wρ

is stable in Hρ , thus, in view of (25), proving i) of the lemma statement.
Let w

pK

K ∈ T − Wρ . Since w
pK

K /∈ Wρ , by (12)

cσJ + c
pK

JK + lKτ ≥ ρ or lσK + c
pK

KJ + cJτ ≥ ρ.

Since we assume ρ > cσJ + l2, the second inequality must hold, hence

l1 + cJτ ≥ lσK + c
pK

KJ + cJτ ≥ ρ = max
{
l1 + cJτ , l

1 + l2}, (27)

and therefore equality must hold in the inequalities of (27), so that ρ = l1 + cJτ and
l1 + cJτ = lσK + c

pK

KJ + cJτ , i.e. K ∈ J 1 and w
pK

K ∈ T1. Hence T − Wρ ⊆ T1. Also
T − Wρ ⊇ T1 holds. Indeed, suppose w

pK

K ∈ T1 ∩ Wρ . Since w
pK

K ∈ Wρ , by (12)

cσJ + c
pK

JK + lKτ < ρ and lσK + c
pK

KJ + cJτ < ρ.

Since w
pK

K ∈ T1, K ∈ J 1, hence the second inequality yields l1 +cJτ = lσK +c
pK

KJ +
cJτ < ρ, contradicting ρ = l1 + cJτ .

Finally, we show that T ∩ Wρ is stable in Hρ . Let w
pK

K and w
pL

L ∈ T ∩ Wρ ,
K 	= L, and suppose (w

pK

K ,w
pL

L ) ∈ Yρ . By (13), and since T is stable in H , lσL +
c
pL

LJ + c
pK

JK + lKτ ≥ ρ. Since w
pL

L /∈ T1, lσL + c
pL

LJ < l1, and c
pK

JK + lKτ ≤ l2 so that
l1 + l2 > ρ, a contradiction to ρ = max{ l1 + cJτ ; l1 + l2}.

(c) Assume T ⊆ Wρ . We show that ρ = l1 + l2 and for any v,w ∈ T , (v,w) ∈
Yρ |T if and only if v ∈ T2 and w ∈ T1, thus, in view of (25), proving (ii) of the
lemma statement.

First, since T ⊆ Wρ , w
pK

K ∈ Wρ for all K ∈ J −, hence by (12), lσK + c
pK

KJ +
cJτ < ρ for all K ∈ J −, and therefore l1 + cJτ < ρ so that ρ = max{l1 + cJτ ; l1 +
l2} = l1 + l2.

Next, T1 ∩ T2 = ∅. Indeed, suppose w
pK

K ∈ T1 ∩ T2. Then lσK + c
pK

KJ = l1 and
c
pK

JK + lKτ = l2, hence lσK + c
pK

KJ + c
pK

JK + lKτ = l1 + l2 = ρ. But c
pK

KJ + c
pK

JK ≤ 0,
so that lσK + lKτ ≥ ρ, a contradiction to lστ < ρ.

Moreover, let v = w
pK

K , w = w
pL

L . If w
pK

K ∈ T2 and w
pL

L ∈ T1, then c
pK

JK + lKτ =
l2 and lσL + c

pL

LJ = l1, hence c
pK

JK + lKτ + lσL + c
pL

LJ = l2 + l1 = ρ, and by (13),
(w

pK

K ,w
pL

L ) ∈ Yρ . Conversely, suppose (w
pK

K ,w
pL

L ) ∈ Yρ . Then by (13), and since
T is stable in H , c

pK

JK + lKτ + lσL + c
pL

LJ ≥ ρ = l2 + l1. Since also c
pK

JK + lKτ ≤ l2

and lσL + c
pL

LJ ≤ l1, equality must hold in these two inequalities, hence w
pK

K ∈ T2 and
w

pL

L ∈ T1. �

The initial set T ′ (denoted T 0 in Sect. 4.3) is determined in lines 13 to 25 based
on Lemma 1. All nodes of T1 can be deleted, since either T − Wρ = T1 or T ⊆ Wρ

and all nodes of T1 are successors of all nodes of T2. Also none of the remaining
nodes of T − T1 have successors in Wρ |T . Then either for some K ∈ J 1, W

ρ
K |T

after deletion of T1 becomes empty and L ρ = ∅, or w
pK−1
K ∈ W

ρ
K |T for all K ∈ J 1:

these nodes are appended to T −T1 to form the initial T ′. Also, only these nodes need
to be scanned.

The following complexity result can now be proven.
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Proposition 6 The OJI-NWJS algorithm runs in time O(n · max{n2,
∑

KqK}).

Proof (i) Initial all-pairs longest paths-computation can be done in O(n3).
(ii) For a given T , the computation effort for calculating the makespan and initial-

izing T ′ and S (lines 6 to 24) is O(n). Also, at most
∑

KqK sets T are generated
overall. Therefore the total effort spent in makespan and initialization of T ′ and S is
O(n

∑
KqK).

(iii) We estimate the overall effort spent in the scanning phase by estimating the
number of iterations of the inner while loop of the scanning phase, i.e. the num-

ber of tests (w
p′

K

K ,w
p
L) ∈ Yρ (line 30). When scanning w

p′
K

K and considering a given

L ∈ J − − K , let test (w
p′

K

K ,w
p
L) ∈ Yρ be called a first test if p = p′

L and an ad-
ditional test if p < p′

L. Now, the number of first tests in the scan of a node is
|J − − K| = n − 2. Also, since each node is scanned at most once, the number
of scanned nodes is at most

∑
KqK . Therefore the overall number of first tests is at

most (n − 2)
∑

KqK . The number of additional tests is less than
∑

KqK since each

additional test (w
p′

K

K ,w
p
L) ∈ Yρ is performed after p has been decremented by 1.

Therefore the overall number of tests is less than (n − 1)
∑

KqK . �
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