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Feathers, hair, egg membranes, bones, urine and
faeces have all been utilized as non-invasive sour-
ces of DNA in vertebrate studies (e.g., Taberlet
and Luikart 1999; Alpers et al. 2003; Idaghdour
et al. 2003; Wisely et al. 2004; Hedmark et al.
2004). In insects, exuviae and caterpillar frass can
serve as non-destructive DNA source (Feinstein
2004). Similar non-invasive sources of DNA are
not yet available for endangered and rare mol-
luscs. In this note, we report on two novel, non-
destructive methods of DNA isolation in the land
snail Arianta arbustorum (L.), and present nine
novel microsatellite loci since previously published
loci yielded a complete lack of heterozygosity
(Locher and Baur 2001).

A conspicuous property of the gastropod integ-
ument is its facility to produce abundant amounts
of mucus and proteineous fluid (Luchtel and
Deyrup-Olsen 2001). Mucus is essential for loco-
motion. Copious mucus secretion can also deter
attacks of invertebrate predators. We collected
mucus samples by smoothly rubbing a 1-ml plastic
tip on the foot of living A. arbustorum. In order to
increase yield of genomic DNA, foot rubbing was
repeated after 10 min using a second 1-ml plastic
tip. Both tips were put together, and were incubated
for 10 min at 70 �C in 200 ml of ATL buffer
(DNeasy Tissue Kit, Cat. No. 69506; QIAGEN
2003) followed by a proteinase K digestion at 55 �C

and buffer and spin column treatment (QIAGEN
2003). Nucleic acids were eluted using 80 ml AE
buffer (QIAGEN 2003). DNA obtained from mu-
cus samples was compared withDNA isolated from
20 to 30 mg foot tissue of the same individuals
(following theDNeasy protocol of QIAGEN2003).

The shell of terrestrial snails has two distinct
layers: the thick, inner ostracum made mostly of
calcium carbonate, and the outer periostracum,
which is proteinaceous, horny and transparent.
Growing juveniles build first the organic periostra-
cum and then deposit the ostracum. Damages to
the newly built, soft periostracum can be repaired
within 2–3 weeks. We removed a piece (ca. 0.5 cm2)
of the newly built, uncalcified periostracum of
immature A. arbustorum. The samples were trans-
ferred in 200 ll ATL buffer and nucleic acids were
isolated as described above for the mucus samples.
The immature snails did not suffer from this treat-
ment. They rebuilt the removed part of the perios-
tracum and continued shell growth as did untreated
control snails. After attaining adult size, the indi-
viduals were frozen for DNA extraction from foot
tissue.

An enriched genomic library was constructed
by ECOGENICS GmbH (Zurich, Switzerland),
with size-selected genomic DNA, ligation into
TSPAD-linker (Tenzer et al. 1999), and magnetic
bead selection of biotin-labeled (CA)13 motifs
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(Gautschi et al. 2000a,b). Of 672 recombinant
colonies, 174 gave positive signals after hybrid-
ization. Plasmids from 72 positive clones were
sequenced and primers were developed for 22
microsatellite inserts. Primers were tested in indi-
viduals from Gurnigelbad, Switzerland (n ¼ 19)
and Tallinn, Northern Estonia (n ¼ 1) using
standard DNA extraction of frozen foot tissue
(QIAGEN 2003). PCR mixture was 10–20 ng of
DNA (2 ll), 0.5 lM of each forward and reverse
primer, 1.5 mM MgCl2 and 2 ll of 10x PCR
buffer, adjusted with ddH20 to 20 ll. PCR was
30–35 cycles, with 95 �C for 30 sec, locus specific
annealing for 30 sec (Table 1), and 72 �C for
30 sec. PCR was finished with an extension of
8 min at 72 �C. Spreadex� EL-400 gels (Elchrom
Scientific AG, Switzerland) were used. Horizontal
electrophoresis was performed with SEA 2000TM

advanced submerged gel electrophoresis equip-
ment (Elchrom Scientific AG). All primer pairs
gave excellent results, with very few or no stutter
bands. A total of 65 alleles were found (Table 1).
Of these, eight alleles were exclusively detected in
the specimen of Estonia, suggesting geographic
differentiation. Six of the tested loci showed a
deviation from Hardy–Weinberg equilibrium that
could be either the result of null alleles or sam-
pling artifacts (Table 1). Moreover, in pairwise
comparison the loci ‘‘C3’’ and ‘‘42’’ showed a
trend (P < 0.06) for linkage disequilibrium (tested
with GENEPOP version 3.1d, see Raymond and
Rousset 1995).

All three DNA sources yielded identical
allelic patterns (Figure 1). In the comparison of
the DNA from the three sources, each 5 ll AE
volume of the mucus and periostracum samples
were used for PCR, whilst 10–20 ng DNA
(solved in 5 ll ddH2O) isolated from the foot
tissue was required (see above). However,
genotyping errors should be checked before
population studies are conducted, because allelic
dropouts may occur in non-invasive samples
(e.g., Taberlet and Luikart 1999; Parsons 2001;
Sefc et al. 2003). The extraction volume of the
two foot rubbing samples (80 ll) is sufficient to
screen 16 loci (or eight loci twice, or four loci
three times; depending on error risk). The amount
of DNA from mucus was increased by repeating
foot rubbing of the focal snail. The use of these
novel sources of DNA need not be limited to
A. arbustorum. The non-destructive methods are

particularly suitable for endangered and rare
terrestrial gastropods and may find wider
applicability.
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