CMS 3: 3-27 (2006)

DOI: 10.1007/s10287-005-0042-0

Computational aspects of minimizing
conditional value-at-risk

Alexandra Kiinzi-Bay, Janos Mayer*

Institute for Operations Research, University of Zurich, Moussonstrasse 15, 8044 Zurich,
Switzerland (e-mail: kuenzi@ior.unizh.ch)

Abstract. We consider optimization problems for minimizing conditional value—
at-risk (CVaR) from a computational point of view, with an emphasis on financial
applications. As a general solution approach, we suggest to reformulate these CVaR
optimization problems as two—stage recourse problems of stochastic programming.
Specializing the L—shaped method leads to a new algorithm for minimizing con-
ditional value—at-risk. We implemented the algorithm as the solver CVaRMin. For
illustrating the performance of this algorithm, we present some comparative com-
putational results with two kinds of test problems. Firstly, we consider portfolio
optimization problems with 5 random variables. Such problems involving condi-
tional value at risk play an important role in financial risk management. Therefore,
besides testing the performance of the proposed algorithm, we also present com-
putational results of interest in finance. Secondly, with the explicit aim of testing
algorithm performance, we also present comparative computational results with
randomly generated test problems involving 50 random variables. In all our tests,
the experimental solver, based on the new approach, outperformed by at least one
order of magnitude all general-purpose solvers, with an accuracy of solution being
in the same range as that with the LP solvers.

Keywords: Conditional value—at-risk; Stochastic programming; Mathematical pro-
gramming algorithms; Stochastic models; Finance; Portfolio optimization; Risk
management

* Financial support by the national center of competence in research “Financial Valuation and Risk
Management” is gratefully acknowledged. The national centers in research are managed by the Swiss
National Science Foundation on behalf of the federal authorities.

C M S Computational Management Science

© Springer-Verlag 2006

4 A. Kiinzi-Bay, J. Mayer

1 Introduction

In the financial industry, value—at-risk (VaR) is a widely used concept for quan-
tifying the downside risk of portfolios. A major drawback of this approach is that
optimization problems, aiming at computing optimal portfolios with respect to VaR,
are typically hard to solve numerically. The reason is that VaR is in general not a
convex function of the portfolio weights. A related concept, conditional value—at—
risk (CVaR), has recently been suggested as an alternative downside risk measure.
This concept enjoys increasing interest in the finance industry. One of the reasons is
that, unlike VaR, the computation of CVaR—optimal portfolios leads to convex pro-
gramming problems. For a finite discrete distribution, the situation is even better:
optimal portfolios can be computed by solving linear programming (LP) problems.
The currently pursued approach is to solve those LP problems by general-purpose
LP solvers.

In this paper, we consider optimization problems aiming at minimizing CVaR
and focus on the computational point of view. The main idea is as follows: the
single—stage CVaR minimization problems can be reformulated as two-stage re-
course problems of stochastic programming. This way we can apply the techniques
available for two—stage recourse problems for solving the CVaR minimization prob-
lems. Specializing the L—shaped method leads to a new algorithm for minimizing
conditional value—at-risk. According to our initial computational experience, the
new method turns out to be quite efficient.

We have developed an experimental implementation of the algorithm as the
solver CVaRMin. For illustrating the computational performance of CVaRMin, we
present comparative numerical results obtained by solving two kinds of test prob-
lems: portfolio optimization problems involving the minimization of CVaR and
randomly generated test problems. For portfolio optimization, we also present some
parametric computational results. The computations have been carried out by using
the model management system SLP-IOR for stochastic linear programming.

2 Conditional value-at-risk

We consider in general the random variable

Ce,n, &) i=n'x —¢& (1)

where x € R” isa vector of decision variables, 1 is an n—dimensional random vector,
and £ is a random variable. (1, &) is defined on a probability space (2, F, P). We
assume that (n, £) has a finite expected value and introduce the notation n = E[n]
and & = E[£]. Positive values of ¢ (x, 1, £) will be interpreted as losses and negative
values as gains. In the sequel, we will concentrate on losses; therefore gains will be
viewed as negative losses. The probability distribution function of ¢ (x, 1, &) will
be denoted by W (x, -) and will be called the profit—loss distribution function. The

Computational aspects of minimizing conditional value-at-risk 5

quantile function v : R" x (0, 1) — R associated with ¢(x, n, &) will be defined
as

v(x,) :=min {y [V(x,y) > a} 2
=min {y|P[{(x,n.§) =y]=a}.

In mathematical terms, for a fixed x and o € (0, 1) the corresponding value of
the quantile function is the left endpoint of the closed interval of the e—quantiles
of ¢(x, n, &). The interpretation in terms of losses is the following: v(x, «) is the
minimal loss level such that with probability « the loss will not exceed v(x, «). In
this context, o will be chosen as a large probability level, for instance, o« = 0.95. In
optimization problems, the goal is to minimize v(x,) or to keep its value below
a prescribed level.

In financial applications, v(x,) is called value-at-risk (VaR) and is widely
used as a risk measure for evaluating ¢ (x, n, £); for a discussion of VaR as a risk
measure see, for instance, Elton, Gruber, Brown, and Goetzmann (2003) or Jorion
(1996). Unfortunately, VaR is not a coherent risk measure as discussed by Artzner,
Delbaen, Eber, and Heath (1999). From the optimization point of view, the most
important implication is that, apart from some special cases, v(x, «) is not a convex
function. Consequently, optimization problems aiming at minimizing v(x,) are
in general non—convex problems and therefore difficult to solve numerically.

Another obvious drawback is the following: although with a high probability
« the loss will not exceed v(x, «), this measure does not account for the loss—size
concerning events when the loss exceeds v(x, o). Motivated by this shortcoming,
Rockafellar and Uryasev (2000) introduced the following risk measure for contin-
uous distribution functions

ve(x, @) :=E[S(x,n,8)[C(x,n,8) = v(x,a)] 3)

with ve (x, o) as the conditional expected loss given that the loss exceeds v(x, «).
The function ve (x, @) is called conditional value-at-risk (CVaR) function. Rock-
afellar and Uryasev have shown that, considered as a risk measure, v¢ is coherent,
and have derived the following representation

1
vc(X,d)=m;n|iz+mE[(§(X, 77»5)_2)+]:| (4)

where yT = max{y, 0} is the positive part of y € R. The set of optimal solutions of
(4) coincides with the interval of the a—quantiles of ¢ (x, n,). The representation
(4) plays a crucial role from the optimization point of view. On the one hand, it
immediately implies that v¢ (x, «) is a convex function of x. On the other hand, it is
the basis of algorithms for the solution of the corresponding optimization problems.
Consequently, this risk measure is well-suited for building optimization problems
aiming at minimizing CVaR.

For general distributions and CVaR defined according to (3), the above repre-
sentation does not hold. According to an idea of Pflug (2000), the representation

6 A. Kiinzi-Bay, J. Mayer

(4) will be taken as the definition of CVaR. For general distributions, Rockafellar
and Uryasev (2002) have shown that CVaR, defined according to (4), has an inter-
pretation in terms of conditional expectation, if the conditional expectation is taken
according to a tail distribution. Acerbi (2002) gave a representation in terms of an
average over o of the VaR values v(x, o). For detailed discussions of the proper-
ties of CVaR see the papers of Rockafellar and Uryasev (2002), Acerbi (2002) and
Acerbi and Tasche (2002).

3 Minimizing CVaR

In this paper, we will concentrate on optimization problems with CVaR in the
objective; for problems involving CVaR constraints see Krokhmal, Palmquist, and
Uryasev (2002). We consider the following prototype problem

min ¢Tx + ve(x, &)
* (5)
st. xeP

where P is a polyhedral set given, for example, in standard form P = {x | Ax =
b, x > 0} with A being an m x n matrix and b € R™. For the sake of simplicity, we
assume that P # ¢ and that P is bounded. Substituting the definition of v¢ (x, o)
from (4), we get the following optimization problem (Rockafellar and Uryasev
(2000))

min ¢Tx + z 4+ 25 E[(nTx — & — 2)]

X,z (6)

st. xeP.

This is a linearly constrained convex programming problem. We observe that (6)
can be equivalently formulated as the following two—stage recourse problem

I}(llzn CT.x +z+]E[QC(.X, z, 1, E)]

st. xeP @
with the recourse subproblem
Qc(x,z,n,8) = 1 myin y
st.y>nTx—g—z (8)
y>0.
The LP dual of the recourse subproblem (8) is
Qc(x,z.n.6) = t1g max (n"x —& —2u o

S.t. O<u<l,

Computational aspects of minimizing conditional value-at-risk 7

which has an optimal solution # = 0 or u = 1, depending on the sign of nTx —& —z,
and the optimal objective value is ﬁ (nTx — & — z)T. This shows the equivalence
of (6) and (7). For a discussion of two—stage recourse problems see, for instance,

Birge and Louveaux (1997), Kall and Mayer (2005b), or Kall and Wallace (1994).

The reformulation (7) has the following algorithmic implication: solution meth-
ods, designed for two—stage recourse problems, can be considered as candidates
for solving the CVaR minimization problem (6). In particular, there are algorithms
available for solving (7) with continuously distributed random vectors (7, &). Ex-
amples of algorithms of this type are the successive discrete approximation method
or the sample average approximation method (SAA); these methods are discussed,
for instance, in Kall and Mayer (2005b), Kall and Wallace (1994), and Linderoth,
Shapiro, and Wright (2005). Note that the algorithm suggested by Rockafellar and
Uryasev (2000) for the solution of (6) is, from the two—stage recourse point of view,
essentially the SAA method.

Notice that (7) has a simple recourse structure (the recourse matrix is a simple
recourse matrix), but besides the right-hand—side, the technology matrix may also
be stochastic. If in (7) only the right-hand—side is stochastic, that is, if n = ¢ with
t € R" holds, then we have a simple recourse problem in the classical sense. For
such problems quite efficient algorithms exists, see Kall and Mayer (2005b) and
Kall and Wallace (1994), and for computational results see Kall and Mayer (2005a).
In the general case, when 7 is random vector with a non—degenerate distribution,
the traditional way for solving such problems in stochastic programming consisted
in applying methods, designed for complete recourse problems, like the methods
mentioned in the previous paragraph.

Recently Klein Haneveld and Van der Vlerk (2002) proposed an algorithm
for general simple recourse problems with a random technology matrix, which
we consider an important development in stochastic programming. Starting with
algorithms for integrated chance constraints, the authors arrive at a cutting—plane
algorithm for general problems with simple recourse structure. For the case of
discrete distributions, their method is essentially the Benders algorithm, specialized
to the structure. In this paper, we start with the two—stage recourse formulation
(7) of CVaR minimization problems and design a specialized version of Benders
decomposition. From the purely mathematical point of view, our proposed method
can be considered as a version of the general method of Klein Haneveld and Van
der Vlerk, as specialized to CVaR minimization.

In the sequel, we will solely consider the case where the probability distribution
of ¢(x, n, &) is finite discrete; the probability distribution is then given by the tableau

Pt ... PN
rA;l...nN (10)

gl EN

8 A. Kiinzi-Bay, J. Mayer

where (7%, £¥) is the k™ realization of (1, £) with the corresponding probability

N
pr>0,Vk=1, ..., N,and) p =1 holds.
k=1
It is well-known and easy to see that in the discretely distributed case the
two—stage recourse problem (7) can be equivalently written as the following linear
programming problem

N
min cTx +z + ﬁ Zpkyk
e k=1

st. () Tx—z—y <& k=1,...,N 1)
>0 k=1,....,N
X eP.

The above LP formulation of the CVaR minimization problem, via the represen-
tation (4), has been proposed by Rockafellar and Uryasev (2000) as a basis for
numerical solution. This result is a breakthrough, regarding the numerical solu-
tion of optimization problems involving CVaR. In their numerical experiments, the
authors use a general-purpose LP solver for solving (11).

We will explore how the special structure of the problem can be utilized for
building an algorithm for our problem. The starting point is the L—shaped method
for two—stage recourse problems with finite discrete distribution, which is one of
the most widely used technique for this problem class; see, for instance, Birge and
Louveaux (1997), Kall and Mayer (2005b), or Kall and Wallace (1994). The L-
shaped algorithm is based on the Benders decomposition method (Benders (1962)),
which has been specialized for the structure of two—stage recourse problems by
Van Slyke and Wets (1969). We propose an algorithm for the solution of the CVaR
minimization problem (6) by further specializing the L-shaped method for the
structure of the equivalent two—stage recourse problem (7).

The main idea of the L—shaped method is a reformulation of (7) in terms of
optimal solutions u* of the dual recourse-subproblems (9) corresponding to the
realizations (ﬁk , ék), k = 1,..., N. As we have seen above, the dual problem
(9) is extremely simple: the dual-feasible vectors are just scalars, and the optimal
solution of the dual problem is either u¥ = 0 or u¥ = 1. With the L-shaped
method, the (aggregate) cuts are constructed on the basis of the N-dimensional
vector (ul, ..., u™)T. In our case, this is a binary vector, which can be identified
in a one-to—one manner with a subset of the index—set A' = {1, ..., N}; this
identification is done by choosing those indices k as elements for which u* = 1
holds. Consequently, the equivalent formulation of (7) in terms of Benders cuts

Computational aspects of minimizing conditional value-at-risk 9

assumes the following form

min ¢Tx +z+ ﬁ w

X,Z,w

st. Y pe ((ﬁk)Tx L z) —w<0, KCN (12)
kelkC

X e P

which will be called the full master problem. Note that in (12) we have 2V in-
equalities out of which the inequality corresponding to KL = just requires the
non—negativity of w. For large N this results in master problems having an as-
tronomical number of inequality constraints. Taking N = 100, for instance, we
have no chance to set up (12) for numerical solution nor to solve it directly by a
general—purpose LP solver. Notice that, in general, many of the constraints in (12)
may be redundant; due to the constraint x € P, not all of the N—dimensional binary
vectors will appear in the underlying duality consideration.

The idea of the L—shaped method is constraint—generation: the constraints are
included into (12) in a successive manner. In each step the current relaxed master
problem

F, :=£%%0Tx+z+ﬁw
s.t. Zpk((ﬁk)Tx—é"—z) —w<0, i=1,...,v
keK; (13)
w >0
X eP

is solved, where v is the number of constraints generated so far, and K; C NV Vi,
Ki # K fori # 1. It is easy to see that under our assumptions this problem has an
optimal solution. Based on the solution of (13), the next constraint is added (a cut
is generated).

Before proceeding with the formal specification of the algorithm, let us pause
for a moment for discussing some implications of the equivalent representation
(12). Let

N
D= {(x,z,w) (i B =) 50}.

k=1
We have the following polyhedral representation for this set:

Proposition 1

=) {(x,z,wnZpk((ﬁ")Tx—ék—z)—wsO} (14)

KcN kek
with the sum defined as zero for K = (0.

10 A. Kiinzi-Bay, J. Mayer

Proof. The proposition follows immediately from the equivalent representation
(12). An alternative, direct proof is based on the following fact: for arbitrary real
numbers «fp, ..., ay the equality

N
o = max o
; k ICe./\f]§C

obviously holds, and the maximum on the right-hand-side is attained for the set
K* = {k | ax > 0}. This implies the proposition. o

Proposition 1 is the CVaR—-analogue of a polyhedral representation result con-
cerning integrated chance constraints of Klein Haneveld and Van der Vlerk (2002).
The direct proof given above follows the same lines as the proof in the cited paper.

The formal specification of the L—shaped method, as specialized for (6) with a
finite discrete distribution, follows. We introduce the notation

A=Y s &= Y i pi=) i (15)

kG’C,‘ kGK:,‘ kEICl‘

and utilize this to formulate the relaxed master problem (13) as

min ch—}—z—i—ﬁw

X,Z, W
s.t. ﬁﬁ]x —piiz —w=<§g,i=1,...,v (16)
w=>0
X e P.

The algorithm runs as follows.

Step 0. (Initialize)
Let Ky := N and consequently 7j[;) = 7, é[l] =&, and ppj) = 1. Set
v := 1. The single inequality constraint in the relaxed master problem
willbe 7Tx —z — w < €.

Step 1. (Solve the relaxed master problem)
Solve the current relaxed master problem (16). Let (x*, z*, w*) be an
optimal solution, and let

K*:=1{k|1<k<N,)Tx*—E& —z*> 0}and
wii= Y pe (@97 -8 - 7).

ke
Step 2. (Check for optimality)

If wi — w* < 0 then Stop; x* is an optimal solution of (6). Otherwise
continue with the next step.

Computational aspects of minimizing conditional value-at-risk 11

Step 3. (Append a cut to the relaxed master problem)
Set v := v + 1, K, = K*, and compute iy, &[v) and pr, according
to (15). Append the corresponding cut to the set of constraints in the
relaxed master problem (16). Continue with Step 1.

For the sake of completeness, we state the well-known finiteness result concerning
Benders decomposition and give a direct proof for it in our special case.

Proposition 2 The above algorithm finds an optimal solution of (6) in a finite num-
ber of iterations.

Proof. If in Step 1 K* = K; holds for some 1 < i < v, then the stopping criterion
holds, and the algorithm stops in Step 2. Thus, none of the subsets K; C N is
repeated, and consequently the algorithm stops after a finite number of iterations.
The optimal objective value F , := cTx* + z* + ﬁ w* of the relaxed master
problem (13) is obviously a lower bound for the optimal objective value of (6). On
the other hand, we have the inequality

oo (9T = E =) = 3 e (T - -) =t

kel kelC*

which holds for any I C N, due to the definition of C*. Thus, (x*, z*, w}) is
a feasible solution of the full master problem (12). Consequently, F, = c¢Tx* +
75+ ﬁ w? is an upper bound. Finally, the stopping criterion obviously implies
the inequality F, — F » < 0 which is equivalent to F,=F ,» thus completing the
proof of the proposition. O

From the purely mathematical point of view, our algorithm is the Benders
decomposition method applied to (7). From the computational point of view, the
L—shaped method has been adapted to the special structure of (7). As mentioned
above, the two—stage equivalent (7) has a simple recourse structure with a random
technology matrix, for which Klein Haneveld and Van der Vlerk (2002) proposed
an algorithm for the finitely distributed case. From this viewpoint, our algorithm
may be also considered as a variant of the method of Klein Haneveld and Van der
Vlerk, as applied to the CVaR minimization problem.

Whereas the lower bounds F |, are monotonically increasing, the upper bounds
F, do not form a monotonically decreasing sequence. Therefore, instead of the
stopping criterion F,, — F, < 0, it is reasonable to use for v > 1 the stopping
criterion fv* — F, <0, where fv* is the best (lowest) upper bound found in the
iterations so far. Formally, the definition is Fl* := F; and for v > 1, F: =
min{F,, F,_,}. This observation is due to Benders (1962). It is easy to see that
the modified algorithm is still finite. This modification becomes relevant in the
implementation, where the stopping rule is adapted to the floating point arithmetic
by employing an ¢ > 0 tolerance, see the stopping rule (18) in the next section.
In the basic algorithm, as formulated above, the algorithm will stop at the next

12 A. Kiinzi-Bay, J. Mayer

iteration, if by solving the relaxed master problem an optimal solution of (12) is
obtained.

Finally, let us remark that the polyhedral representation above and the algorithm
presented carry over, with obvious changes, to the case of problems with CVaR
constraints.

4 Computational results

We utilized the model management system SLP-IOR as a workbench for our com-
putational experiments. For a detailed description of the architecture and the features
of SLP-IOR see, for example, Kall and Mayer (1996), Kall and Mayer (2004b), Kall
and Mayer (2005c), and references therein. For the solvers connected to SLP-IOR
also see Mayer (1998). Let us emphasize here one of the features of SLP-IOR: it has
an interface to the solvers available with the general algebraic modeling language
GAMS (Brooke, Kendrick, Meeraus, and Raman (1998); some of those solvers will
participate in our experiments). The computations were carried out on a 2.6 GHz
Pentium-III PC with 1 GB RAM, under the operating system Windows 2000.

For the specialized version of the L—shaped method, as described in Section 3,
we implemented a first experimental solver, called CVaRMin. The solver has been
developed in Delphi 7.0.

For solving LP subproblems in CVaRMin, Minos 5.4 (Murtagh and Saunders
(1978)) has been employed. Minos is a commercial solver, available in source
form, and is primarily aimed at NLP problems. In our algorithm, we have to solve
a sequence of relaxed master LP problems. In this first implementation, the primal
form (13) is solved. However, in the sequence of LP’s, apart from the first one, each
LP differs from its predecessor by a single additional row, corresponding to the cut.
Therefore, a straightforward idea is to solve the dual of (13), which then has an
additional column. Thus, the optimal basis of the dual problem from the predecessor
can be employed as a starting basis in a hot start, which most probably results in
reduced computational time. This will be the next step in the future development
of the solver.

Implementing the algorithm, due to the finite precision arithmetic, the stopping
criterion in Step 2 of the method has to be modified by employing a stopping
tolerance ¢. A straightforward stopping criterion is

5ol 1 * *
Fy—F,=— (W} —w’) =g, a7
l—«o

that is, the algorithm is stopped, when the gap between upper— and lower— bounds
becomes smaller than the prescribed tolerance . In most practical cases, the relative
error is what matters, therefore we have implemented in CVaRMin a stopping rule
involving the relative error. Furthermore, instead of the current upper bound, at
iteration v > 1 the best upper bound F,, found so far is used. The implemented

Computational aspects of minimizing conditional value-at-risk 13

stopping rule is
<e (18)

for |F | > 10~8, and f‘:k — F, < ¢ otherwise. In our computations, the stopping
tolerance has been chosen as ¢ = 10710,

In the experiments, besides CVaRMin, we employed several solvers for compar-
ative purposes. On the one hand, we chose the GAMS general-purpose LP solvers
GAMS/Cplex 9.0 and GAMS/OSL Version 1, see Gams Development Corpora-
tion (2004), with the default setting of the run—time—parameters. The nonlinear
programming solvers GAMS/Conopt, GAMS/Minos, and GAMS/Snopt were also
employed. Additionally, we took BPMPD 2.1, an interior point LP solver, devel-
oped by Mészaros (1997), with stopping tolerance 10~10 for the relative duality
gap. Although BPMPD is a general-purpose LP solver, it turned out that it is es-
pecially well-suited for solving two—stage recourse problems with a finite discrete
distribution, see Mészaros (1997) and Kall and Mayer (2005a). We employed also
ODECOM (1985), developed by Ruszczyniski (1986), a regularized version of the
L-shaped method. ODECOM is, according to our computational experience with
two—stage recourse problems in general, an excellent solver for this type of prob-
lems. In the meantime, a significantly improved version and implementation in
the solver Decomp has been developed by Ruszczyiiski and Swigtanowski (1997).
However, this solver is currently not connected to SLP-IOR, for technical reasons.

Concerning the computational experiments, two kinds of test problems were
employed. First, we applied the algorithm for solving portfolio optimization prob-
lems of the CVaR minimization type, similarly as the authors did in Rockafellar and
Uryasev (2000). The difference lies in the choice of the asset classes. Concerning
the algorithm, this gives a first impression on the performance of the method for
small—-scale problems involving 5 random variables. On the other hand, this way we
also provide an example for the practical application of the abstract problem type
(5). For readers interested in portfolio optimization, we have also included some
parametric results. These computations also serve for illustrating the effect of a
warm starting strategy concerning the method. Secondly, we solved randomly gen-
erated test problems with 50 random variables, with the sole purpose of illustrating
the comparative computational performance of the algorithm and the accuracy of
the results.

Interested readers may perform their own experiments: SLP-IOR is freely avail-
able for academic purposes, with the solvers CVaRMin, BPMPD, and QDECOM
connected to it; for obtaining a copy please contact Janos Mayer
(e-mail: mayer@ior.unizh.ch). Concerning the commercial solvers GAMS/Cplex
and GAMS/OSL, however, a separate licence for GAMS and for these solvers is
needed. The test problems used in the computations are also available on request,
in SLP-IOR input format.

14 A. Kiinzi-Bay, J. Mayer

4.1 Portfolio optimization

In this section, we present computational results concerning financial portfolio op-
timization. Let us consider a one—stage portfolio selection problem, which belongs
to the class of problems discussed in Section 3. It corresponds to the classical
standard—problem of Markowitz (1959) with the variance as a risk measure re-
placed by CVaR. Portfolio optimization problems of this kind have firstly been
formulated by Krokhmal, Palmquist, and Uryasev (2002). We have n risky assets
with random returns 7, ..., 7,. Denoting the portfolio weights by x1, ..., x,, we
consider the following problem of the type (5):

min —7Tx 4+ ve (x, @)

n
st Y x =1 (19)
i=1

x>0 i=1,...,n,

where 7 is the vector of expected returns, that means, 7 = E[7] holds. ve (x,) is
the CVaR value corresponding to the loss function ¢ (x, 7) := —7Tx: the loss that
enters the definition of CVaR is the negative portfolio return.

We consider portfolios consisting of five risky asset classes: Swiss equities,
European equities, world equities, Swiss franc bonds, and global bonds. To de-
scribe the properties of these asset classes, we use the price data of the following
total return indices that are all provided by Datastream®: MSCI Switzerland (in
the sequel abbreviated to MSCI.CH), MSCI Europe ex Switzerland denominated
in Swiss francs (MSCLE), MSCI World ex Europe denominated in Swiss francs
(MSCI.W), Pictet General Bond Total (Pictet.Bond), and J.P. Morgan Global Broad
Index denominated in Swiss francs (JPM.Global). The original monthly price data
of the indices range from January 1987 till December 2002. Using S-PLUS® 6.1 for
Windows, Professional Edition, Release 1 and the functions in S+FinMetrics, we
calculated the monthly continuously compounded returns ranging from February
1987 till December 2002; that gives a total number of 191 observations. Figure 1
displays the returns for two of the indices. The horizontal lines in the figure indicate
the zero—return level.

All the following statistical analyzes were also done using S-PLUS and
S+FinMetrics; for analyzing financial time series data with S-PLUS® and with
the functions in S+FinMetrics, see, for example, Zivot and Wang (2003). The mean
7 and the covariance matrix X of the monthly returns are given in Table 1 and Table
2, respectively.

Assuming a joint normal distribution for the asset returns, we generated the real-
izations of the returns by random sampling from a multivariate normal distribution
with the parameters 7 and X. The pseudo-random sequences were generated by
S-PLUS. The straightforward method has been used, which consists of generating
standard normal variates first, followed by a linear transformation with the lower—

Computational aspects of minimizing conditional value-at-risk 15

MSCI.CH: Monthly returns 1987:2 - 2002:12

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Pictet.Bond: Monthly returns 1987:2 - 2002:12

0.020

0.000

T T T T T T T T T T T T T T T T T
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-0.020

Fig. 1. Return data for the MSCI.CH and Pictet.Bond indices

Table 1. Mean of the monthly returns

Index mean return
MSCI.CH 0.007417
MSCLE 0.005822
MSCLW 0.004236
Pictet.Bond 0.004231
JPM.Global 0.005534

Table 2. Covariance matrix of the monthly returns

Index MSCILCH MSCLE MSCIW Pictet.Bond JPM.Global
MSCIL.CH 0.003059 0.002556 0.002327 0.000095 0.000533
MSCLE 0.002556 0.003384 0.002929 0.000032 0.000762
MSCLW 0.002327 0.002929 0.003509 0.000036 0.000908

Pictet.Bond ~ 0.000095 0.000032 0.000036 0.000069 0.000048
JPM.Global ~ 0.000533 0.000762 0.000908 0.000048 0.000564

16 A. Kiinzi-Bay, J. Mayer

Table 3. Test runs #1. Elapsed time summary (sec)

N BPMPD CplexS CplexIP CVaRMin OSL1IS QDECOM

500 0.03 0.05 0.09 0.01 0.23 0.19
1000 0.08 0.13 0.09 0.01 0.72 0.34
3000 0.30 0.69 0.59 0.02 6.40 4.34
5000 0.45 2.52 1.45 0.05 17.88 8.70

10000 1.17 12.31 5.86 0.08 74.59 41.62
20000 242 55.23 30.33 0.19 273.13 137.22

triangular Cholesky—factor of X. For the details of this method see, for instance,
Ripley (1987).

Thus, each realization 7, k = 1, ..., N has an equal probability p; = % to
occur. This is clearly not a highly sophisticated scenario generation method and is
not suitable for prediction purposes. For the computational experiments, the sample
size N is chosen to be 500, 1°000, 3’000, 5’000, 10’000, and 20°000.

Let us note that, under our assumption of having a multivariate normal distri-
bution, the CVaR term in the objective function can be computed as

velx, @) = —Flx +y - VxTZx, (20)

with an appropriately chosen constant y, see Rockafellar and Uryasev (2000). Thus,
(19) can also be directly solved by general-purpose nonlinear programming (NLP)
solvers.

Test runs #1. Portfolio optimization: base case

The test problem battery for these tests consists of 7 test problems. By random
sampling, we generated 6 test problems, corresponding to the sample sizes N =
500, 17000, 3’000, 5’000, 10’000, and 20'000. Besides these, we also took the
nonlinear programming formulation according to (20). The reliability level was
chosen as o = 0.9.

First, we solved the nonlinear programming formulation of (19), with the CVaR
objective function term (20). For this we used GAMS/Conopt, GAMS/Minos, and
GAMS/Snopt. The optimal objective value turned out to be 0.0058959347 with
ve(x* a) = 0.0102071578 and z* = 0.0062906177, where (x* z*) denotes an
optimal solution, see also the equivalent formulation (6). It is well-known that z*
provides an upper bound to the optimal VaR value, see Rockafellar and Uryasev
(2000). The computation time varied between 0.06 and 0.09 seconds across the
different solvers.

Next, we performed comparative test runs with the problems corresponding
to different sample sizes. Besides CVaRMin, we also solved the test problems
with general-purpose LP solvers, where these solvers were used to solve the LP-
equivalent (11). Additionally, we also solved the problems in their two—stage re-
course form, by employing the solver ODECOM. The elapsed time values are
summarized in Table 3.

Computational aspects of minimizing conditional value-at-risk 17

In Table 3, Cplex S and Cplex IP stand for the dual simplex method and for the
barrier method of Cplex, respectively. OSLI S denotes the primal simplex method
of OSL. OSL also has several built—in interior point methods. The corresponding
entries are missing in Table 3, because the solver has crashed with the test problems
with all the interior point options (error message: “more space is needed for the
adjacency matrix”).

Considering the above computing times, for the larger test problems CVaRMin
clearly outperforms the other solvers by at least one order of magnitude. Second
best was the interior—point solver BPMPD, with much better computing times than
the rest of the solvers.

With CVaRMin, the number of cuts was between 25 and 49 for the test problems
considered above.

For a proper interpretation of the results in Table 3, we have to discuss the se-
lection of the solver parameters. By choosing them carefully for each test problem
separately, it would most probably be possible to achieve significant improvements
in the computing time (“tuning”). Let us remark that all general-purpose LP solvers
have several parameters, typically including besides stopping tolerances also fea-
sibility tolerances, see, for instance, Maros (2003). In fact, tuning means to look
for appropriate parameter settings jointly for the solver parameters. Consequently,
just prescribing a smaller stopping tolerance does not automatically lead to more
precise results. For properly tuning solvers, detailed knowledge of the algorithm is
needed in general.

Having in mind users who are not especially acquainted with the algorithms,
the usual methodology in comparative testing of solvers is to perform the tests with
a fixed choice of parameters. This is the case in our tests, too.

For the commercial GAMS solvers we have kept the default parameters. Our
experimental solver CVaRMin has a single parameter, the stopping tolerance ¢, see
(18). This has been fixed as ¢ = 1070, BPMPD being a primal—dual interior point
solver, the stopping rule includes testing the relative duality gap; therefore, we took
for this parameter the same stopping tolerance ¢ = 1070 as for CVaRMin. For
the other parameters of this solver, we kept the default values. Finally, the solver
ODECOM has a single parameter, the cut tightness tolerance, for which we kept
the default value 1075,

‘We now turn our attention to the objective values returned by the various solvers
at termination, interpreted as optimal values. For the sake of simplicity, we will call
them the optimal values returned by the solvers. From the purely mathematical
point of view it is clear that, due to finite—precision arithmetic, these are, in general,
merely approximations to the true optimal value.

Due to the fact that GAMS delivers results with at most 10 decimals, we com-
pared the objective values rounded to this precision. A comparison with a higher
relative precision can be found in the next section, where we discuss the results
with randomly generated test problems.

18 A. Kiinzi-Bay, J. Mayer

Table 4. Test runs #1. Comparing optimal objective values, com-
puted by CVaRMin, with those of the LP and NLP solvers

N e=10"8 e=10"10 ALP ANLP
500 0.0061163484 0.0061163484 0 0.037
1000 0.0062614463 0.0062614463 0 0.062
3000 0.0059029578 0.0059029616 0 0.001
5000 0.0059944576 0.0059944594 0 0.017
10000 0.0059716694 0.0059716704 1078 0.013
20000 0.0058584314 0.0058584365 0 0.006

The general-purpose LP solvers BPMPD, Cplex S, Cplex IP, and OSLI S deliv-
ered the same objective value for each of the test problems, with a sole exception:
the objective value for BPMPD and for sample size 5’000 differs by 4 - 1071 from
the optimal objective value obtained from the rest of the LP solvers. Considering
CVaRMin, the optimal objective values are the same as those of the LP solvers, with
one exception: for the test problem with N = 10'000 the difference is 10~1°. Fi-
nally, for ODECOM the objective values were the same as those of the LP solvers
for sample sizes 500 and 1°000; for the larger sample sizes the deviation varied
between 1078 and 1077,

Table 4 shows the optimal objective values obtained via CVaRMin. Besides the
stopping tolerance ¢ = 10~'°, which was used throughout in the computations,
we have also included results with a higher stopping tolerance ¢ = 10~ for the
purpose of giving an impression on the influence of the stopping tolerance on the
solution. The fourth column (A L P) in the table displays the relative deviation of the
values in the third column (¢ = 10~!9), with respect to the objective value delivered
by the majority of the LP solvers. The fifth column (AN L P) shows the relative
deviation with respect to the objective value from the NLP formulation. For the sake
of completeness: the relative deviation of an approximate value fypprox With respect
|fappr0x - f*|

The optimal objective values of the six test—problems are displayed in Figure 2.
The points corresponding to the five values have been connected by straight line
segments; the horizontal dotted line corresponds to the optimal objective value
0.0058959347 of the NLP problem.

to a base value f* # 0 is computed throughout according to

Test runs #2. Portfolio optimization: several generated samples
In the runs so far, for each one of the selected sample sizes we have generated
a single sample and used this for setting up a corresponding test problem. The
question arises, whether the favorable running times for CVaRMin are due to blind
chance, by having obtained test problems, which are especially favorable for the
algorithm.

For testing this, we generated a test problem battery as follows: for each of
the sample sizes 500, 5’000, 10’000, and 20’000, respectively, we generated 10
different samples by choosing different seeds for the random number generator

Computational aspects of minimizing conditional value-at-risk

19

0.0063

0.0062 -

o o o
(=3 o o
o o o
a [} (=3
© o -
! ! !

0.0058

Optimal objective value

0.0057 -

0.0056

500

T

1'000

T

3'000

T

5'000

[—CVaRMin - - - NLP]

T

10'000 20'000

Sample size

Fig. 2. Optimal objective values corresponding to different sample sizes

Table 5. Test runs #2. Basic statistics for results from runs with
different samples (varying seeds for the generator), computed by
the solver CVaRMin; the optimal NLP value is 0.005896

N=500 N=5’000 N=10’000 N=20’000
min (sec) 0.009 0.032 0.067 0.122
max (sec) 0.043 0.051 0.105 0.191
mean (sec) 0.015 0.045 0.088 0.162
stdev (sec) 0.010 0.007 0.013 0.027
min (ov) 0.004512 0.005546 0.005673 0.005739
max (ov) 0.006246 0.006557 0.006135 0.006059
mean (0v) 0.005230 0.005978 0.005859 0.005893
stdev (ov) 0.000591 0.000344 0.000133 0.000124
mrd (ov) 23.5% 11.2% 4.1% 2.8%

(altogether 40 different seeds). The sample generation method was the same as for

the base case. The samples generated this way have then been utilized for setting

up the test problems for the portfolio optimization problem. Consequently, this test
problem battery consists of 40 test problems.

We let CVaRMin run on these test problems; a basic statistics concerning elapsed
time (sec) is given in Table 5, where stdev abbreviates standard deviation. The
results clearly indicate that the computing times for CVaRMin, used for comparison

in Table 3, are most likely typical for the solver.

As a byproduct of these runs, we can also get an impression concerning the
impact of varying samples on the optimal objective value. Table 5 also shows a

basic statistics concerning the optimal objective values (ov) obtained in the runs.

20 A. Kiinzi-Bay, J. Mayer

The last row in this table displays the maximal relative deviations (mrd) between the
objective values corresponding to the sampled problems and the optimal objective
value of the exact NLP problem. The maximal relative deviations for the sample
sizes N = 500 and N = 5’000 are quite high; but the deviations become smaller
with increasing sample sizes as intuitively expected.

This indicates the following: when solving (19) with a continuous distribution
via sampling and by solving the sampled problem, one must be cautious; just solving
one such approximating problem is quite dangerous. Either statistical analysis is
needed, or at least a large sample size should be chosen. In any case, a fast solver
can be well—utilized for carrying out the necessary computations.

Test runs #3. Portfolio optimization: parametric results

In these tests, we have carried out computations with varying the key problem
parameter «. The results from such computations are of primary interest in financial
portfolio optimization. From the algorithmic point of view, this means solving
a sequence of CVaR optimization problems, with varying values of a problem
parameter.

We considered the portfolio optimization problem (19) for different values of
the probability level «. For this reason, we took an equidistant subdivision of the
interval [0.6, 0.999] into 99 sub—intervals, and solved the sampled version of (19)
for the 100 different values of o € [0.6, 0.999]. The sample size was N = 20/000,
and we utilized our solver CVaRMin for the computations. Figure 3 shows the CVaR
values corresponding to the optimal solution, in dependency on the probability
level .

0.025

0.020 -

0.015 -

CVaR value

0.010 4

0.005 | ———

0.000 T T T T T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.999

Risk level o

Fig. 3. Optimal CVaR value versus o, N = 20’000

Computational aspects of minimizing conditional value-at-risk 21

When solving a sequence of closely related optimization problems, the com-
putations can usually be speeded up, by utilizing results from the previous run for
providing appropriate start—data for the current run (“warm start”). In our case, we
tested two different strategies. First, we have carried out the computations according
to the basic description of the method in Section 3, that is, in the initialization Step
0 we started with a single cut, corresponding to the expected value (“cold start”).
In a second version, for v > 1, we modified the initialization in Step 0 as follows.
As a starting set of cuts, we kept all cuts from the previous optimization, for which
the optimal Lagrange multiplier in the relaxed master problem (13) was non—zero
(“warm start”). This set of cuts is clearly a subset of all active cuts at the optimal
solution of (13). With a cold start, the overall computing time for the 100 problems
was 20.48 sec, whereas with the above described warm start the computing time
was reduced to 16.32 sec, a saving of ~ 20% in elapsed time. Of course, this has to
be tested on a large number of test problems, before definitive conclusions can be
drawn concerning the efficiency of the warm start described above. Although not
directly related to the performance of CVaRMin, for readers interested in financial
portfolio optimization, we also present Figure 4, which displays the dependency of
the asset weights in the portfolio on «. For all «—values considered, wealth is di-
versified over the three asset classes Swiss equities, Swiss franc bonds, and global
bonds, that is, the asset classes European equities and world equities have zero
weight and therefore they do not appear in Figure 4. On the one hand, this shows
that CVaR minimization resulted in a diversified portfolio. On the other hand, the
results are in accordance with financial intuition, the asset classes with zero weight
are the most risky among the asset classes considered here.

Asset weights
© © © © o © o o =
N w . [3,] [} ~ [--] © o

S
=

060 065 070 075 080 085 090 095 099 0.999

Risk level o

HCH Equities B Europ. Equities CWorld Equities & CHF Bonds B Global Bonds

Fig. 4. Asset weights in the portfolio versus o

22 A. Kiinzi-Bay, J. Mayer

Note that the general formulation of (19) in finance also involves a weighting
factor for the risk term in the objective function. This is interpreted as a risk—aversion
parameter; varying this parameter leads to the risk—return frontier. The parametric
computations were performed in the same manner as for varying « and it turned
out that the same three asset classes appear with positive weights throughout.

4.2 Randomly generated test problems

The computational results reported above are all with respect to the portfolio op-
timization problem (19). The special structure of this problem and our assumption
concerning normal distribution may imply that our test problems are biased in fa-
vor of our algorithm. For further testing the performance of CVaRMin, we took
randomly generated test problems.

The sole purpose of this section is to illustrate the performance of CVaRMin on
larger test problems as in the tests so far. We generated instances of the prototype
problem (5), with’ P = {x | Ax = b, x > 0}, where A is an (m x n) matrix and b,
¢ have compatible dimensions. In the test problems, we chose m = 10 and n = 50.
Thus, the random variable 7 is 50—-dimensional; & was chosen as constant £ = 0.

The elements of the matrix A were randomly generated, according to the uni-
form distribution over the range [—2, 2]; the density of non—zeros is 50%. The
right-hand-side vector b has been chosen such that P # @ holds and, finally, the
choice of the objective vector ¢ ensures the existence of an optimal solution.

For the probability distribution of 7, we took a multivariate shifted lognormal
distribution. First, the parameters of the underlying multivariate normal distribu-
tion were computed. The expected values were generated according to a uniform
distribution over [—2, 2]. The standard deviations were computed by multiplying
the expected values with some factors. These factors were generated according to
the uniform distribution over [1.2, 1.6]. The correlation matrices were generated
by employing the method of Marsaglia and Olkin (1984). For the reliability level
o = 0.9 was chosen.

The parameters of 10 different CVaR minimization problems were computed
according to the above scheme first.

The test problem batteries themselves resulted via sampling from the lognormal
distribution. The random variates y for the multivariate normal distribution were
generated by employing the same sampling method, based on the factorization
of the covariance matrix, as described in Section 4.1. These were subsequently
transformed component-wise according to y; := e”’ and finally shifted to the left
by el’.‘, with u being the expected value of the underlying normal distribution. The
sole purpose of this shift was to achieve both positive and negative realization
values. Considering the goal of this test, namely just testing solver efficiency, we
did not care for a statistically meaningful shift.

We generated two test problem batteries, each consisting of 10 test problems,
corresponding to the sample sizes N = 10'000 and N = 20’000, respectively.

Computational aspects of minimizing conditional value-at-risk 23

Table 6. Test runs #4. Elapsed time summary (sec) for N = 10’000

BPMPD CplexS CplexIP CVaRMin OSL1S

Tla 6.22 21.50 15.59 0.70 409.14
T2a 6.80 20.89 21.89 0.46 376.23
T3a 8.89 24.77 24.20 1.16 374.35
T4a 8.03 19.98 13.51 0.55 360.50
TSa 7.11 17.52 17.91 0.26 384.24
Té6a 6.17 19.33 14.83 0.59 372.61
T7a 6.52 22.55 13.47 0.50 353.61
T8a 16.52 22.59 16.16 0.48 345.34
T9a 37.25 20.64 18.55 0.46 452.37
T10a 8.94 20.20 15.16 0.37 311.88

Test runs #4. Randomly generated test problems

We ran the solvers with the same parameter settings as before, in particular, we
employed the same stopping tolerances. The computing times are displayed in
Tables 6 and 7 and show the clear superiority of the solver CVaRMin. The number
of cuts (iterations) varied between 24 and 106.

Table 7. Test runs #4. Elapsed time summary (sec) for N = 20’000

BPMPD CplexS CplexIP CVaRMin OSL1S

T1b 14.45 84.09 89.61 1.33 1826.58
T2b 13.97 82.27 97.92 095 1803.64
T3b 19.59 96.31 65.20 226 1673.38
T4b 23.92 82.16 64.19 .11 1782.70
TSb 21.33 71.94 99.28 0.59 1749.61
Té6b 14.44 75.08 59.38 1.08 1691.39
T7b 127.84 85.25 54.61 0.86 1694.31
T8b 15.08 88.17 96.30 0.74 1680.39
T9b 160.14 81.23 59.78 0.54 2174.45
T10b 25.12 82.70 51.95 096 141835

Notice that the tables do not contain results with QDECOM. The reason is this.
For the battery with N = 10’000, the solver could just solve 4 problems out of 10,
for the rest it seemed to be cycling and the run was terminated at a time limit of 10
minutes.

The question arises, whether the excellent elapsed times for CVaRMin are per-
haps due to imprecise results, in comparison with the general-purpose LP solvers.
We, therefore, chose one of the LP solvers as a basis; we decided to choose a com-
mercial solver for this purpose and took OSLI S. Table 8 shows the results. The
second and third columns display the objective values from OSLI S, rounded to 10
decimals, and corresponding to N = 10’000 and N = 20’000, respectively. The
other columns show the absolute deviation for the objective values. The columns
labelled as 6BP, §CP, and §CV show the absolute deviation in objective value, with
respect to OSL/20°000, for BPMPD, CPlex and CVaRMin, respectively. The two

24 A. Kiinzi-Bay, J. Mayer

Cplex—variants returned the same values, most probably due to a crossover to the
simplex method after the barrier iterations. Thus, the heading for this solvers is
just CP. The last two rows contain the maximal absolute deviation mad and the
maximal relative deviation mrd, respectively. Finally, we employed the notation
kEd for k - 104, which is quite common in numerical analysis.

Notice that the difference in objective values is in general not zero for different
solvers, even if comparing two commercial LP solvers like Cplex and OSLI. The
deviations of our solver CVaRMin are in the same range, as the deviations for the
general LP solvers.

Let us point out that the deviations in the table can by no means be interpreted
as errors, by mistaking the objective values delivered by OSLI S as the true values
(with zero error), rounded to 10 decimal places. Due to finite precision arithmetic,
none of the LP solvers is capable to compute the mathematically exact solution for
all LP’s, in general (see also the discussion regarding solver parameters and various
tolerances above).

Table 8. Test runs #4. Objective values at termination

OSL/10°000 OSL/20°000 SBP sCP sCV
T1 2968.0109913872 2975.1675789166 4E-06 4E-06 4E-06
T2 3146.0517148887 3148.2881231466 2E-05 3E-10 1E-08
T3 2969.4916454730 2957.0655695859 2E-05 6E-07 6E-07
T4 2738.8821014082 2710.4796681820 4E-05 8E-09 7E-08
TS5 3157.1759883929 3128.5835564060 9E-06 1E-08 9E-08
T6 2979.6663741827 2977.2050961986 1E-05 3E-08 3E-08
T7 3384.0469230574 3394.8485933748 4E-06 2E-08 1E-08
T8 4024.0331972310 4023.5791142508 8E-06 9E-09 6E-08
T9 4649.6235981131 4640.9993879112 7E-07 3E-08 5E-08
T10 1929.0589768021 1929.9903118863 SE-06 S5E-08 3E-08
mad 4E-05 4E-06 4E-06
mrd 2E-08 1E-09 1E-09

5 Conclusions

In this paper, we considered one—stage optimization problems involving the min-
imization of conditional value—at-risk (CVaR) in the objective. We proposed to
solve these problems via reformulating them as two—stage stochastic optimization
problems with recourse and presented an algorithm. The method was derived by
adapting the L—shaped method for two-stage recourse problems, to the special
structure of CVaR minimization problems.

We have implemented our solution approach as the solver CVaRMin. In the
paper we presented comparative computational results with several test problems.

Computational aspects of minimizing conditional value-at-risk 25

First we considered a portfolio optimization problem of the CVaR minimization
type, with 5 random variables and assumed a multivariate normal distribution. Due
to our assumptions, an equivalent NLP formulation exists, which can also be solved
by general-purpose NLP solvers, thus providing an optimal value for comparison
purposes.

We generated several test problems by sampling and compared the performance
of our solver with general-purpose LP solvers. In our experiments, CVaRMin out-
performed all LP solvers involved in the comparison; for the largest test—problem
the elapsed time for CVaRMin was at least by one order of magnitude better than
the elapsed time for the rest. The solution time for CVaRMin had the same order of
magnitude as the solution times for the NLP problem formulation.

For testing the effect of sampling on the solution times of CVaRMin, we gener-
ated portfolio optimization test problems by sampling with 40 different seeds. The
results indicate that the performance of CVaRMin does not significantly depend on
choosing different samples. Concerning optimal values across different samples,
the obtained results suggest that, even for 5 random variables, a sample size of
N = 5000 may lead to quite inaccurate results. Thus it is likely that for larger
numbers of random variables quite high sample sizes are needed for obtaining
acceptable results.

We also presented computational results for varying o and proposed a “warm
start” strategy for solving a sequence of CVaR minimization problems with vary-
ing parameter. According to this test, the strategy appears to lead to a significant
reduction in computing time.

Finally, we presented our computational results with 20 randomly generated
test problems involving 50 random variables and a shifted multivariate lognormal
distribution. In these tests, CVaRMin outperformed again all general purpose LP
solvers by at least one order of magnitude in the solution time. The deviations
in optimal objective values were in the same range, as the deviations across the
different LP solvers.

The computational results indicate that our algorithm is quite promising. These
results are, however, by no means conclusive in this respect; for this much more
extensive tests would be needed.

It is clear that for CVaR minimization problems with random-variable dimen-
sions employed in our computations, the approach via solving the LP—equivalent is
in many practical cases quite satisfactory from the point of view of computing time.
Under the assumption of a multivariate normal distribution, solving the NLP for-
mulation via general-purpose NLP solvers may be a competitive alternative. This
was so in our tests with 5 random variables, where the NLP solvers outperformed
all LP solvers, for the larger sample sizes. Let us shortly discuss application areas
where a fast solution method can be of direct practical interest.

In portfolio optimization, one such area could be the optimization of large
hedge portfolios with possibly thousands of assets (see, for instance, Rockafellar
and Uryasev (2000)). Another important application area, where a fast solver could

26 A. Kiinzi-Bay, J. Mayer

help, is parametric computation related to CVaR minimization (in financial terms
this means computing “frontiers”), especially for large numbers of random variables
and large sample sizes.

CVaR minimization problems can also be used as building blocks for algorithms
aiming at minimizing VaR, see Larsen, Mausser, and Uryasev (2002). Thus, an effi-
cient method for solving the CVaR subproblems may lead to significantly increased
performance of the overall method. For a recent different sequential approach for
minimizing VaR see Pang and Leyffer (2004). Besides finance, minimizing VaR and
CVaR gets increasing attention also in other application areas, see Chen, Daskin,
Shen, and Uryasev (2005). This may lead to large—scale CVaR minimization prob-
lems for which efficient special-purpose solvers might be needed.

Our future research plans include testing the algorithm with financial optimiza-
tion problems involving larger amounts of assets and realizations, extending the
scope of CVaRMin for optimization under CVaR constraints, refining the warm
start strategy for computing frontiers, and developing extensions to mixed—integer
problems.

Acknowledgements. The authors gratefully acknowledge the helpful comments and suggestions of the
anonymous referees.

References

Acerbi C (2002) Spectral measures of risk: a coherent representation of subjective risk aversion. Journal
of Banking & Finance 26:1505-1518.

Acerbi C, Tasche D (2002) On the coherence of expected shortfall. Journal of Banking & Finance 26:
1487-1503.

Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Mathematical Finance 9:
203-228.

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer.
Math. 4:238-252, 1962. Re—published in this Journal, Vol. 2, Number 1, 2005.

Birge JR, Louveaux F (1997) Introduction to Stochastic Programming. Springer Series in Operations
Research. Springer-Verlag, Berlin/Heidelberg.

Brooke A, Kendrick D, Meeraus A, Raman R (1998) GAMS. A user’s guide. Technical re-
port, GAMS Development Corporation, Washington DC, USA. It can be downloaded from
http://www.gams.com/docs.

Chen G, Daskin MS, Shen ZM, Uryasev S (2005) A new model for strategic facilities location. Naval Re-
search Logistics: Special Issue on Applications of Financial Engineering in Operations, Production,
Services, Logistics, and Management. Under review.

Elton EJ, Gruber MJ, Brown SJ, Goetzmann WN (2003) Modern portfolio theory and investment
analysis. John Wiley & Sons, sixth edition.

Gams Development Corporation (2004) GAMS. The solver manuals. Washington, DC.

Jorion PH (1996) Value at Risk: a new benchmark for mesuring derivatives risk. Irwin Professional
Publications.

Kall P, Mayer J (1996) SLP-IOR: An interactive model management system for stochastic linear
programs. Math. Prog. B 75:221-240.

Kall P, Mayer J (2004b) SLP-IOR User’s Guide. University of Zurich. Version 2.2.1.

Kall P, Mayer J (2005a) Some insights into the solution algorithms for SLP problems. Ann. Oper. Res.
(to appear).

Kall P, Mayer J (2005b) Stochastic linear programming. Models, theory and computation. Springer-
Verlag, New York, Berlin, Heidelberg.

Computational aspects of minimizing conditional value-at-risk 27

Kall P, Mayer J (2005¢) Building and solving stochastic linear programming models with SLP-IOR.
In: Wallace SW, Ziemba WT (eds) Applications of Stochastic Programming, Series in Optimization,
chapter 6, pp. 79-93. MPS SIAM, SIAM, Philadelphia.

Kall P, Wallace SW (1994) Stochastic programming. John Wiley & Sons, Chichester.

Klein Haneveld WK, Van der Vlerk MH (2002) Integrated chance constraints: reduced forms and an
algorithm. SOM Research Report 02A33, University of Groningen. To appear in this Journal.

Krokhmal P, Palmquist J, Uryasev SP (2002) Portfolio optimization with conditional value-at-risk
objective and constraints. The Journal of Risk 4.

Larsen N, Mausser H, Uryasev S (2002) Algorithms for optimization of value—at-risk. In: Pardalos P,
Tsitsiringos VK (eds) Financial Engineering, E-commerce and Supply Chain, pp. 19-46. Kluwer
Academic. Publishers.

Linderoth J, Shapiro A, Wright S (2005) The empirical behavior of sampling methods for stochastic
programming. Ann. Oper. Res. (to appear).

Markowitz H (1959) Portfolio selection. Efficient diversification of investments. John Wiley & Sons

Maros I (2003) Computational Techniques of the Simplex Method. Kluwer Academic Publishers

Marsaglia G, Olkin I (1984) Generating correlation matrices. SIAM J. on Scientific and Statistical
Computations 5:470-475.

Mayer J (1998) Stochastic Linear Programming Algorithms: A Comparison Based on a Model Man-
agement System. Gordon and Breach Science Publishers.

Meészéros Cs (1997) The augmented system variant of [IPMs in two—stage stochastic linear programming
computation. Eur. J. Oper. Res. 101:317-327.

Murtagh BA, Saunders MA (1978) Large scale linearly constrained optimization. Math. Prog. 14:
41-72.

Pang JS, Leyffer S (2004) On the global minimization of value—at-risk. Opt. Methods and Software
19:611-631.

Pflug GCh (2000) Some remarks on the Value—at—Risk and the Conditional Value—at—Risk. In: Uryasev
SP (ed) Probabilistic constrained optimization, methodology and applications, pp. 272-281. Kluwer
Academic Publishers.

Ripley BD (1987) Stochastic simulation. John Wiley & Sons, New York.

Rockafellar TR, Uryasev SP (2000) Optimization of Conditional Value-at—Risk. Journal of Risk 2:
21-41.

Rockafellar TR, Uryasev SP (2002) Conditional Value—at—Risk for general loss distributions. Journal
of Banking & Finance 26:1443-1471.

Ruszczyriski A (1986) A regularized decomposition method for minimizing a sum of polyhedral func-
tions. Math. Prog. 35:309-333.

Ruszezyriski A, Swietanowski A (1997) Accelerating the regularized decomposition method for two
stage stochastic linear programming problems. Eur. J. Oper. Res. 101:328-342.

Van Slyke R, Wets RJ-B (1969) L-shaped linear programs with applications to optimal control and
stochastic linear programs. SIAM J. Appl. Math. 17:638-663.

Zivot E, Wang J (2003) Modeling financial time series with S-PLUS. Springer-Verlag, New York, Berlin,
Heidelberg.

