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Abstract Landslide early warning systems (EWS) are an important tool to reduce

landslide risks, especially where the potential for structural protection measures is limited.

However, design, implementation, and successful operation of a landslide EWS is complex

and has not been achieved in many cases. Critical problems are uncertainties related to

landslide triggering conditions, successful implementation of emergency protocols, and the

response of the local population. We describe here the recent implementation of a landslide

EWS for the Combeima valley in Colombia, a region particularly affected by landslide

hazards. As in many other cases, an insufficient basis of data (rainfall, soil measurements,

landslide event record) and related uncertainties represent a difficult complication. To be

able to better assess the influence of the different EWS components, we developed a

numerical model that simulates the EWS in a simplified yet integrated way. The results

show that the expected landslide-induced losses depend nearly exponentially on the errors

in precipitation measurements. Stochastic optimization furthermore suggests an increasing

adjustment of the rainfall landslide-triggering threshold for an increasing observation error.

These modeling studies are a first step toward a more generic and integrated approach that

bears important potential for substantial improvements in design and operation of a

landslide EWS.
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1 Introduction

Early warning systems (EWS) for natural hazards are important tools for disaster risk

reduction. EWS have been developed for a number of different hazards, including tsu-

namis, volcanoes, snow avalanches, landslides, and others (Zschau and Küppers 2003).

EWS commonly consist of different components, such as (i) sensors measuring geo-

physical, atmospheric, hydrodynamic, and soil-related parameters, (ii) telecommunication

equipment transmitting the data to a (iii) monitoring and analysis center, (iv) decision

procedures and organizational structures that facilitate the translation of the technical data

into publicly understandable information, and (v) response of people, which may be

affected. The awareness and knowledge of the people exposed to a hazard are very

important for their adequate response to an early warning. As such, EWS have in fact

increasingly been recognized as highly complex systems ultimately characterized by a

tricky interaction between technical instruments and human behavior (Sorensen 2000;

Basher 2006). Each EWS component has a certain potential for failure that determines

whether the system eventually is successful or not. Due to the uncertainties related to the

different procedures, a systematic evaluation of EWS is rather complicated.

We present here an approach to numerically model a landslide EWS that enables us to

systematically assess the influence of the different EWS components on the overall per-

formance and success of the system, including, for instance, climatically related changes,

sensor related modifications, or changes in the human behavior.

We developed our model based on a recently installed landslide EWS in Colombia.

Landslides are notorious in Colombia due to the rough topography and tropical rainfall

conditions and thus are a major hazard in many regions of the country. The Combeima

region, Tolima province, is a particularly exposed area, including several population

centers along the valley and the regional capital Ibagué (ca. 0.5 million inhabitants).

Hundreds of people have been killed by landslides and debris flows in the past. Most

recently, multiple slope failures and landslides destroyed major parts of population centers

in June 2006. These recurring events are therefore a serious threat to life, welfare, and local

economy. So far, activities have mainly been focused on reconstruction after disasters, and

prevention and preparedness activities have not been sufficiently developed. The landslide

EWS has been designed and implemented within a Colombian-Swiss project funded by the

Swiss Agency for Development and Cooperation (SDC) and is currently being calibrated

and adjusted.

The integrated EWS model described in this article represents a novel approach and we

therefore had to simplify several components of the real EWS. Nevertheless, it should be

able to provide indications on how the EWS in the Combeima region could be improved in

the future. Although the model is driven by data from this case study, the model concept is

designed sufficiently open for adaptation to other landslide EWS.

2 EWS in Colombia

2.1 Study area

The Combeima river is one of the major drainages of the Nevado del Tolima Volcano,

located in central Colombia in the Cordillera Central. The Combeima valley extends from

the regional capital Ibagué (*500,000 inhabitants) at 1,250 m asl along more than 20 km

to about 2,500 m asl before it abruptly rises to the summit of Nevado del Tolima at
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5,200 m asl. Several towns populate the Combeima valley, with a total of about 5,500

people (Fig. 1). The area is characterized by very steep topography and dense vegetation.

Mean annual rainfall varies between 1,500 and 2,500 mm. The geology is dominated by

the volcanic activity of the area. Two major active volcanoes, Tolima and Machı́n volcano,

are located within distances of 10 to 20 km and have repeatedly erupted during the

Holocene (Thouret et al. 1995). As a consequence, the soils of the steep slopes of the

Combeima valley are often characterized by a high content of ash and other volcanic

products, partly with underlying metamorphic rocks. Geotechnical soil parameters are

typically characterized by poor slope stability. Lahars and pyroclastic density currents from

the Tolima volcano repeatedly swept through the valley during the past few thousand

years, at least partly caused by interaction between volcanic activity and glacier ice on top

of the volcano (Cepeda and Murcia 1988; Huggel et al. 2007).

Despite the steepness, the slopes are intensively cultivated in the lower sections by

crops such as coffee, banana, maize, and others. Grazing by livestock is also widespread.

Illegal burning of densely vegetated slopes for agricultural purposes is a serious problem,

both in terms of uncontrolled forest fires and slope destabilization.

Steep topography, high rainfall intensities, and poor slope stability make the Combeima

valley particularly vulnerable to landslides. In fact, people have suffered from landslide

disasters for many decades (Godoy et al. 1997). Also, landslide events often occur in

combination with flooding of the Combeima River with occasional process interaction such

as blocking of the main river by landslide and debris flow material transported by tribu-

taries. Figure 2 shows the chronology of landslide disasters in the Combeima valley for the

last 50 years. Up to several hundred people were killed in single events, and damage to

Fig. 1 Map and stream flow
system of the Combeima valley.
Triangles indicate locations with
rainfall stations (only partly
operational), with white triangles
referring to new telemetric
rainfall stations that form part of
the landslide EWS
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residential areas and infrastructure has often been severe. The last major disaster occurred

in June 2006, affected extended parts of the valley, and stroke the town of Villa Restrepo

particularly hard (Fig. 3). In consideration of the magnitude and extent of the landslides

and debris flows, it was very fortunate that no people were killed. Alerted by the sound of

the rising tributaries, people could gather at safe places and avoid the violent impact of the

debris flows.

2.2 Rainfall records

Rainfall measuring stations are a key component of a landslide EWS. In the Combeima

valley, the first rainfall station was installed in the late 1950s. The bulk of stations existing

today came into operation in the 1980s. Stations are operated by the Colombian Institute of

Hydrology, Meteorology and Environmental Studies (IDEAM) and data are centrally

managed in Bogotá. The IDEAM network currently includes ten stations in the Combeima

valley (Fig. 1). The rainfall recording is continuous on daily charts, which can be evaluated

to intervals as low as 15 min. In January 2008, three telemetric stations were installed

which can be programmed to transmit measured data when a rainfall increment occurs (i.e.,

0.2 mm) or at a fixed time interval. Although the older rainfall gauges in the Combeima

had a comparably high density, their use for a landslide EWS was limited because most of

the stations are not telemetric and charts data are collected about every month. However,

the data is valuable for ex post analysis of rainfall characteristics of the Combeima valley,

and to relate rainfall to observed landslide events in the past.

For all stations, available rainfall records were analyzed, and rainfall intensities cal-

culated based on 15-min recording intervals. This is a laborious work because several

stations’ data were not yet digitally stored and rainfall events had to be detected manually.

Based on this analysis, rainfall intensity-duration frequency (IDF) curves per station were

computed using SIAT, a specialized software tool (Ramı́rez 2007). For each rainfall sta-

tion, the system reads the mass curve (time-accumulated rainfall) for every storm and

computes intensities for user selected time periods (15, 30, 60, 120, 360 min). After

Fig. 2 Chronology of landslide disasters in the Combeima valley, distinguishing number of people killed
and a qualitative measure of damage
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reading all the storms for the station, the system defines for every time duration the

maximum intensity for every year. Finally, a frequency distribution method is applied to

obtain intensity-return period pairs for the given time duration.

The longest rainfall records for single stations were close to 20 years. Figure 4 shows

two IDF curves for the stations ‘‘Placer’’ and ‘‘Palmar.’’ They are located approximately at

the same elevation of *2,200 m asl but ‘‘Palmar’’ some 8.5 km up-valley toward Tolima

Volcano. The analysis of the IDF curves suggests that the stations further downstream and

further away from the Tolima Volcano have higher rainfall intensities. For instance, while

the lower stations show a rainfall intensity of slightly less than 100 mm/h for a duration of

1 h and a 100-year return period, stations located further up-valley feature corresponding

rainfall intensities reduced by *30%.

Due to data limitations, it was not possible to relate IDF curves to observed landslide

events to derive landslide-triggering rainfall thresholds (Glade et al. 2000; Guzzetti et al.

2008). However, daily rainfall data could be used to analyze antecedent rainfall conditions

for a number of documented landslides. The about 20 landslide events on record often

caused severe damage and destruction to local communities (Figs. 2, 3). Daily rainfall was

analyzed up to 30 days prior to the landslide events, and for the station(s) closest to the

Fig. 3 Landslide disaster in the
Combeima Valley in June 2006.
a Devastated residential
buildings in Villa Restrepo, and b
debris flow channel and deposits
obstructing the Combeima
highway between Villa Restrepo
and Juntas. Deposits height is in
the order of 5 m (see car and
persons for reference). The solid
lines mark the trimlines of the
debris flow channels and indicate
the extremely large flow
discharge. For the Villa Restrepo
event, flow discharge is estimated
at 300–400 m3/s while normal
discharge of the stream is less
than 1 m3/s (photos taken by a
Colombian Red Cross and b C.
Huggel)
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landslide initiation area. Figure 5 shows antecedent rainfall for all landslide events for

which reasonably reliable relations to rainfall data could be established. The range of

variability of landslide-triggering antecedent rainfall thresholds is considerable. As a first

threshold indicator, 25-, 50-, 75-, and 90-quantiles of antecedent rainfall were calculated.

In addition, the landslide records were evaluated in terms of their reliability of information

provided, e.g., how precisely the landslide location could be identified, and the distance of

the closest rain gauge to the landslide. Based on this, three classes of reliability of ante-

cedent rainfall conditions (Fig. 5) were distinguished and helped to define warning levels

for the EWS.

2.3 Implementation of EWS and related challenges

The magnitude and frequency of landslide disasters occurring in the Combeima valley

have urgently called for an improved risk reduction. Structural protection measures are

often not feasible due to financial restrictions. Organizational and preparedness measures

such as EWS or emergency training have therefore been in the focus. Within a joint

Colombian-Swiss Government project, the implementation of EWS has been a major

objective.

However, the appropriate implementation and operation of a landslide EWS is a

complex task and only few examples can be found worldwide. Probably, the earliest

Fig. 4 Intensity-duration curves for rainfall stations ‘‘Placer’’ and ‘‘Palmar’’
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landslide EWS was developed in the San Francisco Bay region (USA) in the mid-1980s

and consisted of a real-time network of rain gauges, precipitation forecasts, and relations

between rainfall and landslide initiation to define the alert level (Keefer et al. 1987). The

relation between rainfall and landslide occurrence, or in more general terms, the under-

standing when, why, and how large landslides occur is an important basis for EWS.

A number of physical models were developed that describe the mechanics of material

strength, gravitational stress, pore-fluid pressure, and external forces (e.g., Iverson et al.

1997; Petley et al. 2005). A major drawback to apply physical–mechanical models for

landslide EWS is the great variability of properties of soil and earth materials and slope

conditions that make the prediction of when and where a landslide occurs very difficult.

Therefore, empirical relations between rainfall duration or intensity and landslide initiation

are typically applied for EWS. These relations need to be established by a record of

landslide-triggering rainfall events. Several relations have been presented for different

regions worldwide (Guzzetti et al. 2008), but are mostly lacking for Colombia so far

(Terlien 1998). Due to the strong variability of rainfall and soil conditions, it is indis-

pensable to develop a rainfall–landslide relation adapted to the region where the EWS is

about to be implemented.

The spatial variability of rainfall and incomplete event description induce an uncertainty

into the rainfall–landslide triggering threshold. It is essential that this uncertainty is ade-

quately managed in EWS and efforts are put to reduce it. The need to improve the rainfall

monitoring in the area by having automatic real-time rainfall gauges for EWS purposes

gave reason to install three new rainfall gauges at sites located closer to the landslide

initiation zones. The large variability of antecedent rainfall observed for past landslide

events (Fig. 5) makes the definition of warning thresholds difficult. In a test phase of the

EWS, quantiles were used to define increasing levels of landslide hazard. In order to

further reduce the uncertainties, the rainfall stations were equipped with geophones that

transmit increasing debris flow activity in the stream channels. A third control is achieved

by local observers that report potentially landslide-producing situations timely to the EWS

Fig. 5 Antecedent rainfall for documented landslide events between 1974 and 2006 in the Combeima
valley. The graph shows the large variability of existing rainfall conditions triggering landslides. Dashed
lines and corresponding numbers indicate 25, 50, 75, and 90% quantiles
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center in Ibagué (Fig. 6). At this center, which is hosted at the Regional Emergency

Committee of Tolima (CREPAD), all available information is analyzed 24 h a day.

Rainfall and geophone measurements are transmitted in real-time to an internet application

and CREPAD operators or other potential users can directly consult with the internet to

determine whether a rainfall–landslide threshold is reached. An emergency protocol

defines the different levels of warning and the corresponding actions to be taken.

The EWS is only successful if it is also accepted, understood, and used by the local

population. Even though the technical side of the EWS is complex, the greatest potential

for failure exists if the local population is inadequately prepared for emergencies.

Therefore, preparedness and social programs have been carried out in the Combeima

region. These studies are, however, beyond the scope of this article, and will not be

discussed here in further detail.

3 A numerical EWS model

3.1 Rationale for the approach

Design and implementation of the landslide EWS prompted a number of essential ques-

tions that are closely linked to the success of the system:

• What is the effect of errors in rainfall measurements on the reliability of a landslide

EWS?

• How can uncertainties related to landslide-triggering rainfall thresholds be better

handled in an operational EWS?

• How do the above points influence the impacts and consequences of landslide events?

Fig. 6 Schematic structure of the landslide EWS in the Combeima region. Triangles denote recently
installed rainfall and geophone monitoring stations. For the sake of clarity, not all local communities of the
Combeima valley are included. CREPAD is the Regional Emergency Committee of Tolima
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This may likely not be a complete list of essential questions related to the implemen-

tation and operation of a landslide EWS but it touches aspects of fundamental importance.

These questions cannot definitely be answered by experience or by trial-and-error but need

a more systematic approach. Here, we present a model based on a stochastic optimization

approach, which is novel in its application for a landslide EWS. The model basically

mimics different components of a landslide EWS, including the relations and criteria that

link these components (Fig. 7). Obviously, the model requires several simplifications of

the reality, which in our case, partly stem from limitations of the data. Methods, including

the necessary simplifications, and applied data are presented in the following for each

component of the model.

3.2 Observations: rainfall input data

Although there exists a rainfall record from several rain gauges in the Combeima valley (as

outlined above), there are a number of limitations regarding complete data series over

many years at temporal resolutions better than daily ones. Therefore, instead of local rain

gauges, we used ERA-40 reanalysis rainfall data from the grid cell closest to the

Combeima valley. ERA-40 is a reanalysis of meteorological observations from 1957 to

2002 produced and provided by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) in collaboration with other institutions (Uppala et al. 2005). The spatial

resolution of ERA-40 data is 2.5�, and the center point of the grid cell used here is located

about 60 km northeast of the Combeima valley. The temporal resolution of the rainfall data

is 6 h.

It is clear that the rainfall conditions in the Combeima valley cannot be exactly rep-

resented by the ERA-40 reanalysis data but elevation and topographic conditions are

similar. Furthermore, it has been observed that rainfall has a considerable variability even

within the Combeima catchment. The use of a single point rain gauge data to be related to

observed landslides over larger areas of the Combeima would therefore not be feasible.

Due to these currently existing data restrictions, we refrained from directly verifying the

ERA-40 reanalysis data with observed landslide events.

Fig. 7 Scheme demonstrating the essential components of the landslide EWS model. (1–4) represent four
different scenarios for which damage estimates are calculated in the model: (1) damage to buildings and
evacuation cost; (2) no cost; (3) damage to buildings and loss of lives; (4) evacuation cost
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3.3 Intensity-duration threshold (LS—triggering)

Generally speaking, the landslide research has developed two different basic approaches to

predict rainfall triggered landslides: physically based and empirically based models.

Physically based models try to mimic the physical processes relevant to landslide initiation

to determine landslide occurrence in space and time. Many physically based landslide

models have been developed over the last years, and examples can be found, for instance,

in Montgomery and Dietrich (1994), Iverson (2000), or Crosta and Frattini (2003). For use

in EWS, a clear limitation of physically based models is the demand for detailed spatial

information, including hydrological, lithological, morphological, and soil characteristics

that control the initiation of landslides. These data are barely available over areas larger

than specific test sites.

Empirically based models statistically relate rainfall parameters such as intensity and

duration to observed landslide events. Rainfall intensity is commonly given in millimeters

per hour and may be measured over shorter or longer periods, and correspondingly, has

different physical implications (Wieczorek and Glade 2005; Guzzetti et al. 2007). Most

commonly, the rainfall parameters intensity I (mm/h) and duration D (h) have been used to

derive landslide-triggering thresholds based on observed events. Such thresholds have been

developed for global (e.g., Caine 1980), regional (e.g., Larsen and Simon 1993) and local

applications (e.g., Marchi et al. 2002). The threshold is usually expressed in the form:

I ¼ aDb ð1Þ

where a and b are empirical parameters.

Due to the limitations of physically based approaches for use in EWS, we implemented

an empirically based threshold function in our model. We thereby consider a time period of

10 years split into smaller intervals of 6 h each. In the absence of any regional or local

threshold available for our study region in Colombia, we used the Caine (1980) global

threshold. The triggering threshold we used to model landslide occurrence is then

described by a binary-valued function:

LðiÞ ¼
1; if max

0� j� 19
ðIij � ~IjÞ� 0;

0; else:

(
ð2Þ

Here, ~Ij ¼ 14:82½6ðjþ 1Þ��0:39; j ¼ 0; . . .; 19 are triggering intensities for time intervals

ranging from 6 to 120 h, i C 20 is the number of a 6-h interval within the whole 10-year

time period. Values {Iij} are calculated intensities: Iij ¼ 1
6ðjþ1Þ

P j
k¼0 rði�kÞ for rainfall data

{ri}. The value 1 of the function L(i) represents a landslide occurrence in the ith time

frame, whereas value 0 means no landslide in the ith time frame.

3.4 Observation errors and evacuation threshold

In (2), exact values of rainfall are used to calculate intensities Iij. In reality, the exact

precipitation is not known; instead, its value is measured with some error. In fact, quality

and precision of measured rainfall data is a notorious problem for use in landslide models

and early warning systems. We therefore intentionally introduced errors into the original

ERA-40 rainfall data to assess corresponding effects on evacuation and damage. When

simulations are run with degraded datasets of rainfall, the original ERA-40 data is taken as

the control data, and it is assumed that the ERA-40 data perfectly represents the rainfall

conditions at the local landslide site (Fig. 7).

510 Nat Hazards (2010) 52:501–518

123



We therefore model rainfall measurement error for each time frame i by means of

random value generation distributed uniformly in the interval ½ri � e ri; ri þ e ri� where e is

a constant rainfall measurement error with its value fixed in the interval [0, 0.3] for the

purposes of numerical simulations.

Given exact rainfall information, one could use the threshold function (2) for evacuation.

Here, for the sake of simplicity, we assume that upon reaching a triggering threshold in (2),

an evacuation is performed within a ‘‘short enough’’ time frame, meaning before a landslide

actually occurs. This assumption allows us to avoid substantial complications in the model

related to rainfall forecasting. Taking into account rainfall measurement errors, a threshold

for evacuation from a dangerous area should be adjusted. The idea is to decrease the original

landslide-triggering threshold by multiplying it with the correction coefficient k [ (0, 1). The

evacuation threshold function based on (2) is defined by the following expression

Vði; kÞ ¼
1; if max

0� j� 19
ðÎij � k~IjÞ� 0;

0; else:

(
ð3Þ

where Îij are intensities calculated for observed rainfall

r̂i�Uðri � e ri; ri þ e riÞ; ð4Þ

where U denotes a uniform distribution within the specified interval.

3.5 Loss function

We define the loss function in the following form:

FðkÞ ¼
X

i

LðiÞ½1� Vði; kÞ�di þ LðiÞbi þ Vði; kÞu ð5Þ

Here, L(i) is defined in (2); V(i, k) is defined in (3); di is a random value describing the

damage associated with loss of life incurred only in case if landslide occurs and no

evacuation was performed; bi is a random value describing the damage to the buildings and

infrastructure; u is the cost of evacuation (constant value; Fig. 7). The loss function F(k) is

a random variable depending on the evacuation threshold correction coefficient k.

3.6 Optimization of evacuation threshold

The threshold for evacuation in the form (3) depends on adjustment coefficient k [ (0, 1),

which is an unknown parameter subject to optimization. The objective of the optimization

procedure is to minimize expected losses:

min
k

E FðkÞ½ � ð6Þ

Here, E[�] denotes the expectation of a random value; the function F(k) is defined

according to (5). An equivalent formulation of the optimization problem has the following

form

min
k

X
i

LðiÞ½1� Vði; kÞ�E½di� þ Vði; kÞu ð7Þ

Here, we eliminated the constant
P

i

LðiÞE½bi� which does not depend on the adjustment

coefficient k. For the simplification purposes, we assume that there is no seasonal
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dependence of conditional (on landslide occurrence) expected loss of life induced by a

landslide, and hence, can denote E½di� ¼ v (fixed value). Based on that, the problem (7)

may be represented in the form

min
k

X
i

LðiÞ½1� Vði; kÞ� þ Vði; kÞa; where a ¼ u

v
: ð8Þ

The problem (8) is equivalent to the original problem (6) in terms of optimal value of the

adjustment coefficient k.

4 Model results and sensitivity

In order to completely define the objective function in the optimization problem, it is

necessary to define the damage associated with the loss of life and evacuation. For better

reflecting reality, we introduce additional constraint on evacuation duration and require an

evacuation period to be at least 24 h, meaning that if the value of V(i, k) defined in (3)

would turn into 1 for a 6-h period i0, then at least for the periods i0, i0 ? 1, i0 ? 2, and

i0 ? 3, the people would have been evacuated and would have been located somewhere

outside of the dangerous area for that whole 24 h. After that period, if the intensities Îij

calculated for observed rainfall stay above the evacuation threshold as defined in (3), the

people will not return back and will wait until the value V(i, k) drops to zero. We also

assume that losses u do not incur per each 6-h interval of evacuation, yet per entire

evacuation period (up to 5 days of consecutive series of threshold exceedance). Please note

that Eqs. 5, 7, and 8 add sum u to losses per each 6-h interval of evacuation and therefore

should be corrected. However, we will not introduce into equations the damage calculation

rules verbally described above to avoid unnecessary complexity in formulas. This remark

has to be kept in mind when we refer to the simplified Eqs. 5, 7, and 8.

We fixed evacuation cost u = 10,000 and expected loss of life (total per one landslide)

v = 5,000,000 and calculated the expected losses for different values of adjustment

parameter k. These numbers can be considered in US Dollars and represent estimates for a

typical situation in the Combeima valley. We simulated rainfall measurements during the

period 1991–2000 based on ERA-40 data by introducing random errors according to (4).

For values of rainfall measurement error e in interval [0, 0.3] with step size equal to 0.05,

we took 10,000 samples of simulated observations during the entire 10-year period. The

results are presented in Fig. 8 (dots indicate minimum expected losses, i.e., optimal value

of threshold adjustment). On a separate graph, we present the dependence of optimal

expected losses on the rainfall measurement error (Fig. 9). It can be noted that errors in

rainfall measurement lead to the exponential growth of expected losses. The dependence of

the adjustment parameter k, and thus the level of adjustment of the evacuation threshold,

on the rainfall measurement error is presented in Fig. 10.

An important question connected with the optimization problem (8) is about the

influence of a loosely defined constant a on the solution of the problem. We performed

several model runs for various values of a and found out that to a certain degree, the

optimal evacuation thresholds are insensitive to the values of a. Thus, Fig. 10, representing

the decision making rule for evacuation, does not change if the cost of life v increases by

20%. This means that the evacuation thresholds for different levels of observation error

and, most importantly, decision-making rules corresponding to the thresholds, are robust

against a value, such as the cost of life that is difficult to define.
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5 Discussion and implications for landslide EWS

The approach developed in our model is based on stochastic optimization (Spall et al.

2006) with application to variable rainfall measurement errors and relevant evacuation

thresholds, which has barely been applied to landslide problems so far. In landslide

research, it is therefore rather uncommon to link measured environmental parameters such

as rainfall with landslide consequences and damage in one integrated model. The approach

has clear limitations but also significant potential that may lead well beyond what we have

Fig. 8 Expected losses on log10 scale depending on evacuation threshold adjustment for different
observation errors (0%, 5%, 10%,…, 30%). Dots on the graph indicate optimal values of adjustment, i.e.,
delivering minimal expected losses for given observation error

Fig. 9 Dependence of minimal expected losses (log10 scale) on the rainfall measurement error
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presented here. The experience with first model development and simulations, and the

implications for landslide research and risk management, is summarized in the following.

An integrated landslide EWS model of the kind presented in this study needs to make

important simplifications to natural and human-based processes. Well aware of the current

limitations in data and process understanding, we aimed at developing a model that has a

basis in real world cases (Colombia) and at the same time provides an adequate theoretical

background to allow for general conclusions on landslide EWS.

Rainfall observation errors are a very widespread problem in landslide EWS practice.

The problem is serious because rainfall measurements are typically a core source of

information for subsequent decisions on issuing warnings or ordering evacuation. The

model results allow us to address the initially outlined research question on the effect of

rainfall measurement errors on the extent of damage due to landslides. The results suggest

that a linearly increasing observation error implies an exponentially rising loss due to

landslides. These findings are also essential in the context of current initiatives in ground-

and space-based earth observation (Fritz et al. 2008; Hong et al. 2006; Khabarov et al.

2008; Williamson et al. 2002).

In the presented model’s setup, we use a deterministic intensity–duration landslide-

triggering threshold. This relation was derived empirically with application of statistical

methods based on the records of measured rainfall and registered landslide occurrence and

hence includes related uncertainties. Therefore, randomization of the triggering threshold

could potentially improve the model and bring it closer to reality. An implementation of a

suitable approach to perform the threshold randomization based on reliable data could be a

promising direction for future research.

An important question of practical relevance is whether the investment in more rainfall

gauges would be worth, considering the potential benefit from loss reduction. Our model

results can be an indication for such cost–benefit considerations. However, since the model

is spatially not explicit, no answer is provided where the new gauges should be located to

minimize the observation error. As the implementation of the EWS in the Combeima

Valley has shown, there are several restrictions to find optimal sites for rainfall gauges.

These include uncertainties in rainfall variation in space and time, extreme topography and

access for maintenance, the acceptance by the local population, and problems with illegally

Fig. 10 Dependence of the evacuation threshold adjustment on the rainfall measurement error
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armed groups. Realistic solutions usually imply a trade-off between such factors. In this

context, the new findings from our model can be important for finding optimal investment

solutions with government officials and donors in terms of effective disaster prevention.

Another important aspect evaluated in the model refers to the second research question,

i.e., the importance of landslide-triggering rainfall thresholds for loss reduction. In our

model, the decision on evacuation is solely based on the rainfall threshold. This is to some

degree a simplification of the reality since an optimally designed landslide EWS should

have a redundancy, e.g., local observers that report back to the EWS center, geophones, or

additional sensors measuring parameters such as pore pressure in the soil, etc. However, to

be able to provide straightforward conclusions on the effect of thresholds, we did not

include any other parameters.

Our model indicates that to some degree, adverse effects by rainfall observation errors

can be attenuated by adjusting the threshold. Systematic variation and optimization of the

adjustment coefficient k, based on 10,000 model simulations suggests that for a particular

observation error and a threshold adjustment, a minimum expected loss can be found

(Figs. 8, 10). The larger the observation error, the stronger should be the threshold

adjustment. Results furthermore show that increasing the adjustment may have a negative

impact in terms of expected losses.

These results are important for the design of evacuation decision-making procedures

(Whitehead 2003). However, for a direct application to EWS practice, it should be con-

sidered that the model ignores any psychological ‘‘cost,’’ i.e., evacuations in vain have only

the relatively low cost in monetary terms. Increasing resistance by local population to

evacuate with repeated evacuations without significant landslide events are thus not con-

sidered. In order to include this aspect in the model, more research is needed because

people’s response to warnings is generally complex. Dow and Cutter (1998), for instance,

have shown that the likelihood of people responding to a warning is not reduced by the so-

called ‘‘cry-wolf’’ syndrome if the basis of the false alarm is understood.

The values defined for the cost of evacuation (USD 10,000) and average total loss of life

(USD 5 millions) are estimated for a typical situation in the Combeima valley, for a town

potentially affected by a landslide. The number for loss of lives is based on a scenario of loss

of 10 lives, where one life is set equal to USD 0.5 million. Defining a monetary value for life

can be controversial from an ethical point of view but is a common practice in risk man-

agement for cost–benefit analyses of hazard protection and prevention measures. An

advantage of our model in this context is that we were able to show that the adjustment of the

evacuation threshold is to a certain degree not sensitive to the absolute value of loss of life.

An alternative approach to cost optimization would be the implementation of risk-based

criterion such as cost minimization conditioned on admissible level of value-at-risk, where

evacuation costs are strictly separated from loss of life instead of weighting loss of life in

monetary terms. Moving into this direction and comparison with the present approach would

be useful for better understanding the guiding principles the EWS should be based upon.

This study is a first step for an integrated numerical modeling of EWS that allow the

investigation of aspects that have not been studied systematically so far. For future research

in this field, we suggest the transformation to a spatially explicit model to study in more

details the spatial aspects of EWS. Another step could be the introduction of the depen-

dence of damage on landslide magnitude. Ideally, this should be based on magnitude–

frequency relations of landslides which have gained substance with the analysis of

quantitative landslide observations (e.g., Hovius et al. 1997; Crozier and Glade 1999). In

principle, it has been found that the relation is a power law corresponding to the Guten-

berg–Richter law for earthquakes (Dai and Lee 2001; Hungr et al. 2008). In order to
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establish an adequate relation for a particular region, a reasonable number of quantitative

landslide observations is necessary. In this respect, a drawback for Colombia currently

exists due to only few quantitative records available on landslide magnitude.

6 Conclusions

In many regions of the world, landslides cause billions of dollars of damage and often

imply significant death rates (Keefer and Larsen 2007). Colombia is one of the particularly

badly affected countries due to predominantly rugged terrain and tropical rainfall condi-

tions. In many areas, landslide hazard zones overlap with residential zones and infra-

structure. EWS are therefore important to reduce landslide risks, and in particular, avoid

casualties. However, design, implementation, and successful operation of a landslide EWS

is complex and has rarely been achieved. A critical problem is uncertainties related to

landslide triggering conditions.

We have described here the recent implementation of a landslide EWS for a hotspot

area in Colombia: the Combeima valley. As in many other cases, an insufficient basis of

data (rainfall, soil measurements, landslide event record) and the aforementioned uncer-

tainties represent an important complication. To be able to better assess the influence of the

different EWS components, we developed a numerical model that simulates the EWS in a

simplified yet integrated way.

Results show that a linearly increasing rainfall observation error implies a nearly

exponential rise in damage cost. These considerations can help finding improved cost–

benefit solutions for rainfall monitoring stations. We furthermore investigated uncertainties

related to the rainfall landslide-triggering threshold, typically a key element for evacuation

decisions. Stochastic optimization suggests an increasing adjustment of the threshold with

increasing observation error. This essentially means that, in the future, not a fixed rainfall

threshold would be used but rather one within a range of adjustment according to the local

observation quality.

As we have seen with the practical EWS implementation in the Combeima valley, the

success is also highly dependent on aspects such as institutional coordination, emergency

protocols, or acceptance of the EWS by the local population. Nevertheless, our modeling

studies are a first step toward a more generic and integrated approach that bears important

potential for substantial improvements in design and operation of landslide EWS.
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