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Abstract 

A shared memory built on top of a distributed sys- 
tem constitutes a distributed shared memory (DSM). I f  
a lot of  protocols implementing DSMS in various con- 
texts have been proposed, no set of  homogeneous defi- 
nitions has been given for the many semantics offered 
by these implementations. This paper provides a suite 
of  such definitions for atomic, sequential, causal, PRAM 
and a few others consistency criteria, These definitions 
are based on a unique framework : a parallel computa- 
tion is defined as a partial order on the set of  read and 
write operations invoked by processes, and a consis- 
tency criterion is defined as a constraint on this partial 
order. Such an approach provides a simple classifica- 
tion of  consistency criteria, from the more to the less 
constrained one. This paper can also be considered as 
a survey on consistency criteria for DSMS. 
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culibrement dtudides. Grace b l'utilisation d'un forma- 
lisme unique (fondd sur la thgorie des ordres partiels) 
pour ddfinir ces divers critbres, on montre que ceux-ci 
s'imbriquent naturellement tes uns dans les autres. Des 
protocoles impldmentant ces divers critbres sont dgale- 
ment citds. Cet article peut 6tre vu comme un survey 
de critbres de cohdrence. L'originalitd de l'approche 
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se situent teurs similitudes et leurs diffdrences. 
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R6sum6 

Cet article prdsente un ensemble de critkres de 
cohdrence pour les donndes accdddes par des proces- 
sus concurrents. La cohdrence atomique, la cohdrence 
sdquentielle et la cohdrence causale sont plus parti- 

I. INTRODUCTION 

Since the end of  the eighties, the distributed shared 
memory abstraction (a shared memory built on top of 
a distributed system) is receiving more and more atten- 
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tion. One of its very first implementation has been done 
in the ivy system designed by Li and Hudak [24]. The 
distributed shared memory abstraction (DSM for short) 
has many advantages. First, at the application level, DSM 
frees the programmer from the underlying support as 
he has to consider only the well known shared varia- 
bles programming paradigm to design a solution to his 
problem, independently of the system that will run his 
program (be it a centralized shared memory or a distribu- 
ted one). Additionally, this facilitates his programming 
task as a lot of problems (especially related to numeri- 
cal analysis or image processing) are easier to solve by 
using the shared variables paradigm than by using the 
message passing one. Second, at the system level, DSM 
makes transparent transport of programs, load balancing 
and process migration. 

So, numerous protocols implementing a DSM on top 
of a distributed memory parallel machine or on top of a 
distributed system have been proposed. References [30] 
and [32] survey systems offering a DSM to their users. 
DSM implementations have common points with multi- 
processor caches, networked file systems and distributed 
databases. Basically, the shared memory is supported by 
local memories of processors and copies of a data item 
can simultaneously be present in several local memories. 
Due to characteristics of the distributed context (asyn- 
chronous communications, existence of several copies, 
etc.), some protocols implementing a shared memory 
on top of a distributed system offer to users a shared 
memory whose semantics is lightly different (sometimes 
in a very subtle way) from the classic semantics associa- 
ted with a centralized shared memory, namely the atomic 
semantics. 

Semantics of a shared memory is expressed by a 
consistency criterion. Such a criterion defines the value 
returned by every read operation invoked by a process. 
In nearly all DSMS [30, 25, 32], this consistency criterion 
is not formally defined and has to be deduced from 
the protocol implementing the shared memory. This 
makes study of properties of DSMS difficult and facilitates 
neither their understanding nor their comparison. 

We propose, in this paper, a set of formal definitions 
for the following consistency criteria : atomic consis- 
tency, sequential consistency, causal consistency, PRAM 
consistency and a few others. These definitions consi- 
der a shared memory computation as a partial order on 
the set of read and write operations issued by processes, 
and a particular consistency criterion is expressed as a 
constraint that the partial order has to satisfy 1. A proto- 
col implementing a DSM with some consistency criterion 
C has to ensure all computations will satisfy the associa- 
ted constraint. Such an approach has several advantages. 
First, as these definitions are independent of particular 
implementations, they exhibit intrinsic properties asso- 

ciated with consistency criteria; so, this approach fol- 
lows the abstract data type one by clearly distinguishing 
the semantics of the object offered to users (a shared 
memory with some semantics) from particular imple- 
mentations. Second, the set of definitions given in this 
paper constitutes a hierarchical suite in the following 
sense : as they all are expressed by using the same for- 
malism, it is possible to order them (from the more to the 
less constrained) ; consequently it is easy to see what are 
the additional constraints required by one consistency 
criterion with respect to another by comparing their posi- 
tions within the hierarchy. 

The paper is divided into 7 main sections. Section II 
presents the basic shared memory model. Then, Sec- 
tions III, IV, V and VI give formal definitions for sequen- 
tial, atomic, causal and PRAM consistency, respectively. 
Basic principles of protocols implementing these cri- 
teria are also given. Section VII completes the pano- 
rama by examining other consistency criteria, namely 
hybrid, mixed, release and entry consistencies. Finally, 
Section VIII exhibits similarities between the shared 
memory model and the message passing model (atomic, 
sequential, causal and PRAM consistencies, in the shared 
memory model, are equivalent, in the message passing 
model, to rendez-vous, logically instantaneous, causally 
ordered and Fifo communications, respectively). 

II. SHARED MEMORY MODEL 

II.1. Notations. 

A shared memory system is composed of a finite set 
of sequential processes P 1 , ' " , P n  that interact via a 
finite set X of shared objects. Each object z E X can 
be accessed by read and write operations. A write into an 
object defines a new value for the object; a read allows 
to obtain a value of the object. A write of value v into 
object z by process Pi is denoted wi(z)v; similarly a 
read of z by process Pj is denoted rj (z)v where v is 
the value returned by the read operation ; oio will denote 
either r (read) or w (write). For simplicity, as in [27, 4, 
34], we assume all values written into an object z are 
distinct 2. Moreover, the parameters of an operation are 
omitted when they are not important. Each object has 
an initial value; it is assumed that this value has been 
assigned by an initial fictitious write operation. 

1. Moreover, it is worth noting that this set of formal definitions is 
based on very few (and simple) mathematical notions, namely : partial 
order, linear extension, suborder and legality (of read operations). 

2/10 

2. This hypothesis is usual in the domain of database where it is 
given greater place to conflict equivalence than to view equivalence 
when defining serializability [31]. Intuitively, it can be seen as an 
implicit tagging of each value by a pair composed of the identity of 
the process that issued the write plus a sequence number. 
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II.2. Histories. 

Histories are introduced to model the execution of 
shared memory parallel programs. The local history (or 

local computation) h / o f  Pi is the sequence of operations 
issued by Pi. If opl and op2 are issued by Pi and opl 
is issued first, then we say opl precedes op2 in Pi's 
process-order, which is noted opl ~ i  op2. Let hi denote 
the set of operations executed by Pi ; the local history 

hi is the total order (hi,---+i). 
An execution history (or simply a history, or a com- 

putation) H of a shared memory system is a partial order 
H = (H, -+H) such that 3 : 

�9 H = Uihi, 
�9 opl ---~H op2 if : 
i) 3Pi : opl ~ i  op2 (in that case, ~ H  is called 

process-order relation), 
or ii) opl = wi(x)v and op2 = rj(x)v (in that case 

"--+H is called read-from relation), 
or iii) 3op3 : opl --*H op3 and op3 ~1-I op2. 
Two operations opl and oi)2 are concurrent in 3 if 

we have neither opl ---~H op2 nor op2 ~ H  opl. 

if the result of any execution is the same as if (1) the 
operations of all the processors were executed in some 
sequential order, and (2) the operations of each indi- 
vidual processor appear in this sequence in the order 
specified by its program. 

This informal definition states that the execution of a 
program is sequentially consistent if it could have been 
produced by executing this program on a monoproces- 
sor system 4. More formally, we define sequential consis- 
tency in the following way. 

Definition. Sequential consistency. A history 3 = 
(H,--~H) is sequentially consistent if it admits a 
linear extension ~ in which all reads are legal. 

As an example let us consider the history 31 (Fig. 1) 6 . 
Each process P~, (i = 1, 2), has issued three operations 
on the shared objects x and y. The write operations 
wl(x)O and wz(x)l  are concurrent. It is easy to see that 
H1 is seq~ntially consistent by building a legal linear 
extension S including first the operations issued by P2 
and then the ones issued by P1. It is also easy to see that 
the history H2 (Fig. 2) is notsequentially consistent, as 
no legal linear extension o f / / 2  can be built. 

11.3. Legality. 

A read operation r(x)v is legal i f :  (i) 3w(x)v : 
w(x)v --+H r(x)v and (ii) ~op(z)u : (u # v ) A  

A 

(w(x)v ~ H  op(x)u ~ H  r(x)v). A history H is legal 
if all its read operations are legal. 

The legality concept is the key notion on which are 
based our definitions of shared memory consistency 
criteria. In a legal history no read operation can get 
an overwritten value. In the following sections, the 
definition of every consistency criterion follows the 
same pattern : 

�9 First, according to the consistency criterion consi- 
dered, one or several histories are defined from the com- 
putation H,  

�9 Then, 3 is claimed to satisfy the consistency 
criterion if and only if this (these) associated history 
(-ies) is (are) legal. 

III. SEQUENTIAL CONSISTENCY 

III.1. Definition. 

Sequential consistency has been proposed by Lamport 
in 1979 to define a correctness criterion for multiproces- 
sor shared memory systems [23]. A system is sequen- 
tially consistent with respect to a multiprocess program, 

3. Section VIII briefly compares definition of computations in the 
shared memory model and in the message-passing model. 

wl(x)0 ~ rI(Y)M2 ~ rl(x)0 

/ 
/ /  

/ /  
Wz(X) 1 ~ w2(y)2 ~ r2(x) 1 

A 
FIG. 1. - -  A sequentially consistent history H I. 

Une histoire sdquentiellement cohdrente H l . 

WI(X)0 ~ WI(X)I ~-  rl(Y)0 ~ rl(y)2 

w2(Y)0 ~ Wz(y)2 ~ r2(x)0 ~ r2(x)l 

A 
FIG. 2. - -  A causally consistent history H 2. 

A 
Une histoire causalement cohdrente H 2. 

4. In his definition, Lamport assumes that the process-order relation 
defined by the program (see point (2) of the definition) is maintained 
in the equivalent sequential execution, but not necessarily in the 
execution itself. As we do not consider programs but only executions, 
we implicitly assume that the process-order relation displayed by the 
execution histories are the ones specified by the programs which gave 
rise to these execution histories. 

5. A linear extension'S = (S, ~ s) of a partial order H = (H, ---+H) 
is a topological sort of this partial order, i.e., (i) S = H, (ii) opl ---~H 

op2 ::~ opl --*s op2 (S maintains the order of all ordered pairs of~/) 
and (iii) ----'s defines a total order. 

6. In all figures, only the edges that are not due to transitivity are 
indicated (transitivity edges come from process-order and read-from 
relations). Moreover, (intra-process) process-order edges are denoted 
by continuous arrows and (inter-process) read-from edges by dotted 
atTows. 
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111.2. Protocols. 

Various cache-based protocols implementing sequen- 
tial consistency have been proposed in the context of 
parallel machines [2, 7, 28]. In most of these protocols, 
every processor local memory contains a copy of the 
whole shared memory. So, each read operation is execu- 
ted locally, while write operations issued by processes 
are globally synchronized to get a total order. 

In [2] and in the fast read protocol of [7], this total 
order is built by an underlying atomic broadcast primi- 
tive (messages sent with this primitive are delivered in 
the same order to each processor [14]). Read operations 
issued by a process are appropriately scheduled by its 
processor in order to ensure their legality. 

In the protocol presented in [28], a process P~ issuing 
a write operation sends a write message to a central 
manager and waits for an answer. The central manager 
totally orders write operations. After receiving a write 
message from a process P~, the central manager sends 
back an answer informing Pi about its set of copies of 
variables whose values are out of date and consequently 
whose future reads will no more be legal. Two versions 
of the protocol are described; in the first one, variables 
whose future reads by Pi will be illegal are invalidated 
in its local memory; in the second one, the manager 
informs process Pi of the current values associated with 
these variables. 

In the context of distributed systems, where each 
object is supported by several permanent copies, non 
cache-based protocols implementing sequential consis- 
tency have been proposed. Usually these protocols use 
votes [37] or quorums [18] mechanisms and, conse- 
quently, implement actually atomic consistency which 
is stronger than sequential consistency (see Section IV). 
Some systems [111 consider copies as cached values and 
employ techniques (invalidation vs update) similar to the 
ones used in the management of cache mechanisms [6] 
([25] provides an empirical comparison of these techni- 
ques). 

IV. ATOMIC CONSISTENCY 

IV.1. Definition. 

Atomic consistency is the oldest consistency criterion 
and the one that is the most encountered in distributed 
systems. While sequential consistency does not consider 
real-time, atomic consistency does. So, the underlying 
model for atomic consistency is asynchrony+real-time. 
Informally, atomic consistency adds to sequential consis- 
tency the following constraint : any two non-overlapping 
operations must appear in their real-time order within H.  

Expressed in the previous model this means that 
executions of operations can no longer be considered 

as instantaneous. In order to take into account the real- 
time occurrence of operations, a real-time precedence 
relation, denoted -<RT, is defined in the following way. 

and t be two operations belonging to H ;  if e~ Let e~ ej 
was terminated before (with respect to physical time) 

s t t began, then we have, by definition " e i -~nT ej. ej 
Relation -~nT is a partial order relation : two operations 
overlapping in real-time are not ordered. 

Definition. Atomic consistency. A history H = (H, -~H 
) is atomically consistent if it admits a linear 

extension S = (H, ~ s )  (i) whose all reads are 

legal (i.e., S is sequentially consistent) and (ii) 
which is a linear extension of (H,---+nT) (i.e., 

8 t 8 

As soon as reads are legal (point i of the definition), 
they return the last value of a variable. The fundamental 
difference between sequential consistency and atomic 
consistency lies in the meaning of the word last. In the 
case of sequential consistency last refers to logical time, 
while it refers to physical time in the case of atomic 
consistency (point ii of the definition). 

The interested reader will find in [27, 7] a theory of 
atomic consistency. In [19], under the name of linea- 
rizability, atomic consistency theory is generalized to 
objects. 

IV.2. Protocols. 

The most representative protocol implementing ato- 
mic consistency on top of distributed memory parallel 
machines is the Li-Hudak's one [24]. This protocol uses 
an invalidation approach. Each data (a page in this proto- 
col) is owned by a process, namely the last process that 
wrote into it. When a process, wants to read a page for 
which it has not a copy, it sends a request to the mana- 
ger of this page that forwards this request to the current 
owner. When the owner receives such a request, it sends 
a copy of the page to the requesting process and inva- 
lidates its write access right associated with the page. 
When a process wants to write a page, it sends, through 
the manager of the corresponding page, a request to 
the current owner; when receiving such a request, the 
owner first invalidates all - except his own - copies it 
has previously disseminated, and then sends its copy to 
the requesting process. After this, the requesting pro- 
cess is the new owner of the page, and no one else has 
a copy of the page. These mechanisms ensure atomicity 
(i.e. mutual exclusion) between any couple of read and 
write operations, and any couple of write operations. 

Operating systems, especially distributed file systems, 
have mainly considered atomic consistency. This crite- 
rion is implemented by using a majority voting protocol 
[37], or a more general quorum protocol [18]. A quorum 
can be seen as a set of permissions owned by processes 
and granted to a requesting process. After having execu- 
ted the operation for which the quorum was necessary, 
the requesting process gives back permissions to their 
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owners. To read (write) a data x, a process P~ must 
get a read quorum QR~,~ (write quorum QWi,z). Read 
and write quorums guaranteing atomic consistency are 
defined by the two following rules which implement the 
classic readers-writers discipline : 

(1) Vi # j :  Vx E X :  QRi,~ n QWj,~ # O, 

(2) vi ,  j : Vx x : n Qwj,  # O, 

Rule (1) realizes readers-writers mutual exclusion. It 
states that if Pi wants to read x, it must get permissions 
from all processes belonging to QRi,z. Similarly, when 
Pj wants to write x, it must get permissions from 
all processes belonging to QWj,x. As any process in 
QRi,x N QWj,~ can grant its permission either to Pi 
or to Pj (i.e., it can not satisfy simultaneously both of 
them), the desired exclusion follows. In the same way 
rule (2) realizes writer-writer mutual exclusion. 

V. CAUSAL CONSISTENCY 

FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES 

So, in a causally consistent history, no read operation 
of a process Pi can get a value that, from Pi's point of 
view, has been overwritten by a more recent write. As 

A 

an example consider history//2 (Fig. 2). This history is 
causally consistent as all its read operations are legal. 

The history H3 (Fig. 3) is not causally consistent as 
the read operation r3(z) l  issued by P3 is not legal : 
w l (x ) l  -'-~H ra(x)2 --+H r3(x)l .  Said another way : 
when P3 has issued its first read operation on x (namely 
r3 (x)2), it has got the value 2, and consequently for this 
process, the value 1 of x has logically been overwritten. 

w i (x) 1------------I~ w l ? ) 2  
I 
I 
I 

w;(x)2-------------~ r ; ( y ) 2 - - - - - - - ~  Wz(Z)3 
I 
I 
I 
I 

V 
r3(z)3 ~ r3(x)2 ~ r3(x) 1 

FIG. 3. - -  A non causal ly  (but PRAM) consis tent  history/-/3.  

Une histoire causalement cohdrente mais non e~4M H 3. 

V.1. Definition. 

Causal consistency has first been introduced by Aha- 
mad et al. in 1991 [4], and then studied by several 
authors [5, 3, 34]. It defines a consistency criterion 
strictly weaker than sequential consistency, and allows 
for a wait-free implementation of read and write ope- 
rations in a distributed environment (i.e., causal consis- 
tency allows for cheap read/write operations). 

With sequential consiste~y, all processes agree on a 
same legal linear extension S. The agreement defined by 
causal consistency is weaker. Given a history H, it is not 
required that two processes/9/and Pj agree on the same 
ordering for the write operations which are not ordered 
in H. The reads are however required to be legal. 

The set of operations that may affect a process Pi are 
the operations of Pi plus the set of all write operations 

issued by other processes. Let Hi be the sub-history of 
from which all read operations not issued by Pi have 

been removed 7. 

Definition. Causal consistency. Let H -- (H,-~H) be a 
history. H is causally consistent if, for each process 

A 

Pi, all the read operations of Hi are legal (Fig. 2). 
Said another way, in a causally consistent history, all 

processes see the same partial order on operations but, 
as processes are sequential, each of them might see a 
different legal linear extension of this partial order. 

Actually, when considering read and write operations 
as equivalent to receive and send operations in message 
passing systems, causal consistency is equivalent, in the 
shared memory model, to causal ordering [14, 33] for 
the delivery of messages in the message passing model 
(other similarities between both models are addressed in 
Section VIII). 

V.2. Protocols. 

Reference [5] presents an implementation of causal 
memory and studies programming with such a memory. 
It is shown that, when executed on a causally consistent 
memory, concurrent-write free s or data-race free 9 paral- 
lel programs behave as if the underlying shared memory 
was sequentially consistent. This is particularly inter- 
esting as these programs, intended to be executed on 
a sequentially consistent memory, remain correct when 
executed on a less synchronized memory. 

This approach has been generalized in [34] where 
a synchronization condition, called MSC, less restrictive 
than concurrent-write freeness or data-race freeness, is 
proposed. Informally, MSC introduces a new constraint 
called concurrent-readfreeness and states a combination 

7. More formally, Hi  is the sub-relation of H induced by the set 
of  all the writes of  H and all the reads issued by Pi. 

8. A program is concurrent-write free if, in all its executions, all 
its write operations are totally ordered. 

9. A program is data-race free if all accesses to each variable 
follow the readers-writer discipline [1]. 
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of (concurrent-write freeness, concurrent-read freeness 
and data-race freeness) constraints which allows concur- 
rent writes on a same object while ensuring sequential 
consistency. 

This condition can be used when executing, on a 
causally consistent memory, a program designed for a 
sequentially consistent memory. For the computation to 
be correct, it is only necessary to add on top of the 
causally consistent memory, a protocol implementing 
the MSC condition. Such a condition is interesting as 
it provides a layered approach to design a sequentially 
consistent memory : the library can contain (i) a first 
protocol implementing a causally consistent memory, 
and (ii) a second one implementing the MSC condition. 

657 

i) 3 Pi : opl ---~ op2 (process-order relation), 
or ii) opl = wi(x)v and op2 = r j (x)v  (read-form 

relation), 
or iii) ~ op3 " opl ---~i op3 and op3 ---~i op2. 

Let H~ be the sub-history of H '  from which all 
read operations not issued by Pi have been removed 

(Figure 4 depicts the sub-history H~ associated with 

the computation ~ described in Figure 3). /~r is PRAM 

consistent if, for each Pi, all read operations of  H~ are 
legal. This definition of PRAM consistency shows that its 
difference, with respect to causal consistency, lies only 
in the nature of  the transitivity considered (point iii of 
their definitions). 

VI. PRAM CONSISTENCY 

PRAM (pipelined RAM) consistency [26] is a consis- 
tency criterion weaker than causal consistency. The dif- 
ference, in the shared memory model, between PRAM 
consistency and causal consistency is the same as the 
one between fifo ordering and causal ordering for mes- 
sage deliveries in the message passing model [14, 35, 
33]. PRAM and fifo are only concerned by direct relations 
between pairs of adjacents processes and do not take 
into account transitivity due to intermediary processes. 
More precisely, in a message passing system with fifo 
ordering, two messages sent to a same process by two 
distinct senders can be delivered in any order, even if 
the send events are causally related [22] (this is not the 
case with causal ordering : if the send events are cau- 
sally related, messages must be delivered in their sending 
order to the destination process). In the same way, in a 
PRAM consistent shared memory system, two updates of  
objects by two distinct processes can be known in any 
order by a third one 1~ (this is not the case in a causally 
consistent shared memory : if wk(x)u -+H wj(x)v ,  a 
process Pi reading x can never get v and then u). As 

an example consider history Ha which is not causally 
consistent (Fig. 3). This history is PRAM consistent " as 
Wl(X)l and w2(x)2 have been issued by distinct pro- 
cesses, values 1 and 2 of  x can be known by P'3 in any 
order. 

Let /~ be a history and let H ~-3 = ( H I , ~ H  ,) be 

a history defined from /~ in the following way ( H  ~ 
differs from H only in point iii defining transitivity 
- see Section II.2 - where ---'i is used instead of --~H) 1~ : 

�9 H '  = H (so H '  = t2~hi) 
�9 opl  ---+H' op2 if : 

/91 Wl(x)l > wl(Y)2 

Pa r 3 ( z ) ~ r 3 ( x ) 2  > r3 (x) 1 

A 

FIG, 4. - -  The sub-history H '  3 
h 

Une sous-histoire H' 3. 

VII. OTHER CONSISTENCY CRITERIA 

VII.1. Mixed consistency. 

Mixed consistency has been introduced by Agrawal et 
al. in [3]. This consistency criterion on one side consi- 
ders histories including memory operations (read and 
write) and synchronization operations (lock, barrier and 
await), and on the other side combines PRAM consistency 
with causal consistency; namely every read operation is 
tagged either PRAM or causal. 

A his to ry /~  is mixed consistent if it is : 
�9 causally consistent when considering only the lega- 

lity of read operations tagged causal, and 
�9 PRAM consistent when considering only the legality 

of  read operations tagged PRAM. 
The following result is shown in [3]. A mixed consis- 

tent history H in which all read operations are tagged 
causal 12 and in which every pair of  concurrent opera- 
tions commute la, is sequentially consistent. 

10. Of  course, only one of the updates can be known, if updates 
overwrite the value previously written by other processes. 

11. As (e -+i  J) ==~ (e ---+H )), we have H '  C H. When compared 

to H, some transitivity part of the causality relation are missing in/4 ' .  

12. Note H is then causally consistent. 
13. Two concurrent operations commute if their execution order is 

irrelevant (this is not the case for two concurrent writes on a same 
object). 
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VII.2. Hybrid consistency. 

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES 

Hybrid consistency has been introduced by Attiya and 
Friedman in [8]. This consistency criterion guarantees 
properties on the order in which operations appear to be 
executed at the program level. Operations are labeled 
either strong or weak. By defining which operations 
are strong and which are weak, a user can tune the 
consistency criterion to his own need. Informally hybrid 
consistency guarantees the following two properties : 

�9 all strong operations appear to be executed in some 
sequential order, 

�9 if two operations are invoked by the same process 
and at least one of them is strong, then they appear to 
be executed in their invocation order to all processes. 

Hence all processes agree on a total order for all 
strong operations, and on the same order for any pair of 
strong and weak operations issued by the same process. 
They can disagree on the relative order of any pair 
of weak operations issued by a process between two 
strong operations. Let us consider the two following 
constraints : 

�9 constraint SW : all writes are strong and all reads 
a r e  w e a k ,  

�9 constraint SR : all writes are weak and all reads are 
strong. 

The following result is proved in [9] : every hybrid 
consistent history that satisfies either the constraint SW 
or the constraint SR is sequentially consistent. When 
considering only constraint SW, this result is similar to 
the one implied by the concurrent-write freeness syn- 
chronization constraint (see Section V.2) : to get sequen- 
tial consistency, SW and concurrent-write freeness order 
all write operations. 

VIII. SHARED MEMORY MODEL 
VS MESSAGE PASSING MODEL 

VIII.1. Message passing computation. 

The definition of an history in the shared memory 
model, and its definition in the message passing model, 
have some similarities. The first definition of an history 
in the message passing model is due to Lamport [22]. 
In the message passing model, operations issued by a 
process are modeled as events which can be : 

* the sending of a message m (event send(m)) ; 
�9 the reception of a message m (event receive(m)) ; 
�9 the execution of a statement involving neither the 

send nor the receive of a message (internal event). 

The local history of a process Pi is the sequence ~ of 
events it has produced. A distributed computation (or an 
history) H of a set of processes P 1 , ' " ,  Pn is a partial 
order (H,---~H) defined as in the case of the shared 
memory model except for point ii). More precisely, the 
definition of the read-from relation is replaced by the 
definition of a message relation : 

�9 H = Uihi, 

�9 op l  -"~H op2 if : 

i) ~ Pi : opl --el o192 (in that case, ~ H  is called 
process-order relation), 

or ii) ot)1 = send(m) and op2 = receive(m) (in that 
case ---'H is called message relation), 

or iii) 3 op3 : opl --~H op3 and o193 ---*H op2. 

VII.3. Non-primitive read and write operations. 

Till now we have supposed that read and write ope- 
rations offered to users are primitive operations. Some 
authors have considered to provide users with mecha- 
nisms allowing them to define non-primitive read and 
write operations on a set of shared data objects (nota- 
tion : READ, WRITE). Each such READ or WRnT operation is 
actually a procedure bracketed by two synchronization 
operations (release and acquire). A non-primitive READ is 
composed of non synchronized primitive read operations 
while a non-primitive WRnE can include read and write 
primitive operations. Both release consistency [17] and 
entry consistency [13] address such non-primitive READ 
and WRITE operations, and provide sequential consis- 
tency when acquire and release operations guarantee the 
readers-writers discipline. Concerning protocols imple- 
menting these consistency criteria, eager vs lazy [21] 
is an implementation issue whose aim is to reduce the 
number of messages and the amount of data exchanged; 
invalidation vs update [11] is another implementation 
issue addressing the management of multiple copies of 
objects when a cached-based approach is used. 

VIII.2. Logically instantaneous and causally orde- 
red communications. 

The similarity between both models is not limited to 
their definitions. PRAM, causal and sequential consisten- 
cies in the shared memory model correspond to Fifo, 
causally ordered [14, 33] and logically instantaneous 
[36] communications in the message passing model. 
Characterizations of these communication modes can be 
found in [12, 16, 36]. 

VIII.2.1. Causally ordered communications. 

A distributed computation /~ has causally ordered 
communications if : 

V m l ,  m2: (send(m1)~-~I-1 send(m2))A(ml  and m2 
are sent to the same destination process) ~ (receive 

(m~) - * .  receive(m~)). 

So, causal ordering imposes, for each process, receive 
events to be ordered as their associated send events. It 
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is easy to see that, if H has causally ordered communi- 
cations, it has also Fifo communications. Figure 5 illus- 
trates causal ordering : in Figure 5a communications are 
causally ordered, while they are not in Figure 5b. Refe- 
rences [14, 35, 33] describe protocols implementing cau- 
sally ordered communications on top of an asynchronous 
system, and give examples of problems whose solutions 
are easier to design when the underlying network ensures 
communications are causally ordered at the application 
level. 
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More formally, H has logically instantaneous com- 
munications if it is possible to assign logical timestamps 
to all events such that the time increases within each 
process and, for each message, the send and the receive 
events have the same timestamp [29] (T is the time- 
stamping function which assigns a timestamp T ( x )  to 
each event x) : 

3 T : H ~-+ N such that : 

(a ~ b ~ T(a)  < T(b))A 

(Vm:  T ( s e n d ( m ) )  = T ( r e c e i v e ( m ) ) ) .  

~m~t 2 m~r n 
1 

'2 

P3 
a) 

FIG. 5. - -  Causal ordering. 

b) 

(a) causally ordered communication ; 
(b) not causally ordered communication. 

L'ordre causal sur les messages. 

VIII.2.2. Logically instantaneous communications. 

Informally, a distributed computation ~r has logically 
instantaneous communications if the time diagram asso- 
ciated with /~ can be drawn in such a way that, for 
each message, its send and receive events can be put on 
the same vertical line [16] (Fig. 6) 14. Remark that i f / 7  
has logically instantaneous communications, it has also 
causally ordered communications. 

m l 

P2 

P3 / 

m l 

FIG. 6. - -  Logically instantaneous communication. 

Communications logiquement instantandes. 

VIII.2.3. Relations between both models. 

The aim of this section is to exhibit a correspondence 
between consistency criteria for the shared memory 
model and communication modes for the message- 
passing model (see Table I). 

TABLE I. - -  Correspondence between models. 

Correspondances entre modOles. 

shared memory model message-passing model 

atomic consistency 

sequential consistency 

causal consistency 

PRAM consistency 

possibly illegal read 

rendezvous 

logical instantaneity 

causal order 

Fifo order 

full asyncbrony 

Let H be a history in the message passing model. 
[16] introduces the empty interval property 15 and shows 
the f@owing results : 

�9 H has causally ordered communications if it satis- 
fies the following empty interval property : 

(3) Vreeeive(m) ~ H :  

{opIsend(m)  ---~H op---~H r e c e i v e ( m ) }  = O, 

�9 H has logically instantaneous communications if it 
has a linear extension S satisfying the following empty 
interval property : for all messages m, the receive event 
follows immediately the corresponding send event (i.e. 
communications events appear instantaneous in S) : 

(4) Vreceive(m) C S :  

{oplsend(m)- s op receive(m)} = 0. 

Similar characterizations can be provided for their 
counterpart in the shared memory model, causal consis- 
tency and sequential consistency, respectively. Let H be 
a history in the shared memory model. Causal consis- 
tency and sequential consistency can be characterized in 
the following way : 

14. Remark that if we consider a single unidirectional channel, the 
Fifo property confuses with logical instantaneity. 

15. Two events el and e2 of a partial order (P, ---~p) satisfy the 
empty intervalproperty if {elel ---,peep e2} = 0. 
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�9 H is causally consistent if, for each process P~, 
all its read operations are legal in the history Hi it is 
associated with 16, i.e. �9 

(S) Vi :  Vr(x )v  e Hi :  {op(x)ulu r vA 

w(x)v op(x)u r ( x ) v }  = O. 

�9 H is sequentially consistent if it admits a linear 
extension S in which all read operations are legal, i.e. �9 

(6) Vr(x )v  �9 S :  (op(x)ulu ~ vA 

 (x)v - , s  : 0. 

(3) and (5) on one side, and (4) and (6) on the other 
side, exhibit strong similarities. In all the four cases, 
the characterization is based on a similar empty interval 
property. It is applied to a linear extension of the com- 
putation in cases (4) and (6). In cases (3) and (5) it is 
applied, for each process, to the operations/events that 
may causally affect it 17. An additional common point 
between causal consistency and causally ordered com- 
munications is the following one : the protocol imple- 
menting causally ordered communications described in 
[33] is used in [5] as basic mechanism to implement cau- 
sally consistent shared memories on top of a distributed 
system. 

Finally, let us note that the rendezvous communica- 
tion mode [20, 10] is stronger than logical instantaneity ; 
rendezvous considers physical time while logical instan- 
taneity logical time. Rendezvous is usually defined in the 
following way �9 a system has rendezvous communica- 
tion if "no message of a given type can be sent along a 
channel before the receiver is ready to receive it... For an 
external observer the transmission then looks instanta- 
neous and atomic" [15]. So, it appears that it is possible 
to exhibit similarities between the rendezvous communi- 
cation mode and the atomic consistency criterion. Both 
of them relies on realtime for defining interactions. A 
deep study of their connections is beyond the scope of 
this paper. The reader interested by such a study will 
consult [8]. 

IX. CONCLUSION 

Numerous protocols implementing distributed shared 
memory systems have been designed. In the most of 
them, the semantics (consistency criterion) they offer to 
users is defined only by the description of the protocol 

16. Remember Hi is H from which all the read operations not 

from Pi have been removed. So, Hi describes the computation that 
may causally affect Pi. 

17. In the message passing model all send and receive events may 
causally affect (by creating causality chains) each process Pi, so H 
is considered. In the shared memory model a process Pi cannot be 
affected by reads of the other processes, so for each process Pi, its 
associated Hi is considered. 

and not in an abstract way. This makes it difficult 
the study of their properties and the appreciation of 
their differences. In this paper we provided a suite of 
formal definitions for the most encountered consistency 
criteria, namely atomic, sequential, causal, release and 
entry consistencies. These definitions are not bound to 
particular implementations and are based on a unique 
framework. This, not only eases their understanding and 
their comparison, but should facilitate the design of 
a generic protocol which could be customized to the 
specific need of each user. 

Last but not least, strong similarities between the 
shared memory model and the message passing model 
have been exhibited. 
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