
652 pp. 652-661

Michel RAYNAL *
Andr6 SCHIPER **

A suite of definitions for consistency criteria
in distributed shared memories

Abstract

A shared memory built on top of a distributed sys-
tem constitutes a distributed shared memory (DSM). I f
a lot of protocols implementing DSMS in various con-
texts have been proposed, no set of homogeneous defi-
nitions has been given for the many semantics offered
by these implementations. This paper provides a suite
of such definitions for atomic, sequential, causal, PRAM
and a few others consistency criteria, These definitions
are based on a unique framework : a parallel computa-
tion is defined as a partial order on the set of read and
write operations invoked by processes, and a consis-
tency criterion is defined as a constraint on this partial
order. Such an approach provides a simple classifica-
tion of consistency criteria, from the more to the less
constrained one. This paper can also be considered as
a survey on consistency criteria for DSMS.

Key words : Distributed system, Ressource sharing, Memory,
Computer theory, Semantics, Logics relation, Consistency.

UN ENSEMBLE HII~RARCHIQUE
DE DI~FINITIONS

POUR LES CRITERES DE COI-H~RENCE
DANS LES MI~MOIRES DISTRIBUI~ES

PARTAGI~ES

culibrement dtudides. Grace b l'utilisation d'un forma-
lisme unique (fondd sur la thgorie des ordres partiels)
pour ddfinir ces divers critbres, on montre que ceux-ci
s'imbriquent naturellement tes uns dans les autres. Des
protocoles impldmentant ces divers critbres sont dgale-
ment citds. Cet article peut 6tre vu comme un survey
de critbres de cohdrence. L'originalitd de l'approche
consiste ~les prdsenter dans un formalisme unique. Ceci
permet de mieux comprendre et apprdcier les points o?~
se situent teurs similitudes et leurs diffdrences.

Mots cl6s : Syst~me r6parti, Partage ressource, M~moire, lnforma-
tique th6orique, S6mantique, Relation logique, Coh6rence.

Contents

I. Introduction.
II. Shared memory model.

III. Sequencial consistency.
IV. Atomic consistency.
V. Causal consistency.

VI. PRAM consistency.
VII. Other consistency criteria.

VIII. Shared memory model vs message passing
model.

IX. Conclusion.

References (37 ref).

R6sum6

Cet article prdsente un ensemble de critkres de
cohdrence pour les donndes accdddes par des proces-
sus concurrents. La cohdrence atomique, la cohdrence
sdquentielle et la cohdrence causale sont plus parti-

I. INTRODUCTION

Since the end of the eighties, the distributed shared
memory abstraction (a shared memory built on top of
a distributed system) is receiving more and more atten-

* IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France. raynal@irisa.fr.
** EPFL, Dept d'Informatique, CH-1015 Lausanne, Switzerland. schiper@di.epfl.ch.

ANN. TflLI~COMMUN., 52, n ~ I 1-12, 1997 1/10

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES 653

tion. One of its very first implementation has been done
in the ivy system designed by Li and Hudak [24]. The
distributed shared memory abstraction (DSM for short)
has many advantages. First, at the application level, DSM
frees the programmer from the underlying support as
he has to consider only the well known shared varia-
bles programming paradigm to design a solution to his
problem, independently of the system that will run his
program (be it a centralized shared memory or a distribu-
ted one). Additionally, this facilitates his programming
task as a lot of problems (especially related to numeri-
cal analysis or image processing) are easier to solve by
using the shared variables paradigm than by using the
message passing one. Second, at the system level, DSM
makes transparent transport of programs, load balancing
and process migration.

So, numerous protocols implementing a DSM on top
of a distributed memory parallel machine or on top of a
distributed system have been proposed. References [30]
and [32] survey systems offering a DSM to their users.
DSM implementations have common points with multi-
processor caches, networked file systems and distributed
databases. Basically, the shared memory is supported by
local memories of processors and copies of a data item
can simultaneously be present in several local memories.
Due to characteristics of the distributed context (asyn-
chronous communications, existence of several copies,
etc.), some protocols implementing a shared memory
on top of a distributed system offer to users a shared
memory whose semantics is lightly different (sometimes
in a very subtle way) from the classic semantics associa-
ted with a centralized shared memory, namely the atomic
semantics.

Semantics of a shared memory is expressed by a
consistency criterion. Such a criterion defines the value
returned by every read operation invoked by a process.
In nearly all DSMS [30, 25, 32], this consistency criterion
is not formally defined and has to be deduced from
the protocol implementing the shared memory. This
makes study of properties of DSMS difficult and facilitates
neither their understanding nor their comparison.

We propose, in this paper, a set of formal definitions
for the following consistency criteria : atomic consis-
tency, sequential consistency, causal consistency, PRAM
consistency and a few others. These definitions consi-
der a shared memory computation as a partial order on
the set of read and write operations issued by processes,
and a particular consistency criterion is expressed as a
constraint that the partial order has to satisfy 1. A proto-
col implementing a DSM with some consistency criterion
C has to ensure all computations will satisfy the associa-
ted constraint. Such an approach has several advantages.
First, as these definitions are independent of particular
implementations, they exhibit intrinsic properties asso-

ciated with consistency criteria; so, this approach fol-
lows the abstract data type one by clearly distinguishing
the semantics of the object offered to users (a shared
memory with some semantics) from particular imple-
mentations. Second, the set of definitions given in this
paper constitutes a hierarchical suite in the following
sense : as they all are expressed by using the same for-
malism, it is possible to order them (from the more to the
less constrained) ; consequently it is easy to see what are
the additional constraints required by one consistency
criterion with respect to another by comparing their posi-
tions within the hierarchy.

The paper is divided into 7 main sections. Section II
presents the basic shared memory model. Then, Sec-
tions III, IV, V and VI give formal definitions for sequen-
tial, atomic, causal and PRAM consistency, respectively.
Basic principles of protocols implementing these cri-
teria are also given. Section VII completes the pano-
rama by examining other consistency criteria, namely
hybrid, mixed, release and entry consistencies. Finally,
Section VIII exhibits similarities between the shared
memory model and the message passing model (atomic,
sequential, causal and PRAM consistencies, in the shared
memory model, are equivalent, in the message passing
model, to rendez-vous, logically instantaneous, causally
ordered and Fifo communications, respectively).

II. SHARED MEMORY MODEL

II.1. Notations.

A shared memory system is composed of a finite set
of sequential processes P 1 , ' " , P n that interact via a
finite set X of shared objects. Each object z E X can
be accessed by read and write operations. A write into an
object defines a new value for the object; a read allows
to obtain a value of the object. A write of value v into
object z by process Pi is denoted wi(z)v; similarly a
read of z by process Pj is denoted rj (z)v where v is
the value returned by the read operation ; oio will denote
either r (read) or w (write). For simplicity, as in [27, 4,
34], we assume all values written into an object z are
distinct 2. Moreover, the parameters of an operation are
omitted when they are not important. Each object has
an initial value; it is assumed that this value has been
assigned by an initial fictitious write operation.

1. Moreover, it is worth noting that this set of formal definitions is
based on very few (and simple) mathematical notions, namely : partial
order, linear extension, suborder and legality (of read operations).

2/10

2. This hypothesis is usual in the domain of database where it is
given greater place to conflict equivalence than to view equivalence
when defining serializability [31]. Intuitively, it can be seen as an
implicit tagging of each value by a pair composed of the identity of
the process that issued the write plus a sequence number.

ANN. TELECOMMUN., 52, n ~ 11-12, 1997

654 M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

II.2. Histories.

Histories are introduced to model the execution of
shared memory parallel programs. The local history (or

local computation) h / o f Pi is the sequence of operations
issued by Pi. If opl and op2 are issued by Pi and opl
is issued first, then we say opl precedes op2 in Pi's
process-order, which is noted opl ~ i op2. Let hi denote
the set of operations executed by Pi ; the local history

hi is the total order (hi,---+i).
An execution history (or simply a history, or a com-

putation) H of a shared memory system is a partial order
H = (H, -+H) such that 3 :

�9 H = Uihi,
�9 opl ---~H op2 if :
i) 3Pi : opl ~ i op2 (in that case, ~ H is called

process-order relation),
or ii) opl = wi(x)v and op2 = rj(x)v (in that case

"--+H is called read-from relation),
or iii) 3op3 : opl --*H op3 and op3 ~1-I op2.
Two operations opl and oi)2 are concurrent in 3 if

we have neither opl ---~H op2 nor op2 ~ H opl.

if the result of any execution is the same as if (1) the
operations of all the processors were executed in some
sequential order, and (2) the operations of each indi-
vidual processor appear in this sequence in the order
specified by its program.

This informal definition states that the execution of a
program is sequentially consistent if it could have been
produced by executing this program on a monoproces-
sor system 4. More formally, we define sequential consis-
tency in the following way.

Definition. Sequential consistency. A history 3 =
(H,--~H) is sequentially consistent if it admits a
linear extension ~ in which all reads are legal.

As an example let us consider the history 31 (Fig. 1) 6 .
Each process P~, (i = 1, 2), has issued three operations
on the shared objects x and y. The write operations
wl(x)O and wz(x)l are concurrent. It is easy to see that
H1 is seq~ntially consistent by building a legal linear
extension S including first the operations issued by P2
and then the ones issued by P1. It is also easy to see that
the history H2 (Fig. 2) is notsequentially consistent, as
no legal linear extension o f / / 2 can be built.

11.3. Legality.

A read operation r(x)v is legal i f : (i) 3w(x)v :
w(x)v --+H r(x)v and (ii) ~op(z)u : (u # v) A

A

(w(x)v ~ H op(x)u ~ H r(x)v). A history H is legal
if all its read operations are legal.

The legality concept is the key notion on which are
based our definitions of shared memory consistency
criteria. In a legal history no read operation can get
an overwritten value. In the following sections, the
definition of every consistency criterion follows the
same pattern :

�9 First, according to the consistency criterion consi-
dered, one or several histories are defined from the com-
putation H,

�9 Then, 3 is claimed to satisfy the consistency
criterion if and only if this (these) associated history
(-ies) is (are) legal.

III. SEQUENTIAL CONSISTENCY

III.1. Definition.

Sequential consistency has been proposed by Lamport
in 1979 to define a correctness criterion for multiproces-
sor shared memory systems [23]. A system is sequen-
tially consistent with respect to a multiprocess program,

3. Section VIII briefly compares definition of computations in the
shared memory model and in the message-passing model.

wl(x)0 ~ rI(Y)M2 ~ rl(x)0

/
/ /

/ /
Wz(X) 1 ~ w2(y)2 ~ r2(x) 1

A
FIG. 1. - - A sequentially consistent history H I.

Une histoire sdquentiellement cohdrente H l .

WI(X)0 ~ WI(X)I ~- rl(Y)0 ~ rl(y)2

w2(Y)0 ~ Wz(y)2 ~ r2(x)0 ~ r2(x)l

A
FIG. 2. - - A causally consistent history H 2.

A
Une histoire causalement cohdrente H 2.

4. In his definition, Lamport assumes that the process-order relation
defined by the program (see point (2) of the definition) is maintained
in the equivalent sequential execution, but not necessarily in the
execution itself. As we do not consider programs but only executions,
we implicitly assume that the process-order relation displayed by the
execution histories are the ones specified by the programs which gave
rise to these execution histories.

5. A linear extension'S = (S, ~ s) of a partial order H = (H, ---+H)
is a topological sort of this partial order, i.e., (i) S = H, (ii) opl ---~H

op2 ::~ opl --*s op2 (S maintains the order of all ordered pairs of~/)
and (iii) ----'s defines a total order.

6. In all figures, only the edges that are not due to transitivity are
indicated (transitivity edges come from process-order and read-from
relations). Moreover, (intra-process) process-order edges are denoted
by continuous arrows and (inter-process) read-from edges by dotted
atTows.

ANN. T/~LI~COMMUN., 52, n ~ 11-12, 1997 3/10

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES 655

111.2. Protocols.

Various cache-based protocols implementing sequen-
tial consistency have been proposed in the context of
parallel machines [2, 7, 28]. In most of these protocols,
every processor local memory contains a copy of the
whole shared memory. So, each read operation is execu-
ted locally, while write operations issued by processes
are globally synchronized to get a total order.

In [2] and in the fast read protocol of [7], this total
order is built by an underlying atomic broadcast primi-
tive (messages sent with this primitive are delivered in
the same order to each processor [14]). Read operations
issued by a process are appropriately scheduled by its
processor in order to ensure their legality.

In the protocol presented in [28], a process P~ issuing
a write operation sends a write message to a central
manager and waits for an answer. The central manager
totally orders write operations. After receiving a write
message from a process P~, the central manager sends
back an answer informing Pi about its set of copies of
variables whose values are out of date and consequently
whose future reads will no more be legal. Two versions
of the protocol are described; in the first one, variables
whose future reads by Pi will be illegal are invalidated
in its local memory; in the second one, the manager
informs process Pi of the current values associated with
these variables.

In the context of distributed systems, where each
object is supported by several permanent copies, non
cache-based protocols implementing sequential consis-
tency have been proposed. Usually these protocols use
votes [37] or quorums [18] mechanisms and, conse-
quently, implement actually atomic consistency which
is stronger than sequential consistency (see Section IV).
Some systems [111 consider copies as cached values and
employ techniques (invalidation vs update) similar to the
ones used in the management of cache mechanisms [6]
([25] provides an empirical comparison of these techni-
ques).

IV. ATOMIC CONSISTENCY

IV.1. Definition.

Atomic consistency is the oldest consistency criterion
and the one that is the most encountered in distributed
systems. While sequential consistency does not consider
real-time, atomic consistency does. So, the underlying
model for atomic consistency is asynchrony+real-time.
Informally, atomic consistency adds to sequential consis-
tency the following constraint : any two non-overlapping
operations must appear in their real-time order within H.

Expressed in the previous model this means that
executions of operations can no longer be considered

as instantaneous. In order to take into account the real-
time occurrence of operations, a real-time precedence
relation, denoted -<RT, is defined in the following way.

and t be two operations belonging to H ; if e~ Let e~ ej
was terminated before (with respect to physical time)

s t t began, then we have, by definition " e i -~nT ej. ej
Relation -~nT is a partial order relation : two operations
overlapping in real-time are not ordered.

Definition. Atomic consistency. A history H = (H, -~H
) is atomically consistent if it admits a linear

extension S = (H, ~ s) (i) whose all reads are

legal (i.e., S is sequentially consistent) and (ii)
which is a linear extension of (H,---+nT) (i.e.,

8 t 8

As soon as reads are legal (point i of the definition),
they return the last value of a variable. The fundamental
difference between sequential consistency and atomic
consistency lies in the meaning of the word last. In the
case of sequential consistency last refers to logical time,
while it refers to physical time in the case of atomic
consistency (point ii of the definition).

The interested reader will find in [27, 7] a theory of
atomic consistency. In [19], under the name of linea-
rizability, atomic consistency theory is generalized to
objects.

IV.2. Protocols.

The most representative protocol implementing ato-
mic consistency on top of distributed memory parallel
machines is the Li-Hudak's one [24]. This protocol uses
an invalidation approach. Each data (a page in this proto-
col) is owned by a process, namely the last process that
wrote into it. When a process, wants to read a page for
which it has not a copy, it sends a request to the mana-
ger of this page that forwards this request to the current
owner. When the owner receives such a request, it sends
a copy of the page to the requesting process and inva-
lidates its write access right associated with the page.
When a process wants to write a page, it sends, through
the manager of the corresponding page, a request to
the current owner; when receiving such a request, the
owner first invalidates all - except his own - copies it
has previously disseminated, and then sends its copy to
the requesting process. After this, the requesting pro-
cess is the new owner of the page, and no one else has
a copy of the page. These mechanisms ensure atomicity
(i.e. mutual exclusion) between any couple of read and
write operations, and any couple of write operations.

Operating systems, especially distributed file systems,
have mainly considered atomic consistency. This crite-
rion is implemented by using a majority voting protocol
[37], or a more general quorum protocol [18]. A quorum
can be seen as a set of permissions owned by processes
and granted to a requesting process. After having execu-
ted the operation for which the quorum was necessary,
the requesting process gives back permissions to their

4 / 1 0 ANN. TI~LI~COMMUN., 52, n ~ 11-12, 1997

6 5 6 M. RAYNAL. -- DEFINITIONS

owners. To read (write) a data x, a process P~ must
get a read quorum QR~,~ (write quorum QWi,z). Read
and write quorums guaranteing atomic consistency are
defined by the two following rules which implement the
classic readers-writers discipline :

(1) Vi # j : Vx E X : QRi,~ n QWj,~ # O,

(2) vi , j : Vx x : n Qwj, # O,

Rule (1) realizes readers-writers mutual exclusion. It
states that if Pi wants to read x, it must get permissions
from all processes belonging to QRi,z. Similarly, when
Pj wants to write x, it must get permissions from
all processes belonging to QWj,x. As any process in
QRi,x N QWj,~ can grant its permission either to Pi
or to Pj (i.e., it can not satisfy simultaneously both of
them), the desired exclusion follows. In the same way
rule (2) realizes writer-writer mutual exclusion.

V. CAUSAL CONSISTENCY

FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

So, in a causally consistent history, no read operation
of a process Pi can get a value that, from Pi's point of
view, has been overwritten by a more recent write. As

A

an example consider history//2 (Fig. 2). This history is
causally consistent as all its read operations are legal.

The history H3 (Fig. 3) is not causally consistent as
the read operation r3(z) l issued by P3 is not legal :
w l (x) l -'-~H ra(x)2 --+H r3(x)l . Said another way :
when P3 has issued its first read operation on x (namely
r3 (x)2), it has got the value 2, and consequently for this
process, the value 1 of x has logically been overwritten.

w i (x) 1------------I~ w l ?) 2
I
I
I

w;(x)2-------------~ r ; (y) 2 - - - - - - - ~ Wz(Z)3
I
I
I
I

V
r3(z)3 ~ r3(x)2 ~ r3(x) 1

FIG. 3. - - A non causal ly (but PRAM) consis tent history/-/3.

Une histoire causalement cohdrente mais non e~4M H 3.

V.1. Definition.

Causal consistency has first been introduced by Aha-
mad et al. in 1991 [4], and then studied by several
authors [5, 3, 34]. It defines a consistency criterion
strictly weaker than sequential consistency, and allows
for a wait-free implementation of read and write ope-
rations in a distributed environment (i.e., causal consis-
tency allows for cheap read/write operations).

With sequential consiste~y, all processes agree on a
same legal linear extension S. The agreement defined by
causal consistency is weaker. Given a history H, it is not
required that two processes/9/and Pj agree on the same
ordering for the write operations which are not ordered
in H. The reads are however required to be legal.

The set of operations that may affect a process Pi are
the operations of Pi plus the set of all write operations

issued by other processes. Let Hi be the sub-history of
from which all read operations not issued by Pi have

been removed 7.

Definition. Causal consistency. Let H -- (H,-~H) be a
history. H is causally consistent if, for each process

A

Pi, all the read operations of Hi are legal (Fig. 2).
Said another way, in a causally consistent history, all

processes see the same partial order on operations but,
as processes are sequential, each of them might see a
different legal linear extension of this partial order.

Actually, when considering read and write operations
as equivalent to receive and send operations in message
passing systems, causal consistency is equivalent, in the
shared memory model, to causal ordering [14, 33] for
the delivery of messages in the message passing model
(other similarities between both models are addressed in
Section VIII).

V.2. Protocols.

Reference [5] presents an implementation of causal
memory and studies programming with such a memory.
It is shown that, when executed on a causally consistent
memory, concurrent-write free s or data-race free 9 paral-
lel programs behave as if the underlying shared memory
was sequentially consistent. This is particularly inter-
esting as these programs, intended to be executed on
a sequentially consistent memory, remain correct when
executed on a less synchronized memory.

This approach has been generalized in [34] where
a synchronization condition, called MSC, less restrictive
than concurrent-write freeness or data-race freeness, is
proposed. Informally, MSC introduces a new constraint
called concurrent-readfreeness and states a combination

7. More formally, Hi is the sub-relation of H induced by the set
of all the writes of H and all the reads issued by Pi.

8. A program is concurrent-write free if, in all its executions, all
its write operations are totally ordered.

9. A program is data-race free if all accesses to each variable
follow the readers-writer discipline [1].

ANN. TI~LI~COMMUN., 52, n ~ 11-12, 1997 5/10

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

of (concurrent-write freeness, concurrent-read freeness
and data-race freeness) constraints which allows concur-
rent writes on a same object while ensuring sequential
consistency.

This condition can be used when executing, on a
causally consistent memory, a program designed for a
sequentially consistent memory. For the computation to
be correct, it is only necessary to add on top of the
causally consistent memory, a protocol implementing
the MSC condition. Such a condition is interesting as
it provides a layered approach to design a sequentially
consistent memory : the library can contain (i) a first
protocol implementing a causally consistent memory,
and (ii) a second one implementing the MSC condition.

657

i) 3 Pi : opl ---~ op2 (process-order relation),
or ii) opl = wi(x)v and op2 = r j (x)v (read-form

relation),
or iii) ~ op3 " opl ---~i op3 and op3 ---~i op2.

Let H~ be the sub-history of H ' from which all
read operations not issued by Pi have been removed

(Figure 4 depicts the sub-history H~ associated with

the computation ~ described in Figure 3). /~r is PRAM

consistent if, for each Pi, all read operations of H~ are
legal. This definition of PRAM consistency shows that its
difference, with respect to causal consistency, lies only
in the nature of the transitivity considered (point iii of
their definitions).

VI. PRAM CONSISTENCY

PRAM (pipelined RAM) consistency [26] is a consis-
tency criterion weaker than causal consistency. The dif-
ference, in the shared memory model, between PRAM
consistency and causal consistency is the same as the
one between fifo ordering and causal ordering for mes-
sage deliveries in the message passing model [14, 35,
33]. PRAM and fifo are only concerned by direct relations
between pairs of adjacents processes and do not take
into account transitivity due to intermediary processes.
More precisely, in a message passing system with fifo
ordering, two messages sent to a same process by two
distinct senders can be delivered in any order, even if
the send events are causally related [22] (this is not the
case with causal ordering : if the send events are cau-
sally related, messages must be delivered in their sending
order to the destination process). In the same way, in a
PRAM consistent shared memory system, two updates of
objects by two distinct processes can be known in any
order by a third one 1~ (this is not the case in a causally
consistent shared memory : if wk(x)u -+H wj(x)v , a
process Pi reading x can never get v and then u). As

an example consider history Ha which is not causally
consistent (Fig. 3). This history is PRAM consistent " as
Wl(X)l and w2(x)2 have been issued by distinct pro-
cesses, values 1 and 2 of x can be known by P'3 in any
order.

Let /~ be a history and let H ~-3 = (H I , ~ H ,) be

a history defined from /~ in the following way (H ~
differs from H only in point iii defining transitivity
- see Section II.2 - where ---'i is used instead of --~H) 1~ :

�9 H ' = H (so H ' = t2~hi)
�9 opl ---+H' op2 if :

/91 Wl(x)l > wl(Y)2

Pa r 3 (z) ~ r 3 (x) 2 > r3 (x) 1

A

FIG, 4. - - The sub-history H ' 3
h

Une sous-histoire H' 3.

VII. OTHER CONSISTENCY CRITERIA

VII.1. Mixed consistency.

Mixed consistency has been introduced by Agrawal et
al. in [3]. This consistency criterion on one side consi-
ders histories including memory operations (read and
write) and synchronization operations (lock, barrier and
await), and on the other side combines PRAM consistency
with causal consistency; namely every read operation is
tagged either PRAM or causal.

A his to ry /~ is mixed consistent if it is :
�9 causally consistent when considering only the lega-

lity of read operations tagged causal, and
�9 PRAM consistent when considering only the legality

of read operations tagged PRAM.
The following result is shown in [3]. A mixed consis-

tent history H in which all read operations are tagged
causal 12 and in which every pair of concurrent opera-
tions commute la, is sequentially consistent.

10. Of course, only one of the updates can be known, if updates
overwrite the value previously written by other processes.

11. As (e -+i J) ==~ (e ---+H)), we have H ' C H. When compared

to H, some transitivity part of the causality relation are missing in/4 ' .

12. Note H is then causally consistent.
13. Two concurrent operations commute if their execution order is

irrelevant (this is not the case for two concurrent writes on a same
object).

6/10 ANN. T~LIECOMMUN., 52, n ~ 11-12, 1997

658

VII.2. Hybrid consistency.

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

Hybrid consistency has been introduced by Attiya and
Friedman in [8]. This consistency criterion guarantees
properties on the order in which operations appear to be
executed at the program level. Operations are labeled
either strong or weak. By defining which operations
are strong and which are weak, a user can tune the
consistency criterion to his own need. Informally hybrid
consistency guarantees the following two properties :

�9 all strong operations appear to be executed in some
sequential order,

�9 if two operations are invoked by the same process
and at least one of them is strong, then they appear to
be executed in their invocation order to all processes.

Hence all processes agree on a total order for all
strong operations, and on the same order for any pair of
strong and weak operations issued by the same process.
They can disagree on the relative order of any pair
of weak operations issued by a process between two
strong operations. Let us consider the two following
constraints :

�9 constraint SW : all writes are strong and all reads
a r e w e a k ,

�9 constraint SR : all writes are weak and all reads are
strong.

The following result is proved in [9] : every hybrid
consistent history that satisfies either the constraint SW
or the constraint SR is sequentially consistent. When
considering only constraint SW, this result is similar to
the one implied by the concurrent-write freeness syn-
chronization constraint (see Section V.2) : to get sequen-
tial consistency, SW and concurrent-write freeness order
all write operations.

VIII. SHARED MEMORY MODEL
VS MESSAGE PASSING MODEL

VIII.1. Message passing computation.

The definition of an history in the shared memory
model, and its definition in the message passing model,
have some similarities. The first definition of an history
in the message passing model is due to Lamport [22].
In the message passing model, operations issued by a
process are modeled as events which can be :

* the sending of a message m (event send(m)) ;
�9 the reception of a message m (event receive(m)) ;
�9 the execution of a statement involving neither the

send nor the receive of a message (internal event).

The local history of a process Pi is the sequence ~ of
events it has produced. A distributed computation (or an
history) H of a set of processes P 1 , ' " , Pn is a partial
order (H,---~H) defined as in the case of the shared
memory model except for point ii). More precisely, the
definition of the read-from relation is replaced by the
definition of a message relation :

�9 H = Uihi,

�9 op l -"~H op2 if :

i) ~ Pi : opl --el o192 (in that case, ~ H is called
process-order relation),

or ii) ot)1 = send(m) and op2 = receive(m) (in that
case ---'H is called message relation),

or iii) 3 op3 : opl --~H op3 and o193 ---*H op2.

VII.3. Non-primitive read and write operations.

Till now we have supposed that read and write ope-
rations offered to users are primitive operations. Some
authors have considered to provide users with mecha-
nisms allowing them to define non-primitive read and
write operations on a set of shared data objects (nota-
tion : READ, WRITE). Each such READ or WRnT operation is
actually a procedure bracketed by two synchronization
operations (release and acquire). A non-primitive READ is
composed of non synchronized primitive read operations
while a non-primitive WRnE can include read and write
primitive operations. Both release consistency [17] and
entry consistency [13] address such non-primitive READ
and WRITE operations, and provide sequential consis-
tency when acquire and release operations guarantee the
readers-writers discipline. Concerning protocols imple-
menting these consistency criteria, eager vs lazy [21]
is an implementation issue whose aim is to reduce the
number of messages and the amount of data exchanged;
invalidation vs update [11] is another implementation
issue addressing the management of multiple copies of
objects when a cached-based approach is used.

VIII.2. Logically instantaneous and causally orde-
red communications.

The similarity between both models is not limited to
their definitions. PRAM, causal and sequential consisten-
cies in the shared memory model correspond to Fifo,
causally ordered [14, 33] and logically instantaneous
[36] communications in the message passing model.
Characterizations of these communication modes can be
found in [12, 16, 36].

VIII.2.1. Causally ordered communications.

A distributed computation /~ has causally ordered
communications if :

V m l , m2: (send(m1)~-~I-1 send(m2))A(ml and m2
are sent to the same destination process) ~ (receive

(m~) - * . receive(m~)).

So, causal ordering imposes, for each process, receive
events to be ordered as their associated send events. It

ANN. TI~LI~COMMUN., 52, n ~ I 1-12, 1997 7/10

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

is easy to see that, if H has causally ordered communi-
cations, it has also Fifo communications. Figure 5 illus-
trates causal ordering : in Figure 5a communications are
causally ordered, while they are not in Figure 5b. Refe-
rences [14, 35, 33] describe protocols implementing cau-
sally ordered communications on top of an asynchronous
system, and give examples of problems whose solutions
are easier to design when the underlying network ensures
communications are causally ordered at the application
level.

659

More formally, H has logically instantaneous com-
munications if it is possible to assign logical timestamps
to all events such that the time increases within each
process and, for each message, the send and the receive
events have the same timestamp [29] (T is the time-
stamping function which assigns a timestamp T (x) to
each event x) :

3 T : H ~-+ N such that :

(a ~ b ~ T(a) < T(b))A

(Vm: T (s e n d (m)) = T (r e c e i v e (m))) .

~m~t 2 m~r n
1

'2

P3
a)

FIG. 5. - - Causal ordering.

b)

(a) causally ordered communication ;
(b) not causally ordered communication.

L'ordre causal sur les messages.

VIII.2.2. Logically instantaneous communications.

Informally, a distributed computation ~r has logically
instantaneous communications if the time diagram asso-
ciated with /~ can be drawn in such a way that, for
each message, its send and receive events can be put on
the same vertical line [16] (Fig. 6) 14. Remark that i f / 7
has logically instantaneous communications, it has also
causally ordered communications.

m l

P2

P3 /

m l

FIG. 6. - - Logically instantaneous communication.

Communications logiquement instantandes.

VIII.2.3. Relations between both models.

The aim of this section is to exhibit a correspondence
between consistency criteria for the shared memory
model and communication modes for the message-
passing model (see Table I).

TABLE I. - - Correspondence between models.

Correspondances entre modOles.

shared memory model message-passing model

atomic consistency

sequential consistency

causal consistency

PRAM consistency

possibly illegal read

rendezvous

logical instantaneity

causal order

Fifo order

full asyncbrony

Let H be a history in the message passing model.
[16] introduces the empty interval property 15 and shows
the f@owing results :

�9 H has causally ordered communications if it satis-
fies the following empty interval property :

(3) Vreeeive(m) ~ H :

{opIsend(m) ---~H op---~H r e c e i v e (m) } = O,

�9 H has logically instantaneous communications if it
has a linear extension S satisfying the following empty
interval property : for all messages m, the receive event
follows immediately the corresponding send event (i.e.
communications events appear instantaneous in S) :

(4) Vreceive(m) C S :

{oplsend(m)- s op receive(m)} = 0.

Similar characterizations can be provided for their
counterpart in the shared memory model, causal consis-
tency and sequential consistency, respectively. Let H be
a history in the shared memory model. Causal consis-
tency and sequential consistency can be characterized in
the following way :

14. Remark that if we consider a single unidirectional channel, the
Fifo property confuses with logical instantaneity.

15. Two events el and e2 of a partial order (P, ---~p) satisfy the
empty intervalproperty if {elel ---,peep e2} = 0.

8/10 ANN. TI~LECOMMUN., 52, n ~ 11-12, 1997

660 M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES

�9 H is causally consistent if, for each process P~,
all its read operations are legal in the history Hi it is
associated with 16, i.e. �9

(S) Vi : Vr(x)v e Hi : {op(x)ulu r vA

w(x)v op(x)u r (x) v } = O.

�9 H is sequentially consistent if it admits a linear
extension S in which all read operations are legal, i.e. �9

(6) Vr(x)v �9 S : (op(x)ulu ~ vA

 (x)v - , s : 0.

(3) and (5) on one side, and (4) and (6) on the other
side, exhibit strong similarities. In all the four cases,
the characterization is based on a similar empty interval
property. It is applied to a linear extension of the com-
putation in cases (4) and (6). In cases (3) and (5) it is
applied, for each process, to the operations/events that
may causally affect it 17. An additional common point
between causal consistency and causally ordered com-
munications is the following one : the protocol imple-
menting causally ordered communications described in
[33] is used in [5] as basic mechanism to implement cau-
sally consistent shared memories on top of a distributed
system.

Finally, let us note that the rendezvous communica-
tion mode [20, 10] is stronger than logical instantaneity ;
rendezvous considers physical time while logical instan-
taneity logical time. Rendezvous is usually defined in the
following way �9 a system has rendezvous communica-
tion if "no message of a given type can be sent along a
channel before the receiver is ready to receive it... For an
external observer the transmission then looks instanta-
neous and atomic" [15]. So, it appears that it is possible
to exhibit similarities between the rendezvous communi-
cation mode and the atomic consistency criterion. Both
of them relies on realtime for defining interactions. A
deep study of their connections is beyond the scope of
this paper. The reader interested by such a study will
consult [8].

IX. CONCLUSION

Numerous protocols implementing distributed shared
memory systems have been designed. In the most of
them, the semantics (consistency criterion) they offer to
users is defined only by the description of the protocol

16. Remember Hi is H from which all the read operations not

from Pi have been removed. So, Hi describes the computation that
may causally affect Pi.

17. In the message passing model all send and receive events may
causally affect (by creating causality chains) each process Pi, so H
is considered. In the shared memory model a process Pi cannot be
affected by reads of the other processes, so for each process Pi, its
associated Hi is considered.

and not in an abstract way. This makes it difficult
the study of their properties and the appreciation of
their differences. In this paper we provided a suite of
formal definitions for the most encountered consistency
criteria, namely atomic, sequential, causal, release and
entry consistencies. These definitions are not bound to
particular implementations and are based on a unique
framework. This, not only eases their understanding and
their comparison, but should facilitate the design of
a generic protocol which could be customized to the
specific need of each user.

Last but not least, strong similarities between the
shared memory model and the message passing model
have been exhibited.

A CKNO WLEDGMENT

The authors want to thank the referees whose com-
ments helped improve the presentation.

Manuscrit requ le 28 mars 1997,
acceptd le 30 mai 1997.

REFERENCES

ll] ADVE (S. V.), HILL (M. D.). Weak ordering - a new definition.
Proc. 17th Annual 1SCA (Int. Symposium on Computer Architec-
ture) (1990), pp. 2-20.

[2] AFEK (Y.), BROWN (G.), MERRIT'f (M.). Lazy caching. ACM
Transactions on Programming Languages and Systems (1993),
15, n ~ l, pp. 182-205.

[3] AGRAWAL (O.), CHOY (M.), LEONG (H. V.), SINGH (A.). Mixed
consistency : a model for parallel programming. In Proc. 13th
ACM Symposium on Principles of Dist. Computing, Los Angeles
(1994), pp. 101-110.

[4] AHAMAD (M.), BURNS (J. E.), HUTI'O (P. W.), NEIGER (G.). Causal
memory. In Proc. 5th Int. Workshop on Distributed Algorithms
(WDAG-5) (1991), Springer Verlag, LNCS 579, pp. 9-30.

[5] AHAMAD (M.), HU'ITO (P. W.), NEIGER (G.), BURNS (J. E.),
KOHLI (P.). Causal memory : definitions, implementations and
programming. Distributed Computing (1995), 9, pp. 37-49.

[6] ARCHIBALD (J. L.), BAER (J. L.). Cache coherence protocols :
evaluation multiprocessor simulation model. ACM Transactions
on Computer Systems (1986), 4, n ~ 4, pp. 276-298.

[7] ArrlYA (H.), WELCH (J. L.). Sequential consistency versus linea-
rizability. ACM Transactions on Computer Systems (1994), 12,
n ~ 2, pp. 91-122.

[8] ATrlYA (H.), FRIEDMAN (R.). A correctness condition for high per-
formance multiprocessors. In Proc. 2 4th A CM Annual Symposium
on the Theory of Computing (1992), pp. 679-690.

[9] AT'I'IYA (H.), CHAUDHURI (S.), FRIEDMAN (R.), WELCH (J. L.).
Shared memory consistency conditions for non sequential execu-
tions : definitions and programming strategies. In Proc. 5th ACM
Symposium on Parallel Algorithms and Architectures, Vale, Ger-
many (July 1993).

[10] BAGRODIA (R. L.). Synchronization of asynchronous processes
in CSP. ACM Transactions on Programming Languages and
Systems (1989), 11, n ~ 4, pp. 1053-1065.

[11] BAL (H. E.), KAASHOEK (F.), TANENBAUM (A. S.), JANSEN (J.).
Replication techniques for speeding up parallel applications on
distributed systems. Concurrency : Practice and Experience
(1992), 4, n ~ 5, pp. 337-355.

[12] BALDONI (R.), RAYNAL (M.). A graph-based characterization
of communications modes in distributed executions. Journal of
Foundations of Computing and Decision Sciences (1995), 25,
n ~ 1, pp. 3-20.

[13] BERSHAD (B. N.), ZEKAUSKAS (M. J.), SAWDON (W. A.). The Mid-
way distributed shared memory system. Proc. of the Compcon
93 Conference (Feb. 1993), pp. 528-537.

ANN. TI~LI~COMMUN., 52, n ~ 11-12, 1997 9/10

M. RAYNAL. -- DEFINITIONS FOR CONSISTENCY CRITERIA IN DISTRIBUTED SHARED MEMORIES 661

[14] BIRMAN (K.), JOSEPH (T.). Reliable communications in the pre-
sence of failures. ACM Transactions on Computer Systems
(1987), 5, n ~ 1, pp. 47-76.

[15] BOVGE (L.). Repeated snapshots in distributed systems with
synchronous communications and their implementation in CSP.
Theoretical Computer Science (1987), 49, pp. 145-169.

[16] CHARRON-BOST (B.), MATTERN (E), TEL (G.). Synchronous
and asynchronous communications in distributed systems. Tech.
Report TR91.55, University of Paris 7 (Sep. 1991).

[17] GHARACHORLOO (K.), LENOSK~ (D.), LAUDON (J.), GIBBONS (P.),
GUPTA (A.), HENNESSEY (J.). Memory consistency and event
ordering in scalable shared memory multiprocessors. Proc. 17th
Annual ISCA (Int. Symposium on Computer Architecture), Seattle,
WA (1990), pp. 15-26.

[18] GARCIA-MOLINA (H.), BARBARA (D.). How to assign votes in
a distributed system? Journal of the ACM (1985), 32, n ~ 4,
pp. 841-850.

[19] HERLIHY (M.), WlNG (J.). Linearizability : a correctness condi-
tion for concurrent objects. ACM Transactions on Programming
Languages and Systems (1990), 12, n ~ 3, pp. 463-492.

[20] HOARE (C. A. R.). Communicating sequential processes. Commw
nications of the ACM (1978), 21, n ~ 8, pp. 666-677.

[21] KELEHER (P.), COX (A. L.), ZWAENEPOEL (W.). Lazy release
consistency for software distributed shared memory. Computer
Architecture News (1992), 22, n ~ 2, pp. 13-21.

[22] LAMPORT (L.). Time, clocks and the ordering of events in a
distributed system. Communications of the ACM (1978), 21,
n ~ 7, pp. 558-565.

[23] LAMPORT (L.). How to make a multiprocessor computer that
correctly executes multiprocess programs ? IEEE Transactions on
Computers (1979), C28, n ~ 9, pp. 690-691.

[24] L1 (K.), HUDAK (P.). Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems (1989), 7,
n ~ 4, pp. 321-359.

[25] LEVELT (W. G.), KAASHOEK (M. F.), BAL (H. E.), TANENBAUM
(A. S.). A comparison of two paradigms for distributed shared
memory. Software Practice and Experience (1992), 22, n ~ 11,
pp. 985-1010.

[26] LIPTON (R. J.), SANDBERG (J. S.). PRAM : a scalable shared memory.
Tech. Report CS-TR-180-88, Princeton University (Sep. 1988).

[27] MISRA (J.). Axioms for memory access in asynchronous hardware
systems. ACM Transactions on Programming Languages and
Systems (1986), 8, n ~ 1, pp. 142-153.

[28] MIZUNO (M.), RAYNAL (M.), ZHOU (J. Z.). Sequential consistency
in distributed systems. Proc. Int. Workshop Theory and Practice
in Dist. Systems, Dagstuhl, Germany, Springer-Verlag LNCS 938
(K. Birman, E Mattern and A. Schiper Eds) (1994), pp. 227-24l.

[29] MURTY (V. V.), GARH (V. K.). Synchronous message passing.
Technical Report ECE-PDS-93-01, University of Texas at Austin,
Dpt. of Elec. and Computer Engineering (1993).

[30] NITZBERG (B.), LO (V.). Distributed shared memory : a survey of
issues and algorithms. Computer (1991), 24, n ~ 8, pp. 52-60.

[31] PAPADIMITRIOU (C.). The theory of concurrency control. Computer
Science Press (1986).

[32] PROTIC (J.), TOMAgEVlC (M.), M1LUTINOVIC (V.). A survey of
distributed shared memory systems. Proc. 28th Annual Hawaii
Int. Conf. on System Sciences, Vol. I (Architecture) (1995),
pp. 74-84.

[33] RAYNAL (M.), SCHIPER (A.), TOUEG (S.). The causal ordering abs-
traction and a simple way to implement it. Information Proces-
sing Letters (1991), 39, pp. 343-350.

[34] RAYNAL (M.), SCHIPER (A.). From causal consistency to sequential
consistency in shared memory systems. Proc. 15th Int. Conf.
FST&TCS (Foundations of Software Technology and Theoretical
Computer Science), Bangalore, India, Springer-Verlag LNCS
Series 1026 (P. S. Thiagarajan Ed.) (Dec. 1995), pp. 180-194.

[35] SCHIPER (A.), EGGLI (J.), SANDOZ (A.). A new algorithm to imple-
ment causal ordering. In Proc. 3rd Intl. Workshop on Distributed
Algorithms (WDAG-3), Springer Verlag LNCS 392 (J. C. Ber-
mond and M. Raynal Eds) (1989), pp. 219-232.

[36] SONEOKA ('12 S.), IBARAKI (T.). Logically instantaneous message
passing in asynchronous distributed systems. IEEE Transactions
on Computers (1994), 43, n ~ 5, pp. 513-527.

[37] THOMAS (R. H.). A majority consensus approach to concurrency
control for multiple copies databases. ACM Transactions on
Database Systems (1979), 4, n ~ 2, pp. 180-209.

10/10 ANN. TI~LI~COMMUN., 52, n ~ 11-12, 1997

