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Abstract. Consider a closed manifold M immersed in Rm . Suppose that the trivial bundle M ×Rm =
T M ⊗νM is equipped with an almost metric connection ∇̃ which almost preserves the decomposition

of M × Rm into the tangent and the normal bundle. Assume moreover that the difference � = ∂ − ∇̃
with the usual derivative ∂ in Rm is almost ∇̃-parallel. Then M admits an extrinsically homogeneous

immersion into Rm .
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Introduction

In Riemannian geometry special geometric structures are often locally character-
ized by the parallelism of certain tensors. In his thesis, Nomizu [8] showed that a
Riemannian manifold (M, gM ) is locally homogeneous, if and only if it admits a
metric connection ∇̃, called canonical connection, such that its torsion, its curvature
tensor and the tensor � = ∇ − ∇̃, where ∇ denotes the Riemannian connection
on M, are ∇̃-parallel. Even before it was observed by É. Cartan that a Rieman-
nian manifold is locally symmetric, if and only if the Riemannian connection is
canonical in this sense.

A technique due to Strübing [13] shows that in the case of complete submani-
folds, the parallelism of a certain structure often implies extrinsic geometric prop-
erties, which are even global. An analogy to Nomizu’s theorem was given by Olmos
[10] and (in a more general situation) by Eschenburg [3]. Extrinsic homogeneity of
closed submanifolds in Rm is equivalent to the existence of a metric connection ∇̃
on the trivial bundle M × Rm ∼= T M ⊕ νM, such that T M and νM are ∇̃-parallel
subbundles and such that the difference tensor � = ∂ −∇̃ with the usual derivative
∂ in Rm is ∇̃-parallel. If the normal part of ∇̃ coincides with the usual normal
connection, then, according to Olmos and Sánchez [9], M is essentially an orbit of
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an s-representation and vice-versa. If moreover the tangent part of the canonical
connection is just the Riemannian connection, then M is extrinsically symmetric
in Rm . This analogy to É Cartan’s characterization of locally symmetric spaces is
due to Ferus [4].

Katsuda [5] showed a pinched version of Nomizu’s theorem. Another pinching
result in the case of compact symmetric spaces was provided by Min-Oo and
Ruh [7]. In this paper we show a pinching theorem for extrinsically homogeneous
submanifolds of Euclidean space, obtained from the characterization of Olmos and
Eschenburg. The technique we use is somehow similar to the one used by Katsuda.
We further discuss in detail the case of orbits of s-representations and the case of
extrinsically symmetric submanifolds. In the last case the result was shown by the
author and can be found in [11].

1. Preliminaries

A real valued function f defined on a bounded domain � of some Euclidean space is
said to be of class Ck,α, k ∈ N, α ∈ [0, 1], if it is bounded in the Ck,α Hölder-norm:

‖ f ‖k,α =
∑

0≤|β|≤k

sup
x∈�

|∂β f (x)| +
∑
|β|=k

sup
x 
=y

|∂β f (x) − ∂β f (y)|
|x − y|α .

A tensor on a compact manifold M resp. a mapping between two manifolds is said
to be of class Ck,α, if there are local coordinates such that in these coordinates its
components are of class Ck,α. For a compact manifold M we denote by Ck,α(M, Rm)
the Hölder space of Ck,α functions form M to Rm . We have the following embedding
theorem for Hölder spaces:

PROPOSITION 1. Let M be a compact manifold, k1, k2 be two positive integers
and 0 ≤ α1, α2 ≤ 1 such that

k1 + α1 > k2 + α2.

Then the canonical embedding

Ck1,α1 (M, Rm) −→ Ck2,α2 (M, Rm)

is compact, i.e. any bounded sequence in Ck1,α1 (M, Rm) has a convergent subse-
quence in Ck2,α2 (M, Rm).

By M(�, d, v, n) we denote the class of n-dimensional compact Riemannian
manifolds M with bounded sectional curvature |K | ≤ �2 and diameter diam(M) ≤
d and admitting moreover a lower bound on the volume (vol(M) ≥ v). M. Gromov,
A. Katsuda, S. Peters and R. Greene and H. Wu (see [12, Appendix]) provided the
following convergence result for sequences in M(�, d, v, n):



ALMOST EXTRINSICALLY HOMOGENEOUS SUBMANIFOLDS 3

THEOREM 2. Let (Mi , gi )i∈N be a sequence inM(�, d, v, n) and let α′ ∈ ]0, 1[
be fixed. Then there exists a subsequence (Mi j , gi j ) j∈N and a smooth manifold M
equipped with a Riemannian metric g of class C1,α′

such that the following holds:
There is an integer j0 such that for all j ≥ j0 there are C∞−diffeomorphisms
fi j : M −→ Mi j such that the sequence of pullback metrics ( f ∗

i j
gi j ) j∈N on M con-

verges to g in the C1,α topology (0 < α < α′).

Let | · | be a norm on Rn and let ‖ · ‖l be a norm on Hom(Rn, Rn) satisfying
|Ax | ≤ ‖A‖l · |x |, where A ∈ Hom(Rn, Rn) and x ∈ Rn; e.g. the operator norm on
linear endomorphisms. Then (Hom(Rn, Rn), ‖ · ‖l) is a Banach space. For further
use, we state the following Gronwall-type inequality:

LEMMA 3. Let f, b: [0, T ] −→ Rn and A: [0, T ] −→ Hom(Rn, Rn) be
smooth functions. Assume that the functions A(t) and b(t) are bounded on [0, T ],
i.e. ‖A(t)‖l ≤ A0 and |b(t)| ≤ b0. If f ′(t) = A(t) f (t) + b(t), then

| f (t)| ≤ | f (0)|eA0t + b0

A0

(eA0t − 1).

2. Extrinsically Homogeneous Submanifolds

Consider a closed (i.e. compact and connected) n-dimensional Riemannian mani-
fold (Mn, g) and an isometric immersion

f : (M, gM ) −→ (Rm, gcan)

of M into the m-dimensional Euclidean space with its canonical metric. The immer-
sion f induces a splitting of the trivial bundleE = f ∗T Rm ∼= T Rm | f (M)

∼= M×Rm

over M as a direct sum of the tangent bundle T M and the normal bundle νM,

i.e. E = T M ⊕ νM. The bundle metric g on E induced by gcan splits accordingly
g = gT ⊕ g⊥, where gT ∼= gM . Since our considerations are of local nature, we
identify always locally vector fields on M with the corresponding vector fields on
f (M). In the following, vectors tangent to M will be denoted by capital Roman
letters and normal vectors by Greek ones. If X is an element of E, we denote by X T

its tangent and by X⊥ its normal component. Let ∂ denote the canonical derivative
in Rm and ∇ the Riemannian connection on M. The normal bundle νM is equipped
with a metric connection ∇⊥ defined by ∇⊥

X ξ = (∂Xξ )⊥. The second fundamental
form α of f is defined by α(X, Y ) = ∂X Y − ∇X Y and the corresponding shape
operator A by Aξ X = ∇⊥

X ξ − ∂Xξ. Since ∂ is metric, the second fundamental form
and the shape operator are related by g(Aξ X, Y ) = g⊥(α(X, Y ), ξ ). Moreover, R
denotes the Riemannian curvature tensor, K the sectional curvature and inj(M) the
injectivity radius of M.

The submanifold f (M) is called extrinsically homogeneous, if for any pair of
points p, q in f (M), there exists an isometry of Rm mapping p to q while leaving
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f (M) invariant. Hence, extrinsically homogeneous submanifolds of Rm are orbits
of subgroups of the isometry group of Rm .

A connection ∇̃ on E is called (extrinsic) canonical connection (w.r.t. f ) if

(1) ∇̃ is metric;
(2) T M is a ∇̃-parallel subbundle of E ;
(3) The difference tensor � = ∂ − ∇̃ is ∇̃-parallel.

By the second property the connection ∇̃ splits as ∇̃ = ∇̃T ⊕ ∇̃⊥ in a con-
nection ∇̃T on the tangent bundle and a connection ∇̃⊥ on the normal bundle,
both of which are metric. Moreover the second fundamental form and the shape
operator are ∇̃-parallel (cf. [1, p. 204]). Since M is closed, f (M) cannot be totally
geodesic in Rm . Thus the second fundamental form α does not vanish. Hence the
connection on E induced by ∂ does not preserve T M and νM and is therefore not
canonical.

As an analogy to Nomizu’s characterization [8] of abstract Riemannian homo-
geneous spaces, a result due to Olmos [10] and Eschenburg [3] characterizes the
extrinsically homogeneous submanifolds of Euclidean space:

THEOREM 4 ([3, 10]). A closed submanifold of Euclidean space is extrinsically
homogeneous, if and only if it admits a canonical connection.

3. Almost Canonical Connections

Let (Mn, gM ) be a compact connected n-dimensional Riemannian manifold and
let f : (M, gM ) −→ (Rm, gcan) be an isometric immersion. We denote by ‖T ‖0 the
supremum of the norm of the tensor T with unit vectors as arguments.

Given a connection ∇̃ on E, we define a tensor α̃ ∈ T M∗ ⊗ T M∗ ⊗ νM
by α̃(X, Y ) = (∇̃X Y )⊥ and a tensor Ã ∈ νM∗ ⊗ T M∗ ⊗ T M by Ã(ξ, X ) =
Ãξ X = −(∇̃Xξ )T . Again ∇̃ induces a tangent connection ∇̃T on M defined by
∇̃T

X Y = (∇̃X Y )T = ∇̃X Y − α̃(X, Y ) and a normal connection ∇̃⊥ defined by
∇̃⊥

X ξ = (∇̃Xξ )⊥, where X and Y are tangent vector fields and ξ is a normal vector
field on M .

Let ε > 0. A connection ∇̃ on E is said to be an ε-almost canonical connection
(w.r.t. f ) if

(1) ‖∇̃g‖0 < ε;
(2) ‖α̃‖0 < ε, i.e. ∇̃ almost preserves T M ;
(3) ‖∇̃�‖0 < ε, where � = ∂ − ∇̃ ∈ T M∗ ⊗ E∗ ⊗ E and

(∇̃X�)(Y, Z ) = ∇̃X (�(Y, Z )) − �
(∇̃T

X Y, Z
) − �(Y, ∇̃X Z )

for tangent vector fields X, Y and a section Z in E .
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Notice that

‖∇̃g‖0 = ‖∇̃g − ∂g‖0 = ‖�g‖0

= sup{|g(�X Y, Z ) + g(Y, �X Z )|;
X ∈ T M, Y, Z ∈ E, |X | = |Y | = |Z | = 1}.

(1)

It is sometimes advantageous to consider α̃ and Ã as elements of Hom(E⊗E, E)
as follows:

α̃(X, Y ) = α̃(X T , Y T ),

ÃX Y = ÃX⊥Y T ; X, Y ∈ E .

From now on we always assume that ∇̃ is an ε-almost canonical connection.
Take two tangent vector fields X, Y and a normal vector field ξ. Since g(Y, ξ ) =

0, we get 0 = Xg(Y, ξ ) = (∇̃X g)(Y, ξ ) − g(∇̃X Y, ξ ) − g(Y, ∇̃Xξ ). Thus α̃ and Ã
are related by

g(α̃(X, Y ), ξ ) = g(Y, Ãξ X ) + (∇̃X g)(Y, ξ ).

If Y = Ãξ X, we get | Ãξ X | = g(α̃(X, Ãξ X ), ξ ) − (∇̃X g)( Ãξ X, ξ ). Hence the
following lemma is immediate:

LEMMA 5. ‖ Ã‖0 < 2ε, i.e. ∇̃ almost preserves νM.

Although the connection ∇̃T might not be geodesically complete, we get an
estimate for the speed of ∇̃T -geodesics on M at least for times smaller than a
certain value.

LEMMA 6. Let γ : [0, T ] −→ M be a ∇̃T -geodesic, i.e. ∇̃T
γ ′(t)γ

′(t) = 0, then
for 0 ≤ t < 2

3ε|γ ′(0)| we have

2|γ ′(0)|
2 + 3εt |γ ′(0)| ≤ |γ ′(t)| ≤ 2|γ ′(0)|

2 − 3εt |γ ′(0)| .

Proof. Since

d

dt
|γ ′(t)|2 = 2 · |γ ′(t)| · d

dt
|γ ′(t)| = d

dt
g(γ ′(t), γ ′(t))

= 2g
(
∂γ ′(t)γ

′(t), γ ′(t)
)

= (
�γ ′(t)g

)
(γ ′(t), γ ′(t)) + 2g(α̃(γ ′(t), γ ′(t)), γ ′(t)),

we get by Formula (1):

−3

2
ε ≤

d
dt |γ ′(t)|
|γ ′(t)|2 ≤ 3

2
ε.

Integration now yields the claim.
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4. Parallel Displacement and Almost Isometries

Let M be a closed submanifold of Rm . Assume that the trivial bundleE = M×Rm =
T Rm |M= T M ⊕ νM is equipped with an ε-almost canonical connection ∇̃. Let
p and q be two points on M and let c: [0, L] → M be a curve joining p and q.

Let P: Rm ∼= Ep −→ Eq
∼= Rm denote the linear map given by the ∇̃-parallel

translation along c and let C = sup{|c′(t)|; t ∈ [0, L]}.

Notation. In this section we have to deal with quite a lot of estimates. In order
to make these estimates easier and the proofs more readable, we introduce the
following notation: By k or ki , i ∈ N we denote nonvanishing constants depending
on ε which converge to a nonvanishing constant if ε tends to 0. The exact value of
k and ki might change from formula to formula.

LEMMA 7. If X and Y are unit vectors in Rm, then

|〈P(X ), P(Y )〉 − 〈X, Y 〉| ≤ ε · k.

Proof. Let X and Y be two unit vectors in Rm ∼= Ep and let X (t) and Y (t) be
the vector fields along c(t) obtained by the ∇̃-parallel translations of X and Y. Then
P(X ) = X (L) and P(Y ) = Y (L). Further

d

dt
〈X (t), Y (t)〉 = (〈�c̄′ X̄ (t), Ȳ (t)〉 + 〈X̄ (t), �c̄′ Ȳ (t)〉) · |X (t)| · |Y (t)| · |c′(t)|

≤ |X (t)| · |Y (t)| · C · ε,

where

c̄′ = c′(t)
|c′(t)| , X̄ (t) = X (t)

|X (t)| and Ȳ (t) = Y (t)

|Y (t)| .

As in the proof of Lemma 6 we get

d

dt
|X (t)|2 = 2 · |X (t)| · d

dt
|X (t)| = d

dt
〈X (t), X (t)〉 ≤ ε · C · |X (t)|2.

Thus
d
dt |X (t)|
|X (t)| ≤ 1

2
· ε · C.

Integration yields |X (t)| ≤ e
1
2
εCt . Thus d

dt 〈X (t), Y (t)〉 ≤ ε · C · eεC L . A second
integration shows the statement.

COROLLARY 8.

‖P‖0 ≤ √
ε · k + 1.

LEMMA 9. Let X be a an element of Ep and let X (t) denote the induced ∇̃-
parallel vector field along c. Then |X (t)| ≤ e

1
2
εC L · |X T (0)|.
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Proof. Analogously to the proof of Lemma 6 we get

d

dt
|X (t)|2 = 2 · |X (t)| · d

dt
|X (t)| = d

dt
g(X (t), X (t))

= 2g(∂c′(t) X (t), X (t)) = (�c′(t)g)(X (t), X (t)).

By Formula (1) we now obtain:

d
dt |X (t)|
|X (t)| ≤ 1

2
· ε · C.

Integration now yields again the claim.

LEMMA 10. Let X be a an element of Tp M and let X (t) and X T (t) denote the
corresponding ∇̃-parallel and ∇̃T -parallel vector fields along c. Then |X T (t)| ≤
e

3
2
εC L · |X T (0)| and |X (t) − X T (t)| ≤ ε · t · k.

Proof. The proofs of these inequalities are similar to the proof of Lemma 9. In
the first case we observe that

d

dt
|X T (t)|2 = 2 · |X T (t)| · d

dt
|X T (t)|

= d

dt
g(X T (t), X T (t)) = 2 · g

(
∂c′(t) X

T (t), X T (t)
)

= (
�c′(t)g

)
(X T (t), X T (t)) + 2 · g(α̃(c′(t), X T (t)), X T (t)).

In the second case we get

d

dt
|X (t) − X T (t)|2 = (

�c′(t)g
)
(X (t) − X T (t), X (t) − X T (t))

+ 2 · g(α̃(c′(t), X T (t)), X (t) − X T (t))

and therefore

d

dt
|X (t) − X T (t)| ≤ 1

2
· ε · C · (|X (t) − X T (t)| + 2|X T (t)|)

≤ 1

2
· ε · C · (|X (t)| + 3|X T (t)|) = ε · k.

Since X (0) = X T (0) = X, the lemma follows now by integration.

By ḡ we denote the unique affine transformation of Rm satisfying ḡ(p) = q and
ḡ∗ |p= P.

LEMMA 11. Let X T (t) be a ∇̃T -parallel vector field in T M along c, then ‖ḡ∗ ◦
�X T (0) ◦ ḡ−1

∗ − �X T (L)‖0 < ε · k.
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Proof. Let Y be a unit vector in Eq and let Y (t) be the ∇̃-parallel vector
field along c given by Y (L) = Y. By A(t) we denote the ∇̃-parallel vector field
along c with A(0) = �X T (0)Y (0). Then A(L) = (ḡ∗ ◦ �X T (0) ◦ ḡ−1

∗ )Y. Since
∇̃c′(t)(�X T (t)Y (t)) = (∇̃c′(t)�)X T (t)Y (t), we get for Z (t) = A(t) − �X T (t)Y (t):

d

dt
|Z (t)|2 = 2 · |Z (t)| · d

dt
|Z (t)| = d

dt
g(Z (t), Z (t))

= (
�c′(t)g

)
(Z (t), Z (t)) + 2g

((∇̃c′(t)�
)

X T (t)Y (t), Z (t)
)

.

Hence with the estimates of Lemmas 9 and 10 we obtain

d

dt

∣∣A(t) − �X T (t)Y (t)
∣∣ ≤ ε · C

(∣∣A(t) − �X T (t)Y (t)
∣∣ + 2|X T (t)| · |Y (t)|)

≤ ε · C(|A(t)| + (‖�‖0 + 2) · |X T (t)| · |Y (t)|)
≤ ε · κ.

As A(0) = �X T (0)Y (0) this lemma follows by integration.

PROPOSITION 12. Assume that the canonical connection ∇̃ does not coincide
with the connection on E induced by ∂. Let X ∈ Tp M be a unit vector and let γ be
the ∇̃T -geodesic on M with γ ′(0) = X. Consider further the ∇̃T -geodesic γ̃ (t) on
M defined by γ̃ ′(0) = X T (L), where X T (t) is the ∇̃T -parallel vector field along c
with X T (0) = X. Then for 0 ≤ t ≤ T < 2

3ε
√

εC LeεC L+1
we obtain

|(ḡ ◦ γ )(t) − γ̃ (t)| < ε · hε(t)

with a function hε which does not diverge if ε tends to 0.

Proof. Recall that k and ki , i ∈ N denote nonvanishing constants depending
on ε which converge to a nonvanishing constant if ε tends to 0. Their exact values
might change from formula to formula.

Let E(t) = γ ′(t) be the tangent vector field of γ. Then E ′(t) = ∂γ ′(t) E(t) =
∂γ ′(t) E(t) − ∇̃T

γ ′(t) E(t) = �γ ′(t) E(t) + α̃(γ ′(t), E(t)).
Let F be the tangent vector field of the curve ḡ ◦ γ, i.e. F(t) = ḡ∗E(t). Since

ḡ is an affine map we obtain

F ′(t) = ∂(ḡ◦γ )′(t) F(t) = ∂ḡ∗(γ ′(t))ḡ∗E(t) = ḡ∗
(
∂γ ′(t) E(t)

)
= ḡ∗

(
�γ ′(t) E(t) + α̃(γ ′(t), E(t))

)
= (

ḡ∗ ◦ (
�γ ′(t) + α̃(γ ′(t), ·)) ◦ ḡ−1

∗
)

F(t).

Since we think of ε to be small and since M cannot be totally geodesic, the supremum norm of

the second fundamental form is bounded away from 0. Therefore this condition, which especially

implies ‖�‖0 
= 0, is only of technical and not of conceptual nature.
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Thus we get the following ordinary differential equation:

(F)

⎧⎪⎨⎪⎩
(ḡ ◦ γ )′(t) = F(t);

F ′(t) = (
ḡ∗ ◦ (

�γ ′(t) + α̃(γ ′(t), ·)) ◦ ḡ−1
∗

)
F(t);

initial conditions (ḡ ◦ γ )(0) = q, F(0) = ḡ∗ X.

Consider now the tangent vector field G of the ∇̃T -geodesic γ̃ . Since G is ∇̃T -
parallel, we have:

(G)

⎧⎪⎨⎪⎩
γ̃ ′(t) = G(t);

G ′(t) = �γ̃ ′(t)G(t) + α̃(γ̃ ′(t), G(t));

initial conditions γ̃ (0) = q, G(0) = X T (L).

The difference of (F) and G gives rise to the following differential equation

(H )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ḡ ◦ γ − γ̃ )′(t) = F(t) − G(t);

F ′(t) − G ′(t) = �γ̃ ′(t)(F(t) − G(t)) + Z (t);

initial conditions (ḡ ◦ γ − γ̃ )(0) = 0

and F(0) − G(0) = ḡ∗ X − X T (L),

where Z (t) = �(t)F(t) + ḡ∗α̃(γ ′(t), ḡ−1
∗ F(t)) − α̃(γ̃ ′(t), G(t)) and �(t) = ḡ∗ ◦

�γ ′(t) ◦ ḡ−1
∗ − �γ̃ ′(t).

By Lemma 6 we get∥∥�γ̃ ′(t)
∥∥

0
≤ 2

2 − 3εT
‖�‖0. (2)

Let X be a ∇̃-parallel section in E, then(
d

dt
�γ̃ ′(t)

)
X (t) = ∇̃γ̃ ′(t)∂γ̃ ′(t) X = (∇̃γ̃ ′(t)�)γ̃ ′(t) X

and hence ‖ d
dt �γ̃ ′(t)‖0 ≤ |γ̃ ′(t)|2 · ‖∇̃�‖0. Using again Lemma 6 yields:∣∣∣∣∣∣∣∣ d

dt
�γ̃ ′(t)

∣∣∣∣∣∣∣∣
0

≤ ε · k. (3)

Observe that ḡ−1 is obtained by parallel translation along c in the reverse direction,
hence the estimate of Corollary 8 also holds for ḡ−1. Together with ‖ d

dt (ḡ∗ ◦�γ ′(t) ◦
ḡ−1

∗ )‖0 ≤ ‖ḡ−1
∗ ‖0 · ‖ d

dt �γ ′(t)‖0 · ‖ḡ∗‖0 we get∣∣∣∣∣∣∣∣ d

dt

(
ḡ∗ ◦ �γ ′(t) ◦ ḡ−1

∗
) ∣∣∣∣∣∣∣∣

0

≤ ε · k. (4)
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Since �(t) = ∫ t
0
�′(s) ds +�(0), the estimates (3) and (4) together with Lemma 11

provide the following estimate of ‖�(t)‖0:

‖�(t)‖0 ≤
∫ t

0

∥∥∥∥ d

ds
�(s)

∥∥∥∥
0

ds + ‖�(0)‖0

=
∫ t

0

(∥∥∥∥ d

ds
�γ̃ ′(s)

∥∥∥∥
0

+
∥∥∥∥ d

ds

(
ḡ∗ ◦ �γ ′(s) ◦ ḡ−1

∗
) ∥∥∥∥

0

)
ds +

+ ‖�(0)‖0

≤ ε · k.

Moreover by Lemma 6 and Corollary 8 we get |F(t)| = |ḡ∗E(t)| ≤ ‖ḡ∗‖0 ·|E(t)| ≤
k and hence

|�(t)F(t)| ≤ ε · k.

Since |ḡ∗α̃(γ ′(t), ḡ−1
∗ F(t))| = |ḡ∗α̃(γ ′(t), E(t))| ≤ ‖ḡ∗‖0 · ‖α̃‖0 · |γ ′(t)|2 ≤ ε · k

and |α̃(γ̃ ′(t), G(t))| ≤ ‖α̃‖0 · |γ̃ ′(t)|2 ≤ ε · k, we obtain the estimate:

|Z (t)| ≤ ε · k.

Applying to (H ) the Gronwall-type inequality of Lemma 3 together with Lemma
10 yields:

|F(t) − G(t)| ≤ ε · (k1 · ek·t + k2 · (ek·t − 1)),

where k = 2
2−3εT ‖�‖0. Since ‖�‖0 
= 0, integration shows the claim:

|(ḡ ◦ γ − γ̃ )(t)| ≤
∫ t

0

|F(s) − G(s)| ds

≤ ε ·
(

k1

k
· (ekt − 1) + k2

k
· (ekt − kt − 1)

)
.

Observation. The conclusion of Proposition 12 holds also for a broken geodesic
line γ and the corresponding broken geodesic line γ̃ .

5. The Main Result

Let Mim(�, d, n, m, ε) be the set of all triples (Mn, f, ∇̃) consisting of a closed n-
dimensional manifold Mn, an immersion f of M into the m-dimensional Euclidean
space (Rm, gcan) and an ε-almost canonical connection ∇̃ w.r.t. f satisfying:

(1) The diameter of M measured in the pullback metric f ∗gcan is bounded form
above by d;

(2) ‖α‖0 < �;
(3) ‖�‖0 < �.
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The first two conditions exclude collapsing and the last two bounds together
with the definition of an ε-canonical connection provide an estimate for ‖∂�‖0 in
the following way: Let �T = ∇ − ∇̃T and take two vectors X and Y in Tp M.

Then �T
X Y = �X Y − α(X, Y ) − α̃(X, Y ). Considering a vector Z ∈ Ep we get

(∂X�)(X, Y ) = (∇̃X�)(Y, Z ) +�X�Y Z −�Y �X Z −��T
X Y Z . Thus ‖∂�‖0 < ε(1 +

�) + 2�2(1 + ε).
Let (M, f, ∇̃) be an element of Mim(�, d, n, m, ε), then (M, f ∗gcan) lies in

M(�
√

2, d, (�
√

2)−nvol(Sn, g0), n), where (Sn, g0) denotes the standard unit
sphere of dimension n (see [11]).

PROPOSITION 13. Let �, d > 0 and let M be a closed manifold of dimension
n. Assume that there exist a sequence ( fi ) of immersions of M into Rm and a
sequence (∇̃i ) of connections on E = M × Rm . If for each positive integer i
the triple (M, fi , ∇̃i ) lies in Mim(�, d, n, m, 1

i ), then there exists an extrinsically
homogeneous immersion of M into Rm .

Proof. Multiplying fi by a constant, we can assume w.r.g. that d = 1. As we
have to consider subsequences several times, we do not introduce a special notation
in order to keep this proof readable.

Since (M, f ∗
i gcan) is a sequence in M(�

√
2, 1, (�

√
2)−nvol(Sn, g0), n), we

can assume by Theorem 2 that, after passing to a subsequence, there is a C1,α′
-

Riemannian metric gM on M and diffeomorphisms hi of M such that the metrics
gM i := f̃ ∗

i gcan, f̃i = fi ◦hi , converge to gM in the C1,α-topology, 0 < α < α′ < 1.

The diameter of (M, gM ) is also bounded by 1. Let ‖ · ‖gM i
0 denote the supremum

norm w.r.t. the metric gM i .

Now we fix a point p0 on M. By composition with an appropriate translation
of Rm we can assume that f̃i (p0) = 0. Since the second fundamental form coin-
cides with the Hessian of the immersion, the C2-norm of f̃i on (M, gM i ) is given
by ‖ f̃i‖C2((M,gM i ),Rm ) = ‖ f̃i‖gM i

0 + ‖d f̃i‖gM i
0 + ‖αi‖gM i

0 . Notice that this norm is
equivalent to the norm of Proposition 1. Since M is connected and f̃i (p0) = 0, the
maximum of f̃i is not greater than the diameter bound d = 1 of M. Thus we get
‖ f̃i‖C2((M,gM i ),Rm ) ≤ 2 + �. The norms ‖ · ‖gi

0 converge to ‖ · ‖0, the supremum
norm corresponding g. Hence the sequence ( f̃i ) is bounded in C2((M, gM ), Rm) as
well for i > i0. By the embedding theorem for Hölder spaces (see Proposition 1)
there exist a function f ∈ C1,β((M, gM ), Rm), 0 < β < 1 and a subsequence of
( f̃i ) converging to f in C1,β((M, gM ), Rm). From now on we restrict our attention
to this subsequence (M, f̃i , ∇̃i ). Since f̃i converges to f in the C1-topology, f is
an isometric immersion of (M, gM ) into Rm . Thus the metrics gi on E induced by
f̃i converge uniformly to the C0 metric g on E given by f. Notice that gM i and gM

coincide with the tangent parts of gi and g. By ‖ · ‖gi

0 we denote the supremum
norm w.r.t. gi . The supremum norm corresponding to g is simply denoted by ‖ · ‖0.

Moreover the tangent and normal bundles of f̃i , denoted by Ti M and νi M converge

The definition is stated in Section 1.
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as subbundles of E to the tangent and normal bundle of f, denoted by T M and νM,

and the corresponding projections converge w.r.t. ‖ · ‖0.

By assumption ‖�i‖gi

0 < � and ‖∂�i‖gi

0 < 1+�
i + 2�2(1 + 1

i ) < 1 + � + 4�2.

Hence, since ‖ · ‖gi

0 converges to ‖ · ‖0, the tensors �i and ∂�i admit for great i
a bound in the ‖ · ‖0-norm not depending on i. Thus for great i the sequence (�i )
is C0-bounded and equicontinuous. By the Arzelà-Ascoli theorem there exists a
continuous tensor field � on E and a subsequence of (�i ) converging uniformly to
�. We observe that the connections ∇̃i = ∂ − �i on E converge to the continuous
connection ∇̃ := ∂ − �.

We now prove that f (M) is extrinsically homogeneous. Let p and q be two
points on M and let c : [0, L] → M be a curve joining p and q. Let ḡi be the
unique affine transformation of Rm mapping f̃i (p) to f̃i (q) whose derivative Pi at
f̃i (p) coincides with the ∇̃i -parallel translation along c. By Corollary 8 ‖Pi‖0 is

bounded by

√
C L

i e
C L

i + 1 ≤ √
C LeC L + 1. Thus there exists a linear map P of

Rm and a subsequence (Pi ) converging uniformly to P. Notice that by Lemma 7
P is an isometry of Rm and that P coincides with the ∇̃-parallel translation along
c. The corresponding subsequence of affine maps (ḡi ) converges to the isometry
ḡ of Rm mapping f (p) to f (q) whose derivative at f (p) is given by P. Let X be
a unit tangent vector at p w.r.t. gM and let Xi be the unit vector w.r.t. gM i obtained
by rescaling X. Let γi denote the ∇̃T

i -geodesic defined by γ ′
i (0) = Xi and let γ̃i

denote the ∇̃T
i -geodesic defined by γ̃ ′

i (0) = X T
i (L), where X T

i (t) is the ∇̃T
i -parallel

tangent vector field along c defined by Xi . Since ∇̃T
i and ḡi converge uniformly to

∇̃T and ḡ, the geodesics γi and γ̃i converge pointwise to the ∇̃T -geodesics γ and
γ̃ defined by γ ′(0) = X and γ̃ ′(0) = X (L) = ḡ∗ X. Proposition 12 shows that

|(ḡ ◦ f ◦ γ )(t) − f ◦ γ̃ (t)| = lim
i→∞

|(ḡi ◦ f̃i ◦ γi )(t) − f̃i ◦ γ̃i (t)| = 0.

Recall that Proposition 12 can easily be generalized to broken geodesic lines.
Since by connectedness and compactness, any two points of M can be joint
by a broken geodesic line, ḡ leaves f (M) invariant. Thus f (M) is extrinsically
homogeneous.

Although our proof guarantees a priori only that the limit immersion f is of class
C1,β, the image f (M) is a smooth submanifold of Rm, since f (M) is extrinsically
homogeneous.

THEOREM 14. There exists a constant ε > 0 depending on �, n, m and d with
the following property:

If a triple (M, f, ∇̃) lies in Mim(�, d, n, m, ε), then M can be immersed into Rm

as extrinsically homogeneous submanifold.

This fact will be important in the proof of Proposition 16.
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To avoid rescaling (blowing up), ε depends on d. To get rid of this dependence,
one might replace the condition ‖∇̃�‖0 < ε, as stated in the definition of an ε-
almost canonical connection, by the rescaling invariant condition ‖∇̃�‖0 · d3 < ε.

Proof. W.r.g. let d = 1. Assume by contradiction that for each positive integer
i, there exists a triple (Mi , fi , ∇̃i ) in Mim(�, 1, n, m, 1

i ) such that Mi does not
admit an immersion into Rm as extrinsically homogeneous submanifold. Since
the sequence (Mi , f ∗

i gcan) is contained in M(�
√

2, 1, (�
√

2)−nvol(Sn, g0), n),
Theorem 2 implies that, after passing to a subsequence, there are a smooth manifold
M and diffeomorphisms hi : M → Mi . Now we get a new sequence (M, fi ◦
hi , ∇̃i ) satisfying the assumptions of Proposition 13. Thus M admits an extrinsically
homogeneous immersion into Rm, a contradiction.

The following example shows that the condition ‖�‖0 < � is necessary: Consider
the Grassmann manifold G/K of all oriented n-dimensional linear subspaces in
R2n, where G = O(2n) and K = O(n) × O(n). The corresponding Cartan decom-
position is denoted by g = k ⊕ p. Let M ∼= SO(n) be a component of the orbit of
ξ = ( 0 In

−In 0
) ∈ p under the isotropy representation of G/K. The isotropy group H of

ξ is now the diagonal in O(n)×O(n). As in the abstract case, an (extrinsic) canoni-
cal connection corresponds to a reductive decomposition k = h⊕m (cf. [1, Section
7.1]). For λ 
= −1 any of the following complements mλ of h give rise to a reductive
decomposition: mλ = {( X 0

0 −λX T ); X ∈ o(n)}. Thus for any sequence λi converging
to −1 with λi 
= −1 we get a sequence of (extrinsic) canonical connections mλi ,

which does not converge to a connection at all. Notice that the normal part of the
canonical connection given by m1 coincides with the usual normal connection (see
Section 6).

6. Examples

6.1. ORBITS OF s-REPRESENTATIONS

An s-representation is the isotropy representation of a semisimple symmetric space
S. Assumed that S is irreducible, all non-vanishing orbits of the isotropy repre-
sentation of S are full submanifolds, i.e. they are not contained in a proper affine
subspace, since in the case of symmetric spaces the isotropy representation and the
holonomy representation coincide. If S is of noncompact type, then each unit tan-
gent vector X of S defines a point X (∞) in the spherical boundary at infinity S(∞)
of S, such that the unit sphere of a given tangent space can be identified with S(∞).
The orbit of X under the action of the isotropy representation at the foot point of
X coincides under the above identification with the orbit of X (∞) under the usual
action of the isometry group of S on S(∞). Thus orbits of s-representations (as
submanifolds of the corresponding tangent space seen as Rn) can be seen as stan-
dard imbeddings of real flag manifolds (also known as R-spaces) into Euclidean
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space as considered by Kobayashi and Takeuchi [6]. A detailed description of such
orbits can be found in [1, p. 46–52].

Let ∇⊥ be the usual normal connection on νM. We say that f (M) has extrinsi-
cally homogeneous normal holonomy bundle, if for any points p and q on M and
any curve c on M joining p and q, there exists an isometry ḡ of Rm mapping f (p)
to f (q), leaving f (M) invariant and such that the mapping ḡ∗ |νp M : νp M −→ νq M
coincides with the ∇⊥-parallel transport along c.

Olmos and Sánchez [9] (see also [1, p. 164 and p. 211]) gave the following
characterization of orbits of s-representations:

THEOREM 15 ([9]). Let M be a full closed submanifold of Rm . Then the fol-
lowing assertions are equivalent:

(1) M admits a canonical connection ∇̃ whose normal part coincides with the
usual normal connection on E, i.e. ∇̃⊥ = ∇⊥.

(2) M is the orbit of an s-representation;
(3) M has extrinsically homogeneous normal holonomy bundle.

In this case ∇̃� = 0 is equivalent to the following two conditions: ∇̃α = 0 and
∇̃T (∇ − ∇̃T ) = 0, where ∇ is the Riemannian connection on M.

This in mind, we restrict our attention to the tangent part of the canonical con-
nection. In analogy to Proposition 13 we get:

PROPOSITION 16. Let M be a closed manifold of dimension n and let �, d > 0.

Assume that there exist a sequence ( fi ) of immersions of M into Rm and a sequence
(∇̃i ) of connections on E = M × Rm satisfying ∇̃⊥

i = ∇⊥
i , where ∇⊥

i is the
usual normal connection on E given by fi . If for each positive integer i the triple
(M, fi , ∇̃i ) lies in Mim(�, d, n, m, 1

i ), then M can be immersed into an affine
subspace of Rm as orbit of an s-representation.

Proof. The proof of Proposition 13 can essentially be copied and we refer
to this proof for the chosen notations. The only delicate point is that the limit
immersion f constructed in the proof of Proposition 13 is a priori only of class
C1,β and might not give rise to a normal connection ∇⊥. But we show that in the
case at hand f is of class C2,β . Let Y and Z be ∇̃T

i -parallel tangent vector fields,
then (∂Xαi )(Y, Z ) = (∇̃Xαi )(Y, Z )−αi (�i X Y, Z )−α(Y, �i X Z )− Ai (αi (Y, Z ), X ),
where αi and Ai are the second fundamental form and the shape operator of f̃i and
�i = ∇i − ∇̃T

i . Thus ‖∂αi‖gi

0 ≤ ‖∇̃iαi‖gi

0 + 2‖αi‖gi

0 ‖�i‖gi

0 + (‖αi‖gi

0 )2. Again we
can assume that 0 ∈ f̃i (M). Recall that the second fundamental form coincides
with the Hessian of the immersion. Thus the C3-norm of f̃i on (M, gM i ) is given
by ‖ f̃i‖C3((M,gM i ),Rm ) = ‖ f̃i‖gM i

0 + ‖d f̃i‖gM i
0 + ‖αi‖gM i

0 + ‖∂αi‖gM i
0 ≤ 2 + 1

i ε + � +
3�2. The norms ‖ · ‖gM i

0 converge to ‖ · ‖0, the supremum norm corresponding
gM . Hence the sequence ( f̃i ) is bounded in C3((M, gM ), Rm) as well for big i.
By the embedding theorem for Hölder spaces (see Proposition 1) there exist a
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function f ∈ C2,β((M, gM ), Rm), 0 < β < 1 and a subsequence of ( f̃i ) converging
to f in C2,β((M, gM ), Rm). This shows that f gives rise to a normal connection
∇⊥. Moreover the proof of Proposition 13 now shows that f (M) has extrinsically
homogeneous normal holonomy bundle. Reduction of the codimension eventually
yields the claim.

Using the same arguments as in the proof of Theorem 14, we get as a consequence of
the above proposition the following pinching result for orbits of s-representations.

THEOREM 17. There exists a constant ε > 0 depending on d, �, n and m with
the following property:

If a triple (M, f, ∇̃) with ∇̃⊥ = ∇⊥ lies in Mim(�, d, n, m, ε), then M can be
immersed into an affine subspace of Rm as an orbit of an s-representation.

6.2. EXTRINSICALLY SYMMETRIC SUBMANIFOLDS

A submanifold of a Euclidean space is called extrinsically symmetric, if it is invariant
under the reflections at each of their normal spaces. Ferus [4] has classified and
characterized these submanifolds as follows:

– The connected extrinsically symmetric submanifolds of Euclidean space are
products of closed extrinsically symmetric submanifolds with totally geodesic
ones.

– The full closed extrinsically symmetric submanifolds of Euclidean space are
exactly the symmetric orbits of s-representations.

– A closed submanifold of Euclidean space is extrinsically symmetric if and only
if its second fundamental form is parallel, i.e. ∇⊥α = 0.

The pinching theorem for closed extrinsically symmetric submanifolds of Euclidean
space resulting from this characterization can be be found in [11].

THEOREM 18 ([11]). There exists a constant ε > 0 depending on d, �, n and
m with the following property:

If a triple (M, f, ∇ ⊕ ∇⊥) lies in Mim(�, d, n, m, ε), then M can be immersed
into Rm as an extrinsically symmetric submanifold.

As the characterization of Ferus does not use a supplementary connection any
more, this pinching result does not assume the existence of a supplementary ε-
almost canonical connection. Instead we assume that ∇ ⊕ ∇⊥ is ε-almost canon-
ical, which only means that ‖∇⊥α‖0 < ε. Moreover in this case we do not need
to construct the extrinsic isometries by a limit process, as they are given by the
reflections at the normal spaces. Notice also that the condition ‖�‖0 < � is now
redundant since ‖α‖0 < �.
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