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Abstract Interplay between capillary, gravity and viscous forces in unsaturated
fractures gives rise to a range of complex flow phenomena. Evidence of highly inter-
mittent fluxes, preferential and sustainable flow pathways lead to potentially signifi-
cant flow focusing of concern for regulatory and management of water resources in
fractured rock formations. In previous work [Ghezzehei TA,Or D.: Water Resour.
Res. In Review(2005)] we developed mechanistic models for formation, growth and
detachment of liquid bridges in geometrical irregularities within fractures. Such dis-
crete and intermittent flows present a challenge to standard continuum theories. Our
focus here is on predicting travel velocities of detached liquid elements and their
interactions with fracture walls. The scaling relationships proposed by Podgorski et
al. [Podgorski, T., et al.: Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)] provide a gen-
eral framework for processes affecting travel velocities of discrete liquid elements
in fractures, tubes, and in coarse porous media. Comparison of travel velocity and
distance by discrete bridges relative to equivalent continuous film flow reveal signifi-
cantly faster and considerably larger distances traversed by liquid bridges relative to
liquid films. Coalescence and interactions between liquid bridges result in complex
patterns of travel times and distances. Mass loss on rough fracture surfaces shortens
travel distances of an element; however, results show that such retardation provides
new opportunities for coalescence of subsequent liquid elements traveling along the
same path, resulting in mass accumulation and formation of larger liquid elements
traveling larger distances relative to smooth fracture surfaces. Such flow focusing pro-
cesses may be amplified considering a population of liquid bridges within a fracture
plane and mass accumulation in fracture intersections.
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1 Introduction

Recent field measurements of infiltration and flow in unsaturated fractured rocks
revealed highly intermittent fluxes emerging from fractures (Faybishenko et al. 2003,
2000). These findings are supported by laboratory visualization studies in fracture ana-
logs (Ghezzehei and Or 2005; Nicholl et al. 1994; Persoff and Pruess 1995; Su et al. 1999,
2004) that implicate the formation and detachment of discrete liquid elements (also
referred to as liquid bridges) within geometrical constrictions, intersections, and other
irregularities on surfaces of unsaturated fractures. These resulting flow regimes were
described by Faybishenko et al. (2000) as follows: “in the temporal regime we recognize
that flow through an unsaturated fracture network may be more like a set of dripping
faucets than the continuous flow predicted by Darcy’s law and Richards’ equation”.

Several mechanistic and percolation-based models have been proposed for the
onset and dynamics of liquid bridge growth and detachment in idealized fracture
geometries (Ghezzehei and Or 2005; Glass et al. 2002; Ho 2004); however, little
attention was given to the potentially important transport pathway associated with
rapidly moving detached liquid clusters of considerable size through fractured for-
mations that would otherwise be considered hydraulically inactive. Data show that
under certain conditions (e.g., vertical rough-walled fractures and film flow), liquid
bridges that attain a certain size overcome pinning capillary forces and traverse large
distances in a short time carrying with them dissolved substances and result in sig-
nificant intermittent fluxes even in the absence of hydrologic continuity. For constant
flux and ambient conditions the process may be periodic and predictable (Ghezzehei
and Or 2005), however, the detachment dynamics and subsequent motions of such
discrete liquid elements are not amenable to continuum representation using classical
equations of unsaturated flow in porous media.

The general objective of this study is to develop mechanistic models for the motion
of detached liquid bridges and discuss consequences of such motion on transport
potential and fluxes within unsaturated fractured rock. Specifically, to: (1) develop
models for liquid bridge geometry and travel velocity; (2) incorporate restraining
forces affecting travel velocity and mass loss (roughness streaking and matrix imbi-
bition); (3) study interactions between multiple bridges and onset of cascading ava-
lanches; and (4) integration of the above to description of macroscopic transport
potential and flux intermittency.

In the following, we present a brief recap of liquid bridge formation and detach-
ment. The transition from stationary to sliding bridge obeys general scaling law that
combines capillary, viscous, and gravitational forces. Applications for various condi-
tions require considerations of bridge size and shape affecting energy dissipation and
restraining viscous forces. The theoretical section will conclude with consideration
of mass exchange with rock matrix and fracture surface, and coalescence with other
bridges in the path forming an avalanche. The theoretical results will be illustrated
using available experimental data.

2 Theoretical considerations

The travel of discrete liquid bridges in unsaturated fractures bears strong resem-
blance to motion of liquid slugs in capillary tubes studied by Bico and Quere (2001),
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and the sliding of drops along inclined surfaces (Hoffman 1975; Kim et al. 2002;
Podgorski et al. 2001). The development of mechanistic models in this section involves
adaptation of concepts and approximations successfully used previously in model-
ing these analog problems. To facilitate the mathematical derivations that follow,
we make the following simplifying assumptions regarding fracture geometry and
characteristics.

1. Smooth and impervious (the latter aspect will be revised at a later stage),
2. Parallel walled narrow aperture fractures.

The section is arranged as follows: 2.1 provides a summary of our previous work on
formation of liquid bridges; 2.2 addresses the geometry and conditions for stationary
bridges at the onset of motion limit; in 2.3 a general framework and specific expres-
sions for the steady velocity of traveling liquid bridges are developed; finally, in 2.4
we address interactions among traveling bridges and with fracture walls giving rise to
complex mass-travel patterns.

2.1 Formation and detachment of liquid bridges (Ghezzehei and Or 2005)

In this subsection, we provide a brief recap of main results from our recent study on
modeling liquid bridge formation and detachment in unsaturated fractures (Ghezzehei
and Or 2005). The formation of liquid bridges is associated with asperities and other
geometrical perturbations that provide anchors for capillary pinning of a growing
liquid bridge (Su et al. 2004, Wood et al. 2004). The cyclical process of growth and
discharge of liquid bridges is perpetuated by the presence of sufficient liquid flux
diverted towards an anchoring spot in the fracture (either as film or matrix flow).
The setting and process are idealized in the geometrical model shown in Fig. 1, which
considers a fracture of uniform aperture b inclined at an angle of α from a horizontal
plane. A constant volumetric flow rate Q is diverted towards the obstruction forming
a liquid bridge beneath it. The model estimates the weight of the discharged liquid-
mass and discharge rate (periodicity) as functions of geometry, flow rate, and fluid
properties.

Considering, for simplicity, an initially semi-circular liquid bridge growing in the
fracture plane, it is useful to define the dimensionless Bond number (Bo) reflect-
ing the importance of gravitational relative to capillary forces acting on the liquid
mass:

Bo = ρgby2 sin α

2σ(2b − y cos θ)
(1)

where y is the width of the liquid bridge and θ is contact angle. When the lateral
extent of the liquid mass is much greater than the fracture aperture (y � b), the
Bond number grows with the diameter of the liquid mass y and/or the inclination
angle α. The liquid responds to large Bond number (excessive gravitational forces
compared to capillary forces) by adjusting the advancing and receding contact angles
and assuming a non-circular (elongated) geometry. For simplicity, we assume exis-
tence of a threshold Bond number Bo∗, which marks the onset of elongation. We also
assume that subsequent elongation occurs at a fixed threshold diameter,y0, given by
rearranging (1)
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Fig. 1 Idealized representation of liquid bridge suspended below fracture discontinuity and schematic
illustration of elongation and extension of a typical fluid element

y0 = Bo∗σ
ρgb sin α

(
cos θ

b
+

√
cos2 θ + ρg sin α

Bo∗σ
b2

)
(2)

The above two assumptions were supported by observations (Ghezzehei and Or
2005), yielding an estimate of the critical Bond number Bo∗ = 0.05. A similar value
of Bo∗ (0.0125–0.033) was observed in experiments by Prazak et al. (1992) as giving
rise to intermittent flow regime in packs of coarse sand.

Liquid addition after onset of elongation results in an increase in bridge length at
relatively uniform and constant width as long as interfacial (capillary) forces remain
larger than the weight of the suspended liquid bridge. At a certain critical value of
suspended bridge mass, a narrowing neck appears leading to stretching and eventually
a complete detachment of the liquid below the neck. These distinct stages of growth
and detachment are illustrated in Fig. 1.

The elongation and subsequent breakup are modeled as a modified one-dimensional
extensional flow (Wilson 1988). Neglecting inertial effects, an elongating liquid bridge
of known cross-boundary sectional area A0 and fed by a constant volumetric flow rate
Q, the cross section of the bridge at any position z is given by

3η
∂A(z, t)
∂t

= ρgV(z, t) (3)

where A(z, t) ≈ 2by(z, t) is the cross sectional area of the liquid bridge at z and V(z, t)
is the volume suspended below z. To facilitate derivation of analytical solution to the
problem we switch from the above fixed Cartesian coordinates to moving (Lagrang-
ian) one-dimensional coordinate (Wilson 1988). An arbitrary fluid element located at
some z is marked by the time of its departure from the extrusion plane t = τ . It follows
then that A(z, t) is equivalent to A(τ , t). Moreover, the constant rate of liquid supply
leads to equivalence of the volume V(z, t)with Q·τ . For liquid bridges confined within
narrow fractures two additional resistive force operate. First, the advancing bridge tip
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is met with capillarity resistive pressure of the order of � = 2σβCa2/3/b (Bico and
Quere 2001). Secondly, surface tension of the liquid–vapor interface resists shrinkage
of the cross-sectional area due to a force of the form 
 = 2σb(π − 2θ)/cos θ . Then,
the full equation of extension for a liquid bridge growing within a fracture is given as

2bλ
∂y(τ , t)
∂t

= ρgQτ sin α − 2b�y(τ , t)−
 (4)

where λ = 3η is the coefficient of extensional viscosity. The solution to (4) subject
to the boundary condition y0 = yτ (t = τ) (constant liquid bridge width at the top
boundary obtained using (2)) is

�

λ
yτ (t) = ρgQτ sin α −


2bλ
−

{
ρgQτ sin α −


2bλ
− �

λ
y0

}
exp

(
�

λ
(τ − t)

)
(5)

Equation 5 describes the evolution of the width of a typical fluid element τ . When
the liquid bridge cannot support its own weight and a narrow neck forms and eventu-
ally raptures releasing a freely sliding liquid mass as shown in Fig. 1. During detach-
ment, the following two conditions occur at the rapture plane. First, the width of the
critical fluid element τ = τC vanishes at some time t = t∗

t∗ = τC + λ

�
ln

[
1 − 2by0�

ρgQτC sin α −


]
(6)

Secondly, the rate of extension of the liquid forming the rupturing neck increases at
a very rapid rate dτC/dτC → ∞ leading to an expression for the time interval between
two consecutive detachment events

ρQτC = 


g sin α
+ by0�

g sin α

{
1 +

√
1 − 2

ρgQλ
by0�2

}
(7)

Accordingly, the mass of detached liquid bridge is MC = ρQτC. The first term on
the right-hand-side of (7) is indicative of the static mass supported by the surface ten-
sion of the liquid–vapor interface. The second term represents the mass supported by
the dynamic contact angle (result of flow and presence of fracture walls). Subsequent
analysis showed that the dynamic part of the solution does not play a significant role
in determining detachment mass, resulting in a simple (and more practical) expression
for the liquid bridge mass:

MC = 2σ (π − 2θ)
sin α cos θg

b (8)

2.2 From stationary to sliding liquid bridges

Seemingly different approaches to modeling transition from stationary to sliding drops
and discrete liquid bridges (in the presence of retarding capillary interactions with
solid surfaces and capillary spaces) lead to a surprisingly simple and general scal-
ing law proposed by Podgorski et al. (2001). Without involving the exact shape of a
liquid bridge and details of associated flow field, Podgorski et al. (2001) proposed the
following:

Ca ∼ Bo sin α −θ (9)
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where Ca is the Capillary number Ca = ηU/σ (U is bridge sliding velocity); Bo is
the Bond number defined generically as Bo = V2/3ρg/σ (V is the bridge volume);
and θ is a perimeter-averaged projection of surface tension (Extrand and Kumagai
1995), which may also be viewed as the minimum value of Bo sin α below which the
bridge remains pinned by capillary forces. For Bo larger than a threshold value, the
capillary number increases linearly with Bo sin α until it attains a velocity that results
in pearling and disintegration of the liquid bridge (Podgorski et al. 2001). In Appen-
dix 1, we provide an alternative derivation of the scaling law based on general energy
dissipation equations.

The general conditions and geometries controlling the threshold value θ are
explored next considering a simple one-dimensional formulation of liquid bridge
dynamics, followed by more realistic (and complicated) two-dimensional formulation
(assuming elliptical liquid bridges).

2.2.1 One-dimensional analysis

Consider a liquid bridge of length L held in an idealized fracture described above
(Fig. 2). We derive an expression for the threshold mass that triggers motion from
considerations of (a) force balance and (b) hydrostatic pressure balance.

Force balance: The component of the liquid bridge weight that pulls the bridge
downward is balanced by the net sum of the surface tension forces at the advancing
and receding edges:

(b)

(d)(c)

(a)

Fig. 2 (a) Liquid bridges sliding down a parallel-glass fracture model of b = 0.2 mm aperture, (b) one-
dimensional conceptual model of liquid bridges, and (c) elliptical (two-dimensional) conceptual model
of liquid bridges, (d) rectangular center with circular advancing and receding edges (see Appendix A)
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Vρg sin α = 2 dW σ (cos θr − cos θa) (10)

where θr and θa are the receding and advancing contact angles, respectively; dW is
unit width of the liquid bridge, and the bridge volume is V = dW · Lb. The factor of
two in the right hand side of Eq. 10 accounts for the two walls of the fracture.

Pressure balance: We assume that the fluid forming a stationary liquid bridge is at
rest, satisfying a uniform hydrostatic pressure everywhere. Consequently, the differ-
ence in capillary pressure (ψ) between the advancing and receding menisci is offset
by the gravitational head difference:

ψa − ψr = ρgL sin α (11)

The capillary pressure of the menisci is related to the aperture and contact angle
by Laplace–Young equation

ψ = −2 cos θσ/b (12)

The two approaches above (Eqs. 10, 11) can be reduced to identical dimensionless
scaling law

ρgbL
2σ

sin α = (cos θr − cos θa) (13)

Comparison of (13) with the scaling law of Podgorski et al. (2001) given by (9)
reveals that the critical Bo sin α required for onset of motion is

ρgbLC

2σ
sin α = (cos θ∗

r − cos θ∗
a ) = θ (14)

where LC is the minimum liquid bridge length required for the onset of motion, and θr
and θa are the critical receding and advancing contact angles, respectively. According
to (13) the onset of motion is determined by bridge length and contact angle hysteresis
(bridge width plays no role in this 1-D analysis).

2.2.2 Two-dimensional analysis

Consider a liquid bridge whose size in the fracture plane is much larger than the
fracture aperture such that the contribution of in-plane curvature to total interfa-
cial curvature (hence, pressure difference across the liquid–vapor interface) can be
ignored. The geometric variables are described in Fig. 2. In radial coordinates, the
bridge perimeter is defined by

r = Lλ

2
√

sin2 ϕ + λ2 cos2 ϕ
(15)

where L is the major diameter (length) of the bridge, λ = D/L is the aspect ratio, and
0 ≤ ϕ ≤ 2π is angle measured clock-wise from the receding tip. Assuming uniform
total pressure, the capillary pressure linearly changes with elevation as

ψ = ψ0 + h (16)

At the mid-point (ϕ = π/3), the stress on the solid–liquid–vapor contact line due
to the bridge weight vanishes; thus, the contact angle does not deviate from the static
contact angle value of θ0. Then, according to Eq. 12, ψ0 = −2 cos θ0/b. Accordingly,
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the elevation of any point along the perimeter of the bridge with respect to the
mid-point is given by

h = r cosϕ sin α (17)

The local contact angle along the perimeter adjusts to maintain equilibrium hydro-
static pressure:

ψ = −2σ
b

cos θ = ψ0 + h (18)

Rearranging Eq. 18 gives

cos θ = cos θ0 − γ

4
λ cosϕ√

λ2 cos2 ϕ + sin2 ϕ
(19)

We note that Extrand and Kumagai (1995) arrive at a slightly different expression
(for a stationary elliptical drop on inclined plate) by assuming a linear increase in cos θ
with ϕ, an assumption that does not satisfy the capillary pressure equilibrium. Along
an infinitesimal segment of the perimeter dS, surface tension pulls the edges of the
liquid bridge outward (normal to the contact line) by a force equivalent to 2σ cos θ dS.
Note that a factor of two is applied to represent both fracture walls. The component
of this force acting parallel to the major axis (opposing the weight) is

dFS = 2 σ cos θ cosϕ dS (20)

and the length of the infinitesimal segment is (Spiegel and Liu 1999)

dS = L
2

√
1 + sin2 ϕ(λ2 − 1) dϕ (21)

Then, the total force supporting the sliding weight of the bridge is given by inte-
grating the force along the perimeter of the bridge (note that the integration is applied
for a semi-ellipse and a factor of two is used to account for the full ellipse)

FU = −4σL

π∫
0

cos θ cosϕ
√

1 + sin2 ϕ(λ2 − 1)dϕ = LσLVγ λf (λ) (22)

f (λ) =
π∫

0

cosϕ2

√
cos2 ϕ + λ2 sin2 ϕ√
λ2 cos2 ϕ + sin2 ϕ

dϕ (23)

The component of the bridge weight acting along the fracture plane is approxi-
mately (ignoring the contribution of edge meniscus) given by

FW = πbL2ρgλ
4

sin α (24)

For the liquid bridge to remain stationary, the sum of the forces has to vanish.
Setting the sum of (22) and (24) to zero and rearranging gives (Fig. 3),

2FU + FW = 0 = π

2
− f (λ) (25)

Note that Eq. 25 depends only on the aspect ratio λ = D/L. Numerical evaluation
of (25) indicates that λ = 1; i.e., circular geometry is energetically the most preferred
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Fig. 3 Numerical evaluation of f(λ)

for stationary liquid bridge. Substituting λ = 1 in Eq. 19 and evaluating it at the
advancing (ϕ = π and θ = θa) and receding (ϕ = 0 and θ = θr) tips leads to

ρgbL
2σ

sin α = Bo sin α = (cos θr − cos θa) (26)

This is an identical result to the scaling law (13) derived using one-dimensional
derivation. The result suggests that stationary liquid bridges tend towards a circular
shape.

2.3 Steady motion of liquid bridges

In this section, we apply the scaling law of Podgorski et al. (2001) (given by Eq. 9) to
derive travel velocity of liquid bridges under various conditions. The scaling law uni-
fies various concepts and analyses including the falling liquid slugs (Bico and Quere
2001) and motion of simple liquid bridges (Su et al. 2004), and more. To extend the
applicability of the scaling law to the dynamics of discrete liquid elements within a
range of geometries (parallel plates, cylindrical tube, and porous media), we expand
the definition of the Capillary number to (Meheust et al., 2002)

Ca = ηU
σ

a2

k
(27)

where k is the permeability of the conduit where a liquid element forms and travels
and a is a characteristic length (fracture aperture, tube radius, or mean particle/pore
size).

Consider the primary forces operating on a rectangular (1-D analysis above) liquid
bridge in motion within a smooth parallel-wall fracture (Su et al. 2004) as shown in
Fig. 2. For steady velocity, we balance viscous, capillary, and gravitational forces per
unit width of a rectangular bridge as

ULη
12
b2 = σ

b

(
cos θ∗

r − cos θ∗
a
) + ρgL sin α (28)
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Substituting the definition of the permeability for fluid flow between parallel plates
k = b2/12 in (28) and rearranging reduces to

ηU
σ

Lb
k

= ρgLb
σ

sin α −θ (29)

Note that Eq. 29 conforms to the scaling law of Podgorski et al. (2001) (Eq. 9).
It can be shown that the steady velocity of slugs in capillary tubes (Bico and Quere
2001) and unstable finger flows in porous media (Meheust et al. 2002) are also reduc-
ible to the scaling law of Podgorski et al. (2001). The final expression differs only by
the capillary pinning force geometry, characteristic lengths, and the permeability k
(k = r2/8 for a tube; and in porous media k ≈ D2/700, where D is mean particle
diameter). The scaling law can be stated as follows: the gravitational force in excess of
capillary pinning force scales linearly with (or is proportional to) the viscous force. The
scaling law can be used to estimate the capillary pinning forces without imposing any
constraints on the shape of the discrete liquid masses (liquid bridges, slugs or fingers).

Equation 29 can be further reduced using the relation given by (14)

U
Umax

= 1 − LC/L, for L > LC (30)

where Umax = kρg sin α/η is the maximum flow velocity of a fully saturated fracture.
Equation 30 describes the velocity of discrete sliding liquid bridge relative to the
saturated hydraulic conductivity.

2.4 Transient motion of liquid bridges

The steady velocity of a liquid bridge described by (30) implies that once the liquid is
released from its source (e.g., asperity) it remains intact until it encounters the fracture
edge, an asperity, or another liquid bridge. The assumption is appropriate for smooth
fractures embedded within relatively impervious matrix.

In this subsection, we extend the analysis by considering rough and/or porous frac-
ture surfaces capable of retaining part of a traveling liquid bridge. Specifically, we
evaluate the impact of loss of mass on the velocity of a traveling liquid bridge. The
volume of liquid retained by surface depressions (roughness) or exposed matrix pores
during an infinitesimal displacement of dx is related to the decrease in liquid bridge
length according to,

dxζ = −dLb (31)

where ζ denotes the volume of surface depressions and/or exposed pores per unit
nominal fracture surface area. In the remainder of this paper, this property of fracture
surfaces is referred to as “surface porosity”. In Eq. 30, it is implied that the width
of the liquid bridge does not change as mass is lost. Substituting (30) in (31) (where
dx/dt = U yields,

dL
dt

= −KS
ζ

b

(
1 − LC

L

)
(32)

The solution to the ordinary differential equation (31) subject to the initial condi-
tion L (t = 0) = L0 is,
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L (t)
LC

= 1 + ProductLog
[(

L0

LC
− 1

)
exp

((
L0

LC
− 1

)
− KSζ

bLC
t
)]

(33)

The length of the traveling bridge decreases from its initial value L = L0, and
asymptotically approaches L = LC. The decrease of relative bridge length L/LC is a
function of elapsed travel time and fracture surface roughness ζ . The decrease rate is
faster for rougher surfaces. The distance traveled by the moving liquid bridge is given
by integrating the velocity,

S (t) =
t∫

0

U (s) ds = bLC

ζ
L(t) (34)

The initial condition L0 = L(t = 0) for liquid bridges emerging from an asperity is
given by the liquid bridge at detachment (8),

t = 0, L0 = MC

ρby0
= 2σ(π − 2θ)
ρy0 sin α cos θ

(35)

Following coalescence with stalled liquid elements in a path of a moving liquid
bridge, the resulting velocity of the combined element is faster and their combined
weight (length) serves as a new initial condition. Consider a moving liquid bridge of
length of L(t = t∗) = L∗ at the time of coalescence, and noting that the stalled bridge
must have reached equilibrium length when it ceased to move (i.e., L = LC) the initial
condition at the time of restart for liquid bridge formed by coalescence of moving
liquid bridge with a stationary one is given as,

t = 0, L0 = LC + L∗ (36)

The exact mechanisms of mass loss due to roughness of even on smooth surface are
complicated and detailed analyses are left for future work. For smooth and primed
surfaces, the relationships proposed by Bretherton (1961) between liquid element
velocity and film thickness could be used c.f.,(Bico and Quere 2001) or we could cal-
culate surface porosity (or storativity) per unit fracture length defining an upper bound
on rate of mass loss. Subsequent drainage and recapture of some of the mass stored
on the surface by a stalled liquid element is plausible. Finally, although imbibition
opportunity time scales are likely to be too short during bridge travel (perhaps analo-
gous with evaporation from falling drops ∼3% mass loss over 10’s m), the subsequent
interactions of bridge lost mass (to roughness or priming) with rock matrix would
clearly be affected by imbibition processes.

3 Illustrative examples

The foregoing theoretical considerations suggest that discrete liquid elements may
travel relatively long distances within fractures even in the absence of hydraulic conti-
nuity (a prerequisite for application of continuum theories). The following examples
illustrate the implications of such rapid motions and contrast them with commonly
used continuum approximations. In the first example, we consider travel velocities of
liquid bridges in fractures with impervious and smooth walls. The second example,
illustrates the effect of surface porosity on the velocity of liquid bridges. The third
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example considers interaction of successive liquid bridges in fractures with significant
surface porosity (storativity).

3.1 Bridge velocity in impervious and smooth fracture surfaces

The velocity of liquid bridges periodically released from an asperity or fracture dis-
continuity (relative to maximum velocity or the saturated hydraulic conductivity of
the fracture) is described by (30). The results in Fig. 4(a) are comparisons of mea-
sured velocities of detached liquid bridges with calculated values from Eq. 30. We
use measured data from Experiment I (Table 3) of Su et al. (2004). The measured
quantities are: critical liquid bridge length (LC), length of detached liquid bridge (L0),
fracture aperture (b), fracture inclination angle (α), and velocity of detached liquid
bridge (U). In Fig. 4(b), the same experimental data were used to test the scaling law
of Podgorski et al. (2001) given by Eq. 9. Considering experimental uncertainty, the
results are in remarkable agreement with the postulated scaling law.

Equation 30 can be further reduced by substituting the definitions of LC and L0
(Eqs. 14 and 34, respectively)

U
Umax

= 1 − y0(b)
b

cos θ

(π − 2θ)
θ (37)

where y0(b) is as given by (2). In Fig. 5, we show the velocity of detached liquid
bridge relative to the maximum for a wide range of fracture apertures calculated
using Eq. 37. The general trend is that the length of detached liquid bridge relative
to the stationary length increases with aperture. For fractures with relatively large
aperture (∼ 1 mm), the initial length of liquid bridges is so large that their velocity is
comparable to the saturated hydraulic conductivity. Such fast flow of discrete liquid
clusters in the absence of hydraulic continuity is not expected to conform to current
continuum approximations.

For quantitative comparison with continuum approximations, we focus our atten-
tion on two fracture apertures (0.2 mm and 1 mm), and critical contact angle hysteresis
ofθ = 0.15 (comparable with the value of 0.15 calculated by Su et al. (2004) for glass
surface). To establish an average travel velocity for a discrete liquid bridge traversing
a fracture of length �, we need to account for both (a) bridge recharge time or the
time interval between consecutive liquid bridge detachments,τC, and (b) actual travel
velocity of the detached liquid bridge across the distance �. Using Eqs. 7 and 37, the
average velocity is calculated as the ratio fracture length � to the sum of detachment
time τC and post-detachment travel time �/U, yielding

U = U�
�+ τCU

(38)

The equivalent continuum approximation requires that the amount of mass flows as
a continuous liquid film or thread flowing along the fracture. Hence, instead of liquid
clusters, we consider films of uniform thickness flowing on both sides of a fracture.
We make a conservative assumption that the width of the continuous film (thread) is
equivalent to the width of the asperity supporting the liquid bridge (yf ≥ y0). Accord-
ingly, the thickness of the falling film hf is related to the volumetric flux Q by (note
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Fig. 4 (a) Comparison of measured versus calculated velocities of liquid bridges on smooth and
rough glass surfaces; and (b) evaluation of the scaling law equation (9). Measurements and parame-
ters obtained from Experiment I of Su et al. (2004)

that film flow on both fracture walls is considered)

hf =
(

3
2

Qη
yfρg sin α

)3/2

(39)

and the average velocity of the film is:

Uf = Q
2yf hf

(40)

In Fig. 6, we compare the dimensionless velocities of discrete liquid clusters with
their equivalent continuous film for two fracture apertures over a wide range of volu-
metric fluxes. Generally, the results indicate that transport via discrete discontinuous
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liquid clusters is much faster than continuous film flow. The disparity between the
continuum and discrete flows vanishes for fractures near saturation or very dry con-
ditions. Close to saturation, the velocity of thick films approaches maximum velocity
of infinitely long liquid bridge (also equals the saturated hydraulic conductivity of the
fracture under unit hydraulic gradient).
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To examine the consequences of such rapid motions on travel distances, we evaluate
the distance traveled by liquid bridges and steady film over the course of one day for
two hypothetical steady fluxes of 10−4 m3/day and 10−8 m3/day within a hypothetical
vertical fracture of unlimited length and width of 1 cm. The results summarized in Fig.
7, show that for narrow aperture fractures, discrete liquid bridges traverse consider-
ably larger distances than traveled by continuous film flow (which does not depend
on aperture size). The increase in flux from 108 m3/day and 10−4 m3/day results in
remarkable enhancement in travel distances even for fractures with larger aperture
sizes. The results provide a vivid illustration of the enhancement in travel velocity and
distance due to formation of discrete liquid elements in fractured rock. We note that
the primary effect of such focused transport mechanisms is not necessarily enhanced
transport of more liquid mass, but the potential for more rapid arrival times of pollu-
tants carried with such discrete liquid bridges.

The above example depicts maximum disparity between continuum flow and dis-
crete flow without retardation. In the next subsection, we illustrate how discrete
bridges interact with porous and/or rough surfaces.

3.2 Effect of surface porosity on velocity of liquid bridges

The distance traveled by liquid-bridges (33) released from an asperity is shown in
Fig. 8 for two different values of surface porosity (ζ = 2 × 10−6 m3 m−2 and ζ =
10−5 m3 m−2) as well as a smooth and impervious fracture surface (ζ = 0 m3m −2)
with no mass loss. Higher surface porosity leads to rapid slowdown and short travel
distance. In smooth walled fractures, a single liquid bridge detachment event is suffi-
cient to traverse a fracture of any length. Whereas rough or porous fracture surface
requires interaction between multiple detachment events for flow across a fracture.
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In the next subsection, we consider such interaction between successive detachment
events using a few simple assumptions about the surface porosity.

3.3 Interaction between multiple traveling bridges

Here we are concerned with interactions among successive liquid bridges formed
at the location and follow a similar path (Ghezzehei and Or 2005). We track each
liquid bridge from detachment as it travels down the fracture while losing mass and
momentum. When a traveling liquid bridge merges with a stalled preceding bridge,
the aggregate mass travels at a higher velocity until it loses sufficient mass and stalls.
The initial length of a liquid bridge departing from an asperity, L0 = L(t = 0), is
obtained from Eq. 34 and Ghezzehei and Or (2005). Following coalescence of two or
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more, the resulting length of the newly formed liquid bridge is related to volume of
coalesced liquid bridges by

L0 =
∑

i Vi

ρby0
, t = 0 (41)

where Vi stands for the combined volume of the coalescing bridges.
The passage of liquid bridges leaves behind a trail of partially filled depressions (or

partially saturated exposed pores) with reduced wicking ability. As the retained liquid
drains or is transmitted deeper into the matrix, the wicking ability of the fracture
surface (surface porosity) is recovered gradually. For simplicity, the recovery of the
surface porosity is modeled here by exponential function of time

ζ = ζo[1 + exp(−κt)] (42)

where ζo is the surface porosity of dry surface and κ is the rate of recovery, which is
related to how fast the trapped liquid can be absorbed by the matrix or drain down
as film. Consequently, it is a measure of matrix imbibition or film flow. As the frac-
ture surface becomes wet with each passing liquid bridge, the rate at which it dries
decreases, reflected in decrease in κ . The change in κ at any given location is related
to the frequency of liquid bridge passage through that location and could be scaled
as

κ ∼ κo/Nτ (43)

where κo is the rate of recovery after the first liquid bridge has passed through a point
and N is the number of the liquid bridge passing through a given point. An illustrative
example of the rate of surface porosity recovery (ζ ) as a function of time is shown for
the first few liquid bridges in Fig. 9.

In Fig. 10, we illustrate the steps involved in coalescence of pairs of primary liquid
bridges (formed directly underneath asperities) to form secondary liquid bridges,
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Fig. 9 Change in effective surface porosity after passage of Nth liquid bridge for N = 1, 5, 10, and
100, where initial porosity is ζ0 = 50 × 10−6 m3 m−2
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Fig. 10 Pathways of liquid bridges formed in a b = 0.1 mm aperture fracture, at flux of Q = 2 ml/h.
Surface porosity is ζ0 = 50 × 10−6 m3 m−2 and a rate of κ = 0.5 s−1

followed by coalescence of a pair of secondary bridges to form tertiary liquid bridge.
The increased mass with each coalescence is followed by faster and longer travel dis-
tance before mass loss slows down the liquid bridge. Obviously, mass accumulation
into a single bridge is not unlimited and more complexities and modes of fragmen-
tation are expected and the process cascades down the fracture (Podgorski et al.
2001).

It is interesting to consider extension of above results by forming zones signifying
different time and distance relationships for liquid bridges traveling in rough-walled
fracture relative to behavior of non-retarded liquid bridge (Fig. 11). Interactions
between multiple liquid bridges resulting from slowdown amplify liquid bridge size
that enhances overall travel velocity beyond that of liquid bridges traveling in a smooth
fracture of the same nominal aperture. For example, the quaternary liquid bridges
have higher velocity (denoted by the slopes in Fig. 11) than the liquid bridges trav-
eling along smooth fractures. Consequently, the travel distance predictions presented
in Fig. 7 should be considered lower bound of the transport capacity in rough-walled
fractured rock.

4 Summary and conclusions

The study focuses on behavior of discrete liquid elements that form, detach, and travel
in unsaturated fractures. Discrete elements and associated intermittent flow regimes
present a challenge to standard continuum models, and may represent a mode for
rapid mass transport across considerable distance in formations considered hydrau-
lically inactive. Extending the results of Ghezzehei and Or (2005) on formation and
detachment of liquid bridges, we first analyzed the conditions for onset of motion for
simple 1-D and ellipsoidal liquid elements. The results relating gravitational forces to
pinning capillary forces follow a scaling law proposed by Podgorski et al. (2001) that
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offers a general and unifying framework for the interplay between capillary, gravity
and viscous forces governing motion of discrete liquid elements in a range of capillary
conduits.

The introduction of permeability for the specific geometry and the threshold for
onset of motion enable prediction of steady velocity of discrete liquid elements in frac-
tures (and other systems). Interactions with fracture walls due to loss of mass, either
due to surface priming, or liquid retention in surface roughness, give rise to com-
plex travel velocity–distance relationships. Surprisingly, rougher surfaces that tend
to retard motions of all liquid bridges, may promote coalescence of multiple bridges
and in effect accelerate the rate of mass transport across larger distances. Illustrative
examples of travel distances and mass for different fracture roughness characteristics
were presented. The potential for liquid absorption into the rock or film drainage
downstream on temporal changes in surface retention capacity (hence bridge travel
behavior) were explored in generic (parametric) form.

Comparisons of discrete versus continuum transport mechanisms in unsaturated
fractured media reveal large disparity between rapid travel velocities and larger dis-
tances by discrete liquid elements relative to their continuum film flow counterpart.
The consequences of such transport mechanisms with the potential for focusing of
diffuse liquid films to rapidly traveling discrete liquid bridges should be factored into
waste isolation designs and water resource risk assessment. Such flow focusing pro-
cesses may be amplified considering a population of liquid bridges within a fracture
plane and mass accumulation in fracture intersections. The results provide a useful
framework for addressing and perhaps quantifying complex and intermittent flow
regimes observed in field and laboratory experiments. Limitations related to inter-
nal fracture geometry and surface properties, interactions within fractures, and other
assumptions will be explored in future experimental and theoretical studies.
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Appendix 1: Equivalence of the scaling law of Podgorski et al. (2001) with energy
dissipation equations

In this appendix we derive the scaling law of Podgorski et al. (2001) from consid-
erations of general energy dissipation equations. Experiments of drops sliding on
smooth surfaces have shown that moving drops are parallel-sided (Bikerman 1950;
Furmidge 1962; Larkin 1967). We assume these observations also hold for liquid
bridges in fractures (Fig. 2a). For the remainder of this appendix, we assume that the
advancing and receding edges are approximated by semicircles of diameter D and
have a rectangular center of length Dβ, as shown in Fig. 2d. The total length of a
liquid bridge is then L = D(1 + β). Then, the volume of the moving liquid bridge in
a fracture with aperture b is

V = b D2
(π

4
+ β

)
(44)

The profiles of the advancing and receding menisci are described in polar coordi-
nates by (r, ϕ), where 0 ≤ ϕ ≤ π/2 for the receding edge and π/2 ≤ ϕ ≤ π for the
advancing edge (Fig. 2c). By symmetry, we only consider half of the liquid bridge and
use a factor of two to account for the other half.

A.1 Energy balance equation

Consider a liquid bridge sliding down a fracture at constant velocity U. The gravita-
tional potential energy decreases at a constant rate of

�G = UVρg sin α (45)

This decrease in energy is consumed by (1) dissipation due to motion of the solid–
liquid–vapor contact line, �L and (2) viscous dissipation due to velocity field of the
liquid bridge, �V (de Gennes 1985):

�G = �L +�V (46)

Other forms of energy dissipation, such as rolling motion of liquid at the peripher-
ies of the bridge (Huh and Scriven 1971) and flow of precursor and trailing films, are
assumed to play negligible roles.

A.2 Energy dissipation by moving contact line

The rate of energy dissipation due to wetting (dewetting) along an infinitesimal seg-
ment of the contact line dS is

dφL = qUn dS (47)

where Un = U cosϕ is the velocity component normal to the contact line (positive
in the direction of motion), and q is the work done in moving the contact line by
a unit displacement per unit segment of the contact line and is described by the
Young–Dupre equation

q = σLV(cos θ − cos θ0) (48)

We make a simplifying assumption that the contact angle for the advancing edge is
constant at the critical value of θA and for the receding edge at θR. The consequences
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of this simplifying assumption are discussed later. Because the sides of the moving
bridge are parallel to the direction of flow, they do not contribute to energy is loss or
gain during motion. The total rate of energy loss due to motion of the contact line
of a liquid bridge is determined from integration along the receding and advancing
contact lines,

�L = −4σLVU D
2

{
π/2∫
0
(cos θa − cos θ0) cosϕ dϕ +

π/2∫
0
(cos θr − cos θ0) cosϕ dϕ

}

= 2 σLV U
(
cos θ∗

r − cos θ∗
a
) . (49)

where the factor of four accounts for the two sides of the fracture walls and the sym-
metric half of the bridge and dϕ = DdS/2. Note that wetting consumes energy and
dewetting releases energy.

A.3 Viscous dissipation

The viscous dissipation arises from Poiseuille type flow of the liquid bridge. Then, the
flow velocity at a point and the average velocity parallel to the major gravitational
gradient are scaled as, respectively

u(z) ∼ (z2 − b2/4) (50)

U ∼ b2/6 (51)

The rate of viscous dissipation per an infinitesimal unit volume of laminar unidi-
rectional flow of the liquid bridge is given by Lamb (1945)

φV = η

(
∂u
∂z

)2

(52)

Assuming the velocity distribution given by (51) holds for the entire liquid bridge
(including the curved menisci at the edges), the total viscous dissipation is given
integrating equation (52) over the entire volume of the bridge,

�V = η

∫
V

(
∂u
∂z

)2

∼ ηV
(

3U
b

)2

(53)

where V is the total volume given by Eq. 44, and we used Eqs. 50 and 51 to derive the
following scaling

2
b

b/2∫
0

(
∂u
∂z

)2

= b
2

= 3 U
b

(54)

A.4 Sliding velocity

At steady state we equate the sum of the energy dissipation rate (Eqs. 49, 53) with
the rate of decrease in potential energy (Eq. 45) leading to

UDη
9
b2 ∼ − 4

π + 4β
σ

b
(cos θ∗

r − cos θ∗
a )+ ρgbD sin α (55)
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Recalling that the length of liquid bridge is L = D(1 + β), (55) can be further
simplified as,

Ca ∼ b
9L

[
Bo sin α − 4(1 + β)

π + 4β
θ

]
(56)

where Ca = ηU/σ , Bo = ρgbL/σ and θ = cos∗
r − cos∗

a. Equation 56 is equivalent to
the steady velocity expression given by Eq. (28) and is the scaling law of Podgorski et
al. (2001) given in (9).
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