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ABSTRACT 

A theo rem of Bourga in  s ta tes  tha t  the  ha rmonic  measure  for a domain  

in ](d is suppor t ed  o11 a set  of  Hausdorf f  d imens ion  str ict ly  less t h a n  

d [2]. We apply  Bourga in ' s  m e t h o d  to tile discrete case, i.e., to the  

d is t r ibut ion of the  first en t rance  point  of  a r a n d o m  walk into a subse t  of  

Z d, d _> 2. By refining the  a rgument ,  we prove tha t  for all fl > 0 there  

exists  p(d,~) < d and  N(d, fi), such  tha t  for any  n > N(d,/~), any  x E ~.d, 
and any  A C {1 . . . .  ,n} d 

I{Y E zd:  UA,~(Y) _ n-/~}J __ n p(d'z), 

where UA,z(y) denotes  the  probabi l i ty  tha t  y is the  first en t r ance  poin t  

of the  simple r a n d o m  walk s ta r t ing  at  x into A. Fur thermore ,  p mus t  

converge to d as /~  -+ c~. 

1. I n t r o d u c t i o n  

Let (S,~)neN be a simple random walk in Z d s tar t ing at x E Z d, i.e., So = x and 

1 
~ x ( s n + l  - s~ = ~) = ~ ,  LI~II = 1, n ~ N. 

(11 • II denotes the Euclidian distance, i.e., Ilxll = v/x 2 + . . .  + x2.) For A C Z 4, 

A ~ O, we denote by TA the time of the first entrance of S into A: 

7A = inf{n >_ 0: Sn E A}. 
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The  harmonic  measure  for A of a set B C Z d evaluated at  x E 7/,d is defined as 

w ( A , B , x )  = P~(TA < co, S~ A E B).  

Clearly, for x E A, w(A, B,  x) = llB(x). For fixed A C Z d and x E Z 4, w(A, . ,  x) 

is a measure  on Z d with to ta l  mass  w(A, Zd, x) = w ( A , A , x )  = P~(TA < OC) E 

(0,1]. We denote by ua,x(y) = w ( A , { y } , x )  its density. For x E A c = z d " . A ,  

w( A, B,  . ) is a harmonic  function, 

= 

II~ll=l 

We shall prove the following theorem: 

THEOREM: (A) For all/~ > 0 there exists p(d, fl) < d and N(d,  fl), such tha t  for 

any n > N(d,  fl), any x E Z d, and any A C Qd(n) = { 1 , . . . , n }  d, 

I{y E Z~: ~A,~(Y) > n-~} l  < n ~(d'~). 

(B) For all p < d there exist fl < cc and sequences nK -+ oc, X g E Z d, and 

AK C Qd(ng)  such that for all K 

Remarks: (1) If  x E A, the s t a tement  of Theorem (A) is trivial.  Therefore 

we only consider x E A c. The  proof  of Theorem (A) is to a large extent  an 

adap ta t ion  of Bourgain ' s  proof  [2] tha t  the harmonic  measure  for a domain  in •d 

is suppor ted  on a set of Hausdorff  dimension str ict ly less than  d to the discrete 

case, and the proof  of Theorem (B) is inspired by Jones and Makarov [5] who 

also t rea t  continuous harmonic  measure.  

(2) The  analogous theorem holds for harmonic  measure  condit ioned on the 

event tha t  A is reached, and also for harmonic  measure  f rom infinity: Let 

and 
PA,~(y)= lira F'A,x(y). 

(See, for example, [6], Chapter 2.1 for the existence of #A,~.) Then we have 
(A') For all ~ > 0 there exists p(d, fl) < d and N(d ,~) ,  such that for any 

n > N(d,  fl), any x E Z d, and any A C Qd(n) = { 1 , . . . , n }  d, 

I{y E zd: ~A,x(y) >_ n - Q ]  _< n ~(d,z), 
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and 

(A") For all fl > 0 there exists p(d,~) < d and N(d,  fl), such that for any 
n > N(d, fl) and any A C Qd(n) = { 1 , . . . , n }  ~, 

I{y • z~: ~A,~(Y) _> n-QI _< n p(~'~) 

For (At), note first that for d = 2, P~(TA < Co) = 1 for all x and A by recurrence 

and therefore ~A,x = L'A,x. For d _> 3, we have a lower bound on the hitting 

probability P~ (VA < oo) for x in a neighborhood of Qd(n), 

(1) •x(7 A < oc) > ]l~X(T{z} < OC) -- G(X -- Z) 
- c(o) 

C2 
>- c ~ l l x  - ~ii~-~ _> e(a,d),~ ~-~ 

for all z E A and x C Ud(an) = { - -an , . . . ,  (a + 1)n} d, where G is the Green's 

function which satisfies (9); see Section 2.3 below. For more distant x, F'A,x 

doesn't change a lot any more: For d >_ 2, there exist constants Cl(d) and C2(d) 
such that for all A C Qd(n), y C A, x • (Ud(an)) ~ with a > 2v~,  

(2) C~r,A,~(U) <_ ~A,oo(U) <_ C 2 n A , ~ ( U ) ;  

see [6], Chapter 2.1. From (1) and (2), (A') follows, and (A") follows from (A') 

with (2). Similarly we have the analogs of Theorem (B). 

(3) Our theorem improves a result of Benjamini [1]. In fact, it implies the 

following weaker statement (which is still stronger than [1]): There exists p(d) < 

d, such that for any e > 0 there is an N(c) such that for any n > N(c),  any 

x • Z d, and any A C Qd(n) = { 1 , . . . , n }  d, there is a set A C A with 

w(A, ft, x) > w(A, A, x) - e and IAI < cno. 

The analogous statements hold for harmonic measure conditioned on the event 

that A is reached, and also for harmonic measure from infinity. Note that it is 

in general impossible that A carries the fidl mass: Considering for example (for 

even n) A = {1, 3, 5 , . . . ,  n - 1} d, the only set having fiall mass (for x ¢ A) is A, 

and IA[ = ( n / 2 )  d. 

(4) The dependence of the exponent p on ~ for 2-dimensional simple random 

walk paths A (the "nmltifi'actal spectrum of the harmonic measure for A") has 

been studied by LaMer [8]. Also for d = 2, there is another result of Lawler [7] 

which gives more information on the support of harmonic mea~sure from infinity 

#A,oc for connected sets. 
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2. P r o o f  

2.1 PROOF OF THEOREM ( B ) .  T a k e  n g =  2 g. Delete from {1, 2 , . . . ,  nK} the 

central 52 g points, from the remaining two intervals of length (1 - 5)2 g - 1  the 

central 6(1 - 5)2 g - 1  points, and so on, k (< K) times. In the j - th  step, we have 

deleted 6(1 - 5)J-12 g-j+l points and obtained intervals of length (1 - 5)J2 g - j .  
Let now AK be the product of d copies of the resulting set. It consists of 2 kd 
squares of side length (1 - 5)k2 K-k. The total number of boundary points is 

[OAK] = 2 kd.  2d. [(1 - 5 ) k 2 K - k ]  d-1 

To estimate the harmonic measure of the points of OAK we use the discrete 

Harnack inequality; see for example [6], Thin. 1.7.2: There exists a c < oo such 

that  if f :  Z d -+ [0, oc) is harmonic on B,~, 

(3) f (x l )  < of(x2), IIx, ll, Ilx2[t < n/2,  

with B,~ = {z • z d :  HZ[[ < n}. 

Consider an arbitrary point y • OAK, and let xg be (for example) the cen- 
tral point of Qd(nK), i.e., X g = (2K-1 , . . . , 2K-1 ) .  Qd(ng) \ AK consists of 

cylinders, called j-cylinders, of width 6(1 - 5)J-12 K-j+1, j = 1 , . . . ,  k, in one 

component, and of width ng in the other components, y lies on the boundary 

of a j0-cylinder for some J0 _< k. Let z0 be the point closest to y lying in the 

center of the j0-cylinder. Let zl be the point closest to Zo lying in the center of a 

(jo-1)-cylinder.  The distance from z0 to zl is _< (1-5)Jo-22 K - j ° + 1 .  Continue in- 

ductively to define points zi lying closest to zi-1 in the center of a (J0-/)-cylinder 
up to i = j0 - 1. [zi - Zi-l[ _< (l - 5 ) J ° - i - 1 2 K - j ° + i  and IXK - Z jo_l l  ~ 2 K-1. 

Applying (3) gives 

PAK,xK(Y) Z C--1/~PAK,Z~o_1 (Y) ~ C--1/~ C--2/(5(1--~))PAK,z3o_~(Y) 

>>_... > c -1 .  [c  o(y ) > 

We may estimate VAK,zo(Y) simply by PA~:,zo(Y) >-- cllzo -- YII 1-d >-- c2 -g(d-1)  

(see [6], Lemma 1.7.4). Therefore 

"AK,xK (Y) ~ ¢-4k/~C2-g(d-1)" 

Now we want ]OAK[ > 2 Kp and "A~,~K(Y) > 2-K~. This is achieved for large 

enough K by putting 5 such that  p = d -t- 3(d - 1) log(1 - 6) / log2,  Z such that  

fl - d +  1 = 41ogc/(Slog 2), and k = "yK with 

"y = log [2(1 - 5) a(d-1)] / log [2(1 - 5)d-1] , 
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2.2 DISCRETE HAUSDORFF MEASURE. For bounded sets A C Z d, consider 

coverings of A by a countable number of balls Ba in Z d with center za and 

radius r~, A C U~ B~ with 

= { .  zd:  [Ix - z hl _< r . } .  

For 0 < p _< d we define 

hp(A) inf { ~ ,B~,O/d; B~ ball, A c } = U Ba • 

Furthermore, consider a net of / -adic  cubes: C0 = Z d, C1 = {cubes C c Z d with 

side length [CI I/d = l and lower corner c = (kll, k2l, . . . ,  kdl) with ki E g}, 

C j = { C c Z d : C = { z ¢ Z d : k i l  j <_ zi < (ki + l)l j ,ki  6 Z , i =  l . . .d}} ,  

and C = [Jje• Cj. Analogously to hp we define 

mp(A) = inf { ~'Cc~[P/d;C(~ e C, A c U C a } .  

Clearly, there exist two positive constants tl(d) and t2(d, l, p) such that  for all 
A C Z  d 

(4) hp(A) <_ tl(d)mp(A) 

and 

(5) me(A) < t2(d, I, p)hp(A). 

By considering, for example, a ball of radius x/~, one sees that  the dependence of 

t2 on 1 cannot be removed. A possible choice is 

(6) t2 = 8dl d-p. 

Analogously to Theorem 1 in Carleson [3], p. 7 (see also [9], Chapter  III.4) we 

have the following Lemma: 

LEMMA 1: There are constants t3 and t4, depending only on d, such that for 

every bounded set A c Z d there is a discrete measure p supported on A with 

(7) #(B) <_ t3[B[ p/d for all balls B C Z d 

and 

(8) #(A) >_ t4 hp(A). 
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Proof: Start the construction of # by putting #o({X}) = 1 for all x E A and 

#o({x}) = 0 for x c A c. Choose your favorite l and consider the cubes of C1. If, 

for some C E C1, #o(C) > ICI p/d, reduce the density on the points of C uniformly 

such that i t l(C) = ]C] p/d. Continue in this way. After finitely many steps no 

further reduction will occur, since #k(C) <_ IAI for all C and k and IA[ < l Kp for 

K large enough. Put  # = #K. 

p satisfies 

it(C) ~ ICI p/d for all C c C 

and therefore we have (7). 

From the construction of #, each point a E A is contained in a cube Ca with 

i t ( c . )  = Ic,~l p/d. If there are several such cubes, choose the largest one. With 

this (disjoint) covering {Ca} we obtain 

1 hp(A) i t (A)--  ~ it(C~) - ~-~. lC,~l p/d >_ rap(A) _> 

with (4). This proves (8). | 

# puts more mass on boundary points than on interior points. Thus it is useflfl 

for estimating the harmonic measure, which is concentrated on the boundary. 

2.3 ESTIMATE OF THE TRAPPING PROBABILITY. Another useful quantity to 

estimate the harmonic measure in d > 3 is the Green's function G, G(x) being 

the expected number of visits to x of the random walk starting at 0, 

v ( z )  = g o  n ~ x ~ ( s j )  = ~ ( s j  = x ) .  

- j=0 - j=0 

G is harmonic in Z d \{0} ,  AG(x) = -5 (x) ,  and G has the following asymptotic 

behavior: 
lira G(x) 

I I ~ l l ~  a~ll~ll ~ - ~  - 1, 

where ad = 2/((d - 2)Wd), and Wd is the volume of the unit ball in R d (see for 

example [6], p. 31). This implies that there are constants Cl and c2 (0 < c2 < Cl) 

depending only on dimension such that we have the following upper and lower 

bounds, 

(9) G(x)<_Cll]Xl[ 2-d and G(x)>c2llxll  z-d f o r x e Z d \ { 0 } .  

In d = 2, G is infinite, but there exists a quantity with similar properties, 

namely the potential kernel 

: 0 ) -  x ) )  
j=0 
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Aa(x)  = 5(x), and a has the following asympto t i c  behavior:  

lira ( a ( x ) - 2 1 o g l l x l l -  - k )  = 0, 
I l x l l - ~  ~r 

where k is some constant  (see for example  [6], p. 38). Therefore  there exists 

a constant  c such tha t  we have the following upper  and lower bounds  for x C 
Z e \ { 0 }  , 

(10) a(x) _< _2 log Ilxll + k + c and a(x) > _2 log Ilx}l + k - c'. 
9- 9 

Consider now a cube Q c Z d, and let Q .  c Z d be a cube of size IQ.I l/d <_ 
qlQI */a, where q is a constant  (0 < q < 1) to be determilmd below. Q .  is placed 

such tha t  its center is as close as possible to the center of  Q: If  {Q. [1/d and [Qi1/d 
are bo th  even or bo th  odd, Q and Q .  have the same center, and in the other  

cases, the distance of the centers is v ~ / 2 .  The  next l e m m a  gives an es t imate  of 

the probabi l i ty  tha t  a r andom walk s ta r t ing  in Q .  reaches a set A C Z d before 

leaving Q, ]?a(r A < rQc) = w(A UQC, A N Q ,  a): 

LEMMA 2: Let p > d - 1. Then for q small enough (depending only on d) there 
exists ~(d, q) > 0 such that for all a E Q. ,  

(11) c o ( A u Q ~ , A N Q ,  a) > 5 hp(ANQ*) 
- iQ,iP/d 

Proof: If  A N Q.  = 0, (11) holds trivially. 

Let now A n Q .  ~ 0 and let It be the measure  on A N Q.  from L e m m a  1. We 

t rea t  first the case d > 3. Consider the function u: Z d -+ R + , 

= Z c ( .  - y) 
yEANQ. 

u is harmonic  in (A f3 Q.)~. For x • Q .  and y • Q.,  ]Ix - y]] < IQ.il/dv~, and 

therefore with (9) 

(12) u(x) >_ c2d(2-d)/21Q.](2-d)/d#(A n Q.) for x • Q , .  

F o r x c Q C a n d y c Q . ,  

I1* - yll > IQl /d - IQ*I'/" 
- 2 

and therefore with (9) 

(13) 

> l qlQ, I1/d 

"1 q . 2 - d  
U(X)<~Cl ( ~ t )  'Q. ' (2-d) /d#(ANQ.)  f o r x C  QC. 
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Furthermore, for all x • Z d, 

(14) ~(~) _< c3 IQ, I (~÷"-d)/d, 

where c3 depends only on d. This is seen as follows: First of all, with (9), 

sup ~(~) = sup ~(~), 
xEZ d xEB(Q.) 

where B(Q,)  is a ball with the same center as Q,  and radius a/2x/dlQ,I lid with 

suitably chosen a (a = 1 + 2(cl/c2)1/(d-2)). Now, for x • B(Q,) ,  

u(x)= ~ Z a ( ~ - y ) . ( ( y I ) ,  
k=l ye~k(~) 

where [~k(X) = {y • zd: k - 1 _< I]x - Yl] < k}. Thus 

~(x) <__ a(0)u(B~(~)) + 
av'-dlQ, ll/'~ 

cl(k - 1)2-dtt(Bk(x)). 
k=2 

With  Bk(x) = {y e zd: ]Ix -- Yl] < k} we obtain 

av"~lQ.ll/~ 

(k - l )2-d#(Bk(x))  -- (av/d]O, ll/d)2-d#(Ba..f~lO.ll/,(xl) - #(Ul(x))  
k=2 

av/'diO.ll/a 

+ Z ((k - 1) ~-~ - k ~-~) , (B~(x)) .  
k----2 

From (7) we have #(Bk(X)) <_ t3k p for a suitable t3 depending only on d. Then 

av~]Q.I lid 

E ( ( k -  1) 2-d 
k=2 

av'-dlQ. I1 / d 

- k 2-~) ,(Bk(X)) < t~ ~ k 1-~+" 
k=2 

eavfdlQ.]l/d+l 

<_ t'3 /n xl-e+Pdx 

- 2-d+tt3 p (av'-d]Q*]l/d + 1)2-d+P 

< t'3(av~LO,I lid + 1)2-~+. 

for p _> d - 1 ,  where t~ depends only on d. Put t ing  everything together, we obtain 

(14). 
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Consider now 

~(x) -- 1 ( _ sup u(y)}. \ 
supyez~ u(y) ,u(x) 

y E Q  ~ 
] 

~(x) <_ 1 for all x E Z d, and ~(x) < 0 for x E QC. Compare ~(x) with 

w(A U QC, A A Q, x): Application of the maximum principle (see for example [6], 

p. 25) t o g - w o n A  ~ O Q y i e l d s ~ _ < w t h e r e , a n d o n A A Q w e h a v e w = l > ~ .  

Therefore 

w(AuQC, A A Q ,  x) > ~t(x) for all x E Q. 

Together with (12), (13), (14), and (8), we obtain for a E Q.  

c3lQ,](2+o_d)/d 2d (2-d)/2 - ci ]Q,I (2-d)/d 

> ho(A n q , )  

- iQ, ip/d 

if we choose q so small that  c2d (2-d)/2 - c l  ((1 - q)/2q) 2-d is positive. This proves 

Lemma 2 in the case d _> 3. 

For d -- 2, the analogous construction using instead of the Green's function G 

the potential kernel a with the estimates (10) does the job. | 

Choose now q so that  Lemma 2 holds. 

2.4 AN ALTERNATIVE FOR THE CUBES OF C. The estimate of the trapping 

probability (11) leads to an alternative for the cubes C of C: Either we have 

a local estimate of the Hausdorff measure of A N C or the harmonic measure is 

localized on the outer shells of C. Cubes of the first kind will be called (H)-cubes, 

those of the second kind (L)-eubes. 

Consider now some A C Qd(n) and some x E Z d. We abbreviate w(B) = 
w(A, B, x). For C E Cj, x E (A U C) ~, define (see Fig. 1) 

Ci = C \ outer subcubes Q E Cj_l, Q c C, 

C2 = C1 \ outer Q's in C1, 

. . .  Cf -- C[_ i \ outer Q's  in Cf_i,  

with [ = l/6. For x E C \ A, define the Ck by successively removing layers of 

Q-cubes aromid the cube Q with x E (2, and, if the boundary of C is reached, 

remove also successively layers of outer cubes like above. 
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LEMMA 3: Let 5 > 0 be small enough. Then for all l there exists p < d such 

that each cube C E Cj, j > 2, satisfies one of  the following conditions: 

(H) mo(A N C) < ICI p/d, 

(1 - C4(~) r - 1  
(L) w(Cr) <_ C4(~ 5g(C), 

where c4 is some constant depending only on d, 0 < c4 < 1. 

Proo~ Let Q 6 Cj-1 be a subcube of C, and let Q. be the cube of size IQ.I 1/d = 

[qlQI 1/d] in the middle of Q. From Lemma 2, one of the following alternatives 

holds: 

(15) w ( A U Q C ,  A n Q ,  a)>_5 for all a 6 Q.,  

iQ.l,/d. (16) ho(A n Q.) < 

We shall show that  if (15) holds for all subcubes Q c C, i.e., if we have a lower 

bound for the trapping probability, then (L) holds for C, because the harmonic 

measure will be concentrated on the outer shells. On the other hand, if there is 

one subcube Q with (16), we can estimate mp of A A C. 

FIRST CASE: There is a subcube Q c C, Q E Cj-1, satisfying (16). Then with 

(5), 
m p ( A  V) Q . )  < tz(d, l, p) 5 [Q,ip/d, 

5 
and 

mAA n C) <_ . p(C \ Q) + m A Q  \ Q.) + mAA n Q.) 

<_ (l d - 1)/(J-I),  + ld(1 - q/2)dl(J-2) ,  + t25qPl(J-1)P. 
c 

Now (H) follows if 

(17) I d - 1 + ld-P(1 -- q/2) d + t2(d, :l' p) 5qp < ip" 
c 

Plug in (6) and choose 5 so small that (17) for p = d is satisfied, i.e., such that  

(1 - q/2) d + 8d~qd/~ < 1. Then for all l there exists p < d such that (17) still 

holds. Note that for large l and small d - p, (17) leads to 

b 
(18) d - p ~ ldlog l 

with b -- 1 - [(1 - q/2) d + 8dSqd/@ We shall later choose l very large and 

increasing with ft. Thus our d - p goes to 0 as fl --+ c~. 
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SECOND CASE: All subcubes Q c C, Q • Cj-1, satisfy (15). Since the prob- 
ability of running into A before leaving Q is everywhere high, it is hard for the 

random walk to enter nmch into the cube before having run into A, i.e., the 

harmonic measure of the cubes deep inside C will be very small. From the strong 
Markov property (see for example [6], Theorem 1.3.2) we obtain 

w(AUCk,Ck ,x )  = ]P~(TAuC~ < oO, S~-A~ck • Ck) 

yEOCk-1 

• ~b-AuC,. , < ~ ,  S~oc~ , =  y) 

_< sup w(AUCk,Ck,y)  w(AUCk- l ,Ck_l ,x ) .  
yEOCk 1 

(Here, OA = {x • A: By E A c with II x - yll = 1}.) Iterating this estimate, we get 

[ 

(19) w ( Q ) _ < w ( A u Q ,  Q , x )  <_w(Auc1 ,C l ,X)  I I  sup w(AUCk, Ck, y). 
k=2 yEOC~.- 1 

On the other hand, using TAuC~ <_ TA and the strong Markov property, 

o2(C) ~ E ~:~W(TA < (ix), STA • d n C, S~-A~<. ~ = y) 
yEOC1 

= ~ eY(TA < oo, S~. A • A n C ) e ~ ( T A u c ,  <oo,  S~-A~c, =Y)  
yEOC1 

(20) _ inf w(A, A N C, y) w(A U C1, C1, x). 
yEOC~ 

We shall show below that there exists a constant c4 (d, q) such that 

(21) w(A, A n C ,  y) >_ c4~ for all y • 0C1, 

and for k = 2 , . . . , [  

(22) w(AUCk,Ck,  y) <_ 1 --C4• foral lyEOCk_l .  

These estimates, together with (19) and (20), yield (L). 

It remains to prove (21) and (22): Let y • 0C1. Consider the cube Q formed 

from 2 d subcubes Q E Cj-1 of C "around" y, i.e., the side length of (~ is 21 j - l ,  

and the distance of y from the center of (~ is _< lJ-1/2 + 1 (see Fig. 1). We have 

C C, (~ r~ C2 = 0. Enumerate the Q-cubes in Q: 

2 d 

k-----1 
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and let 
2 d 

(~* = U O!k). 
k=l  

Then, using again the strong Markov property, 

w(A, A A C, y) = 

>_ 

where we have used 

PY(T m < CK),STA E AnC) 
PY (TO, < ~@ ___ c~, 3t E [TO, T@) with St E A) 

= <  oo) PY( O.uO  < = a) 
aEQ. 
2 4 

Z ~ ~a(Ta < TQ(k)c) ~Y(TO,.UOC < (:K),S-r~.u0 c : a )  

k=l ~eO(2) 

>_ u 

that all subcubes Q c C, Q E Cj-1, satisfy (15). 

t 

m 

I .- 

I 

Figure 1. For d = 2 and I = 8, this is a sketch of a cube C E Cj (for 

some j )  together with its subcubes of dj-1.  By removing the outer 

layer of subcubes, one obtains C1. For y E 0C1, ~) is the union of 

the 4 nearest subcubes. 

To see that there exists c4, independent o f / a n d  j ,  with w(Q, u Q  c, Q,,  y) >_ c4, 

remember that as a function of y, w(Q,uQ c, Q,,  y) is (lattice) harmonic on (~,AQ 

with boundary values w = 1 on (~, and w = 0 on (~c. Hence, the scaled function 

am(x)  = w(O,, U Q, ~, 0,,,  m x  + z) with m = 21 j -1  + 1, 21 j -1  the side length of Q, 

and suitable shift z, converges as m ~ oc to the unique solution of A f  = 0 on 

B, f ( x )  = 0 on the outer boundary of B and f ( x )  = 1 on the inner boundaries 

of B, where B is the "limit" of the scaled domains m- l ( (~ ,  A ( ~ -  z) as m ~ c~; 

see Fig. 2. Since the convergence is uniform oi1 compact subsets of B [4], we have 

a lower bound c4 for w((~, U (~c (~,, y) for all l, j ,  and all y = m x  + z with x in 



Vol. 124, 2 0 0 1  ESTIMATES OF DISCRETE HARMONIC MEASURES 137 

a region S around the middle halves of the middle axes of B (see Fig. 2). This 

proves (21). 
, S B 

1 

- -0  

I0 d/2 1 

Figure 2. For d = 2, this is a sketch of the domain B (hatched) 

= (0, 1) 2 \ the 4 little squares of side length q/2. B corresponds to 

\ (~., i.e., ( rob  + z) N Z d, for suitable scale m and shift z, equals 

\ (~.. The dashed middle axis lines correspond to the boundaries 

of the subcubes making up Q. The region S is a neighborhood of 

the points x = m -1 ( y - z )  for those y's which are possible for Q, i.e., 

points on the middle half of a middle axis. The harmonic function f 

on B with boundary values f = 0 on the outer boundary of B and 

f = 1 on the boundaries of the inner squares is bounded away from 

0 o n S .  

The proof of (22) is analogous: for y E OCk-x, put Q to be the cube consisting 

of 2 d subcubes of C "around" y. Then Q A Ck -- 0 and (~ c C. Thus 

w ( A U C k , C k ,  y) = PY(TAuC k < OO, STAuCk E Ck) 

~- PY(TAuCk < 00) -- PY(TAuCk < O0 SrAuc k E A \ Ck) 

<_ 1 - F Y ( v Q .  < 70/ < o~,3t  E [TQ ,TQc) with St E A) 

~ 1 -c46,  

with the same argument as above. | 

2.5 PROOF OF THEOREM (A). Let now fl > 0 and n > N(f l )  (to be chosen 

below). Let A C Qd(n),  x E Z d, and let k* E N be such that I k" >_ n > l k ' - l .  

To the lower bound N(f l )  there will correspond a K* such that N(fl) = l K• . We 

construct Bom'gain's tree T: starting with Co = {1 , . . . ,  I k" }d E £k', we associate 

to each (L)-cube C E Cj its l d subcubes in Cj_~, and to each (H)-cube we associate 

a family {Ca} with Ca C C, A n C C U ,  ca ,  and ~ a  IC~I p/d < ICI p/d (which 
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exists according to Lemma 3). The elements of the tree are labeled by complexes 

7 = (~1,-.- ,  7k): Co has the label ~/= (~/1) = (0), its descendants have the label 

= (71, 72) = (0, ~2)~ and so on. 

We stop the decomposition when the cube is in C1 or Co (because then Lemma 

3 doesn't apply any more). Thus each branch is at most k* long. Denote by 

ylk the restriction of ~, to the first k digits. If k is the length of ~, we call 

C~I~ , C~12,..., C~I~_ ~ the "ancestors" of C~. Let 7-* denote the set of the labels 

of the final cubes. We have 

(23) A c U q .  
vET* 

Given a maximal element ~/E T* of length ]q we denote by Tk the length of the 

label of the k-th (L)-cube appearing in the sequence C~11, C~12, . . .  of ancestors of 

C~, i.e., C~I~ k is the k-th (L)-cube, and 71 < T2 < . . .  < k. (Tk  : O0 and ~lrk = 7 

if there are less than k (L)-cubes in the sequence C~11, C~12,... of ancestors of 

(a) I n n e r  cubes .  The subcubes C~l~k+ 1 of an (L)-cube C~I~ k are distinguished 

according to whether they lie in (C~l~k)/or not. If x E (A U C) ~, the number of 

subcubes which lie in (C~l~k)~ is ( l - 2 [ )  4 = (2/3)414, and if x E C \ A, the number 

of subcubes which lie in (C~I~ k )[ is simply estimated as >_ (I - 2[) 4 -  (2•+ 1) 4 > pl d 

with p = (2/3) 4 - (1/2) 4. To have a fixed proportion of "inner" subcubes (this 

simplifies the argument in part (c) below), we shall choose for any (L)-cube pl 4 

subcubes from those subcubes C~l~k+l C (C~l~k) i to call them "inner" subcubes. 

Let kl = k* /3  and k2 = (p /2 ) k l .  Let 

T< = { v E T * :  = 

at least k2 of C~ln+l, C~1r2+1,..., C~l~kl+l are inner}, 

and To = T* \ (T<  u Ti). If C~l~k+ 1 is inner, we have from Lemma 3 

~d(C~lTk+l ) ~ W ((C~]rk)[) ~ (1 -- C4(~) [ -1  
c45 

and if not, then in any case 
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Then for y • U,~e~ C.~ we have (with 3' such that y c C.y) 

UA,x(y) < w(C.~) < w(CTIrk~ +l) < ( ( 1 -  c45)[-1) _ _ c45 

[ 1 \ k 2  
< (1 --  C4(~ ) - 

- c45 ] " 

Now choose 1 such that 

i.e., 

E S T I M A T E S  O F  D I S C R E T E  H A R M O N I C  M E A S U R E S  

Then 

(1 - c45) i-1 ~ k~ 
c ~  ] < l -k '~ '  

P ( ~ - l )  log 1 Plog 1 
1 - c45 6 ~ > fl log I. 

U C7 C {y  • zd:  UA,x(y) < n-Z}. 
7ET~ 

With (23) we obtain 

{ y  • z d :  .A,x(y) >_ n -f~} c 

139 

U c~. 
"TO'T< UTo 

we shah show that E - ~  IC-,I _< n-~/2 and E - , ~  IC~l <_ n-~/2 with ,,; = 
(p + d)/2, where p < d comes from Lemma 3. This then proves Theorem (A). 

(b) E s t i m a t e  of  ~TET< IC71 • If C~ is of type (n), then 

IC(-,,-,~)l ~/~ < IC.,I ~/~, 
"Tk = 1,...;( 'T,3'k)ET 

and if C~ • Cj is of type (L), then we have 

IC(-,,-,~)l ~/d = ld#-~) ,  = WolC~lP/~. 
"T~=l,..,ld 
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Thus  

and therefore 

ICol o/~ ~ ~ IC~l.,(~)l °/d 
71rl(7);Ter< 

> l-(d-p) ~_, IC.yI.,(.y)+ll p/d 
71r~(7)+1;TcT< 

> 1-(~-~) ~ IC-~l~-~(-~)l °Id 

> I-~(d-~) ~_, IC~,.2(~)+~l °/d 
"YIr2 (7)+l;'yeT< 

"'" >- l-(kt-1)(d-P) E IC',l old 
7ET< 

veT< 7ET< 

For our choice of kl and t~ we have indeed 

1 ~ 1 l(k*-l)~ < _ n # lk~(d-P)Ik*P ~ 2 -- 2 

for k* larger than  some K*.  

(c) E s t i m a t e  o f  ~,yeTo ICTI • R e m e m b e r  tha t  To = {~' C T*: Tkl (~') < ce, less 

t han  k2 of C71~1+1, C71r2+1,. . . ,  CTl~k~+ 1 are inner}. I t  is easy to see tha t  

E 
"~ET*: Vkl <:oo, 

k of C.~I~.I+I,CTIr2+L, 
. . . ,C.~lrk 1 ~_lare i n n e r  

ICTl <_ b(k;kl,p)lCol = ( k ~ ) p k ( 1 -  p)kl-klCol, 

kl  b(k; kl, p) being the binomial  distr ibution,  i.e., the dis t r ibut ion of ~-]4= 1 Xi,  where 

the Xi  are independent  {0, 1}-valued r andom variables with P(Xi  = 1) = p 

for all i. For 0 < a < p, we have f rom appl icat ion of Markov ' s  inequali ty to 
kl  exp(~ ~-:~i= 1 Xi)  

P Xi <_ akl _< e -k~I~(~) 

wi th  
Y/ 1 a .  I~(a) = a l o g =  + (1 - a ) l o g  
p 1 - p  
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(This is an e lementary  case of Cram~r ' s  theorem.)  Wi th  a = k2/k l  = p/2, Ip(a) 

depends only on d. Then  

k2-1 
ICvI <_ ~ b(j;kl ,p)lCol <_ e-k , I I  k'd, 

~eTo j=0 

and with our choice of the constants ,  noting also (18), 

1 l(k._l)  ~ < ~ n ~  ' e-klllk*d ~-- 2 

for k* larger than  some K*.  | 
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