
Math. Program., Ser. A (2008) 113:61–94
DOI 10.1007/s10107-006-0048-6

F U L L L E N G T H PA P E R

Aggregation and discretization in multistage stochastic
programming

Daniel Kuhn

Received: 5 January 2006 / Accepted: 12 September 2006 / Published online: 24 October 2006
© Springer-Verlag 2006

Abstract Multistage stochastic programs have applications in many areas and
support policy makers in finding rational decisions that hedge against unfore-
seen negative events. In order to ensure computational tractability, continuous-
state stochastic programs are usually discretized; and frequently, the curse of
dimensionality dictates that decision stages must be aggregated. In this article
we construct two discrete, stage-aggregated stochastic programs which provide
upper and lower bounds on the optimal value of the original problem. The
approximate problems involve finitely many decisions and constraints, thus
principally allowing for numerical solution.

Keywords Stochastic programming · Approximation · Bounds · Aggregation ·
Discretization

Mathematics Subject Classification (2000) 90C15 · 90C25 · 49M29

1 Introduction

Many technical or economic decision problems depend on uncertain parame-
ters, whose values are known only up to a probability distribution. Typically,
these values are revealed sequentially in time, and (recourse) decisions are
taken at each instant when new data is observed. As a future decision may
depend on the realization of some random parameter, which is unknown from
today’s perspective, it is itself a random object.

D. Kuhn
Institute for Operations Research and Computational Finance (ior/cf-HSG),
University of St. Gallen, Bodanstrasse 6, 9000 St. Gallen, Switzerland
e-mail: daniel.kuhn@unisg.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159146859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 D. Kuhn

By convention, a sequence of consecutive decisions is referred to as a
strategy.1 In financial applications, one usually attempts to find a strategy which
satisfies certain physical or regulatory constraints and minimizes expected cost
(or maximizes expected profit). Sometimes, the objective is adjusted to account
for risk, in which case one would try to minimize some risk measure or maxi-
mize expected ‘utility’. Without loss of generality, we will focus on minimization
problems in this article. Moreover, we will assume that the objective criterion
is to minimize expected cost.

Any decision problem with the above-mentioned properties is conveniently
formulated as a multistage stochastic program (MSP) (4,28,36). Unless the
underlying random parameters are discretely distributed, stochastic programs
represent abstract optimization problems over infinite-dimensional function
spaces, which are extremely difficult to solve. Analytical solutions are not avail-
able except for very simple models of minor practical relevance. Numerical
solutions, on the other hand, require suitable approximations.

Stochastic programming literature reports on a wide variety of approxi-
mation schemes, most of which are based on discretization of the underlying
probability space. However, even discrete stochastic programs tend to be com-
putationally demanding. An analysis of the computational complexity of Monte
Carlo discretized MSPs is provided in (40,41). In general, problem size grows
polynomially with the number of discretization points per random parameter
and exponentially with the number of random parameters per stage. Moreover,
it grows exponentially with the number of stages. Even if there is only one uncer-
tain parameter per stage, and even if each of these parameters is approximated
by a Bernoulli random variable, a discrete stochastic program may not have
more than 15 stages in order to allow for (exact) numerical solution. Unfortu-
nately, many real-life decision problems involve hourly, daily, or weekly deci-
sions over a planning horizon of several years.2 In these cases, decision stages
must be aggregated in an appropriate way. Operations research practitioners
usually employ simple heuristics, although the corresponding approximation
errors are (sometimes even qualitatively) unknown. Theorists, on the other
hand, have paid little attention to stage-aggregation so far. Instead, a substantial
portion of research focusses on discretization and scenario generation, there-
with simplifying the spatial structure (probability space) of a given MSP while
preserving its temporal structure (time periods). The present article is aimed at
alleviating this deficiency. It elaborates an approximation scheme which inte-
grates stage-aggregation and discretization to ensure computational tractability,
while providing deterministic error bounds.

Let us briefly summarize some approximation schemes which have received
considerable attention in stochastic programming literature. We distinguish
scenario generation techniques and methods based on aggregation.

1 In the remainder of this article, strategies will also be referred to as decision processes, policies,
or decision rules.
2 Prototypical examples include the management of an investment portfolio or the operation of a
hydrothermal power system.

Aggregation and discretization in multistage stochastic programming 63

A survey and evaluation of popular scenario generation techniques is
provided in (29). Sampling-based methods (4, Sect. 10) exhibit useful con-
vergence properties and provide a probabilistic estimate of the approximation
error. However, the number of samples required to achieve a satisfactory level
of precision is usually high. Moment matching methods (see e.g. (25)) are re-
ported to perform well in practice, although they can fail to replicate the original
distribution as the number of scenarios goes to infinity. Of particular interest
for our purposes are the so-called bounding methods (4, Sect. 9), which provide
deterministic bounds on the true objective value. Typically, the approximation
error (i.e., the difference of upper and lower bounds) can be made small by us-
ing partitioning techniques. Some bounding methods are applicable only if the
recourse functions (cost-to-go functions) of the underlying stochastic program
are convex (5,17,21,27,32,43). Other variants, such as Frauendorfer’s barycen-
tric approximation scheme, apply if the recourse functions represent convex-
concave saddle functions (12,13,18–20). A generalization to specific problems
with nonconvex recourse functions is discussed in (31). Closely related to the
approach presented here is the sequential scenario generation algorithm by
Casey and Sen (6), which provides a converging sequence of lower bounds on
the objective value. This algorithm approximates the primal (dual) decisions
by piecewise affine (constant) functions of the random parameters and relies
on convexity of the recourse functions. The concept of probability metrics is
at the heart of several modern scenario generation methods of increasing pop-
ularity. Optimal discretization (35), for instance, synthesizes a tree-structured
approximation to a given stochastic process which minimizes the Wasserstein
distance (transportation metric). Scenario reduction (11,23,37), on the other
hand, starts from a discrete process involving ‘all’ (or a vast number of) possi-
ble scenarios. Then, the algorithm determines a scenario subset of prescribed
cardinality and a new process based on this set that is closest to the original
process with respect to some probability metric. Last but not least, we should
mention the versatile class of internal sampling methods. Instead of using an a
priori discretization, these methods for solving stochastic programs generate,
delete, or modify scenarios within the solution procedure (8,10,14,24,26).

Aggregation methods are capable of approximating a stochastic program
with many (possibly an infinite number of) stages by simpler problems with
only few periods. However, as opposed to scenario generation, aggregation has
rarely been addressed in stochastic programming literature. First results are due
to Birge (2,3), who constructs bounds for linear MSPs with random right hand
sides in terms of the solutions of aggregated deterministic two-stage problems.
Wright (44) suggests a generalized aggregation scheme in an elegant measure-
theoretic setting that applies to arbitrary linear MSPs. He obtains upper and
lower bounds on the optimal objective value by aggregating decisions or con-
straints, respectively. However, only fully aggregated problems (with decisions
and constraints subject to aggregation) are valid candidates for direct numer-
ical solution; such problems are shown to provide bounds if the randomness
appears exclusively either on the right hand side or in the objective. We will use
some of the methodology of (44) in later sections. Other aggregation schemes

64 D. Kuhn

have been developed to deal with infinite horizon problems (15,16,30). These
methods critically rely on the assumption that prospective costs are discounted
and thus – beyond some future date – have a negligible effect on the objective.

The main contribution of the present article is to elaborate an integrated
stage-aggregation and space-discretization scheme that applies to convex MSPs
with randomness in the objective and the constraints. We will construct two dis-
crete stochastic programs with a reduced number of stages that provide upper
and lower bounds on the optimal value of the original problem. Unlike the
partially aggregated MSPs in (44), these approximate problems involve a finite
number of decisions and constraints, thus allowing for direct numerical solu-
tion. Note that the discretization part is very closely related to the barycentric
approximation scheme (19,20). However, our derivation offers new insights as
it invokes no dynamic programming recursions and highlights the importance of
specific conditional independence relationships between the involved random
parameters. By using widely parallel arguments in developing space-discretiza-
tion and stage-aggregation methods, we work towards unification of different
approximation schemes.

Adopting a Lagrangian perspective, Sect. 2 formally introduces the class of
stochastic programs under consideration. Given two discrete stochastic pro-
cesses which relate appropriately to the original problem data, a simple bound-
ing approximation scheme is proposed in Sect. 3. A posteriori, Sect. 4 argues
that the postulated discrete processes can indeed be constructed under mild reg-
ularity conditions. Imposing a Markovian framework, Sect. 5 develops bounds
based on stage-aggregation, and Sect. 6 evaluates their compatibility with the
discretization scheme of Sect. 3. Finally, Sect. 7 concludes, while Appendix A
reviews some basic properties of the conditional independence relation.

2 Problem formulation

Consider a constrained cost minimization problem under uncertainty, and
assume that decisions may be selected at different time points t = 1, . . . , T.
First, we set up a probabilistic model for the underlying uncertainty. All ran-
dom objects are defined on a complete probability space (�, �, P). Adopting
the standard terminology of probability theory, we will refer to � as the sample
space. Furthermore, we use the following definition of a stochastic process.

Definition 1 (Stochastic Process) We say that ζ is a stochastic process with state
space Z if ζ = (ζ 1, . . . , ζT) and Z = ×T

t=1Zt such that each random vector ζ t
maps (�, �) to the Borel space (Zt, B(Zt)) and each Zt is a convex closed sub-
set of some finite-dimensional Euclidean space. Moreover, we define combined
random vectors ζ t := (ζ 1, . . . , ζ t) valued in Zt := ×t

τ=1Zτ for all t = 1, . . . , T.3

3 Sometimes, notation is simplified by further introducing a dummy random variable ζ 0 taking the
constant value 0.

Aggregation and discretization in multistage stochastic programming 65

All stochastic processes introduced below are assumed to be of this kind. As a
notational convention, random objects will always be represented in boldface,
while their realizations will be denoted by the same symbols in normal face.

Let η and ξ be two stochastic processes with state spaces � and �, respec-
tively. Assume that η impacts the objective function of the decision problem,
whereas ξ influences the constraints. For the sake of transparent notation, we
introduce the combined data process ζ := (η, ξ) with state space Z := � × �.
The information F t available at time t by keeping track of the data process is
given by the induced σ -algebra corresponding to the random vectors observed
by that time, i.e., F t := σ(ζ t). Frequently, it is assumed that ζ 1 is a degenerate
random vector such that F1 reduces to the trivial σ -algebra {�, ∅}. Moreover,
we use the convention F := FT , and we define F := {F t}T

t=1 as the filtration
induced by the data process.

Let x and y denote two additional stochastic processes with state spaces
X and Y, respectively. In the remainder, x will be called the primal decision
process associated with the optimization problem at hand. Similarly, we will
refer to y as the dual decision process. Unlike the data processes, which are
given exogenously, the decision processes are a priori unspecified and will be
determined endogenously in the optimization procedure. Therefore, we must
agree on suitable function spaces from which the primal and dual decision pro-
cesses may be chosen. Let G = {Gt}T

t=1 be any filtration on the probability space
(�, �, P). Then, for each t = 1, . . . , T we define

Xt(G) := L∞(�, Gt, P; Xt), Xt(G) := ×t
τ=1Xτ (G),

Yt(G) := L1(�, Gt, P; Yt), Yt(G) := ×t
τ=1Yτ (G).

By definition, X(G) := XT(G) contains all essentially bounded G-adapted pri-
mal strategies valued in X, whereas Y(G) := YT(G) contains all integrable
G-adapted dual strategies valued in Y. In stochastic programming, one always
postulates that decisions be adapted to the filtration generated by the data
process ζ . Thus, x and y are usually selected from the convex sets X(F) and
Y(F), respectively. This is an abstract formulation of the standard requirement
that decisions be chosen non-anticipatively with respect to the underlying data
process, see e.g. (38).

For each stage t = 1, . . . , T there is a cost function ct : Xt × �t → R and a
constraint function ft :Xt×�t → R

mt which are Borel measurable and bounded.
This minimal requirement will be further tightened, below, to ensure applica-
bility of the approximation schemes presented in Sects. 3 and 5. A general
(nonlinear) multistage stochastic program (MSP) can now be formulated as

minimize
x∈X(F)

E

(
T∑

t=1

ct(xt, ηt)

)

s.t. ft(xt, ξ t) ≤ 0 P-a.s. ∀t = 1, . . . , T.

(P)

66 D. Kuhn

The objective criterion is to minimize the expectation of total cost, i.e., the
sum of the stagewise cost functions. Decisions are subject to the stagewise con-
straints, which are assumed to hold almost surely with respect to the probability
measure P. Moreover, as mentioned above, decisions must be selected non-
anticipatively, i.e., they must be adapted to the filtration F induced by the
data process. Note that the dual decision process comes into play later when
we establish a Lagrangian reformulation of problem P . By our assumptions
on the cost and constraint functions, the minimization problem P is in fact
well-defined.4 For the further analysis, we will impose the following regularity
conditions (t = 1, . . . , T):

(C1) ct is convex in xt, concave in ηt, and continuous on Xt × �t;
(C2) ft is additively separable, ft = gt + ht, where the mappings gt : Xt → R

mt

and ht : �t → R
mt are componentwise convex and continuous;

(C3) Xt is a convex compact subset of R
nt , and Yt is the closed nonnegative

orthant of R
mt .

The first step towards a flexible approximation scheme consists in a reformu-
lation and generalization of problem P . To this end, assume that G = {Gt}T

t=1
and H = {Ht}T

t=1 are arbitrary filtrations on the probability space (�, �, P). As
inspired by Wright (44), we can now define a family of optimization problems,
which depend parametrically on the two filtrations G and H as well as on the
data processes η and ξ .

minimize
x∈X(G)

E

(
T∑

t=1

ct(xt, ηt)

)

s.t. E
(

ft(xt, ξ t)
∣∣ Ht

) ≤ 0 P-a.s. ∀t = 1, . . . , T.

(P(G, H; η, ξ))

Note that problem P can be identified with problem P(F, F; η, ξ) since F stands
for the filtration induced by the process ζ = (η, ξ). The development of suitable
approximation schemes will be based on a Lagrangian reformulation of the
stochastic program P(G, H; η, ξ). The Lagrangian5 L : X × Y × � × � → R

associated with the problem data is defined through

L(x, y; η, ξ) :=
T∑

t=1

ct(xt, ηt) + yt · ft(xt, ξt).

By the basic regularity conditions, L is convex in (x, ξ), concave in (y, η), and
continuous on its domain. Let us now establish a useful reformulation of the
stochastic program P(G, H; η, ξ) in terms of the corresponding Lagrangian.

4 However, P neither needs to be solvable nor feasible.
5 Rigorously speaking, L should be termed the Lagrangian density. However, for the sake of
transparent terminology, it will simply be referred to as the Lagrangian in this article.

Aggregation and discretization in multistage stochastic programming 67

Proposition 1 Under the conditions (C1), (C2), and (C3) we have

inf P(G, H; η, ξ) = inf
x∈X(G)

sup
y∈Y(H)

E
[
L(x, y; η, ξ)

]
.

Proof Extend Wright’s argument (44, Sect. 4) to the nonlinear convex case. ��

3 Bounds based on space-discretization

Assume that there are stochastic processes ηu and ξu with state spaces � and
�, respectively. Thus, ηu takes values in the same space as the data process η

introduced in Sect. 2. Similarly, ξu takes values in the same space as ξ . As in the
case of the original data processes, notation can be simplified if we introduce a
combined process ζ u = (ηu, ξu) with state space Z. One can think of ζ u as an
approximation of ζ . For the further argumentation, we need the filtration F

u

induced by the process ζ u, i.e., F
u := {Fu,t}T

t=1 where Fu,t := σ(ζ u,t), and we use
the convention Fu := Fu,T . In the remainder of this section, we assume the fol-
lowing conditions to hold for suitable versions of the conditional expectations,
respectively.

E(x|F) ∈ X(F) for all x ∈ X(Fu), (3.1a)

E(y|Fu) ∈ Y(Fu) for all y ∈ Y(F), (3.1b)

E(ξu|F) = ξ , (3.1c)

E(η|Fu) = ηu. (3.1d)

Next, assume that there is another process ζ l = (ηl, ξ l) such that ηl and ξ l are
valued in � and �, respectively. Again, ζ l is meant to approximate the data
process ζ . The induced filtration F

l is constructed as usual, i.e., F
l := {F l,t}T

t=1
where F l,t := σ(ζ l,t), and we use the convention F l := F l,T . From now on, the
following conditions are assumed to hold for suitable versions of the conditional
expectations, respectively.

E(x|F l) ∈ X(Fl) for all x ∈ X(F), (3.2a)

E(y|F) ∈ Y(F) for all y ∈ Y(Fl), (3.2b)

E(ξ |F l) = ξ l, (3.2c)

E(ηl|F) = η. (3.2d)

From a computational point of view, it is desired that ζ u and ζ l have discrete
distributions. Sect. 4 will provide a constructive proof for the existence of dis-
crete processes, which satisfy the above conditions, and the flexibility in their
construction will thoroughly be investigated. In this section, however, we will
argue that such processes (if they exist) can be used to construct bounds on

68 D. Kuhn

the optimal value of any stochastic program, which complies with the basic
regularity conditions. The following theorems make this statement precise.

Theorem 1 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ and its approximation ζ u satisfy (3.1), then

inf P(Fu, Fu; ηu, ξu) ≥ inf P .

Proof The proof is based on restriction of the primal feasible set, repeated
application of the conditional Jensen inequality, and relaxation of the dual
feasible set. Concretely speaking, we find

inf P ≤ inf
x∈X(Fu)

sup
y∈Y(F)

E
[
L(E[x|F], y; η, E[ξu|F])]

≤ inf
x∈X(Fu)

sup
y∈Y(F)

E
[
L(x, y; η, ξu)

]
≤ inf

x∈X(Fu)

sup
y∈Y(F)

E
[
L(x, E[y|Fu]; E[η|Fu], ξu)

]
≤ inf

x∈X(Fu)

sup
y∈Y(Fu)

E
[
L(x, y; ηu, ξu)

]
.

The first inequality follows from (3.1a) and (3.1c). It entails restriction of the
primal feasible set to those decisions which are representable as the conditional
expectation (given F) of some x ∈ X(Fu). Next, we use the conditional ver-
sion of Jensen’s inequality for moving the conditional expectations out of the
Lagrangian. This is allowed by convexity of the Lagrangian in the first and the
fourth arguments, and since y and η are F-measurable. Repeated application
of the conditional Jensen inequality justifies the third line. Here, we exploit
concavity of the Lagrangian in the second and the third arguments together
with the Fu-measurability of x and ξu. Finally, the fourth inequality holds by
the assumptions (3.1b) and (3.1d). It entails relaxation of the dual feasible set
from those decisions which are representable as the conditional expectation
(given Fu) of some y ∈ Y(F) to all decisions in Y(Fu). ��

Theorem 2 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ and its approximation ζ l satisfy (3.2), then

inf P(Fl, Fl; ηl, ξ l) ≤ inf P .

Proof The proof is analogous to that of Theorem 1. Without a detailed descrip-
tion of the involved manipulations, we may therefore state the following chain
of inequalities

Aggregation and discretization in multistage stochastic programming 69

inf P ≥ inf
x∈X(F)

sup
y∈Y(Fl)

E
[
L(x, E[y|F]; E[ηl|F], ξ)

]

≥ inf
x∈X(F)

sup
y∈Y(Fl)

E
[
L(x, y; ηl, ξ)

]

≥ inf
x∈X(F)

sup
y∈Y(Fl)

E
[
L(E[x|F l], y; ηl, E[ξ |F l])

]

≥ inf
x∈X(Fl)

sup
y∈Y(Fl)

E
[
L(x, y; ηl, ξ l)

]
.

The first inequality follows from (3.2b) and (3.2d), while the second and the
third inequalities are due to the conditional Jensen inequality. Finally, the fourth
inequality holds by the assumptions (3.2a) and (3.2c). ��

If ζ u represents a finitely supported discrete process, then any F
u-adapted

primal or dual strategy is finitely supported, as well. In this case, the exten-
sive form (4) of P(Fu, Fu; ηu, ξu) involves only a finite number of variables and
constraints, implying that it principally allows for numerical solution. One may
argue in a similar way that the extensive form of P(Fl, Fl; ηl, ξ l) is computa-
tionally tractable if ζ l represents a finitely supported discrete process. These
observations together with Theorems 1 and 2 show that we can (numerically)
calculate upper and lower bounds on inf P whenever it is possible to find discrete
processes ζ u and ζ l subject to the assumptions (3.1) and (3.2), respectively. The
next section presents a systematic approach towards constructing such approx-
imate processes.

4 Scenario generation

Given a stochastic process ζ , the construction of a discrete approximate pro-
cess with finite support is referred to as scenario generation. In practice, the
support of the approximate process should consist of few discretization points
(i.e., scenarios) only. In addition, it is usually required that the distributions of
ζ and its discrete approximation are close in a certain sense, e.g. with respect
to some Lp-norm. In this section, we focus on the construction of a discrete
process ζ u subject to the conditions (3.1). The construction of a discrete pro-
cess ζ l subject to the symmetric conditions (3.2) is completely analogous and
will be omitted for brevity of exposition. Notice that the difficulty of finding a
valid process ζ u may depend on the properties of the underlying data process
ζ . Sometimes, finding a suitable ζ u may even be impossible. We will show that
ζ u can systematically be constructed whenever ζ has a compact state space and
belongs to some class of autoregressive processes. Compactness of Z will be
assumed throughout this section. For didactic reasons, we study the one-stage
case first.

70 D. Kuhn

4.1 Basic one-stage case

In the one-stage case under consideration, the inclusions (3.1a) and (3.1b) are
automatically satisfied; cf. the argument below. We may thus focus on validating
the equalities (3.1c) and (3.1d) under the assumption that � and � are compact
polytopes. In this section, we find it more natural to work directly with the
induced probability spaces rather than referring to the abstract sample space.
Concretely speaking, we will mostly work with marginal and conditional dis-
tributions. Notational conventions are agreed on in the following definition.

Definition 2 Let α and β be finite-dimensional random vectors on (�, �, P) tak-
ing values in some Borel sets A and B, respectively. The (marginal) distribution
of β is denoted by Pβ , while Pβ|α stands for the (regular) conditional distribution
of β given α = α. Thus, we have

Pβ(B) = P(β ∈ B)

Pβ|α(B|α) = P(β ∈ B|α = α)

}
∀ B ∈ B(B), α ∈ A.

Note that the data process ζ and its distribution Pζ are a priori known. We
will construct ζ u by specifying the conditional distribution Pζu|ζ . To be a regu-
lar conditional distribution, Pζu|ζ (B|ζ) must be a probability measure on B(Z)

for fixed ζ ∈ Z and a Borel measurable function on Z for fixed B ∈ B(Z).
Then, the joint distribution of ζ and ζ u is uniquely determined by the product
measure theorem (1, Theorem 2.6.2), while the conditional distribution Pζ |ζu

is obtainable via Bayes’ theorem (39, Theorem 1.31). It should be pointed out
that this construction also guarantees the existence of a rich enough sample
space (�, �, P) on which both both ζ and ζ u are defined. In fact, we may simply
identify � with Z × Z, let � be the Borel field on Z × Z, and let P be the joint
distribution of ζ and ζ u. In this argumentation, the right choice of (�, �, P) is
known only after constructing ζ u. However, there is no problem assuming that
the sample space was chosen appropriately already at the outset.

Let us elaborate the above ideas in more detail. First, select a Borel measur-
able function P� : � × Z → [0, 1] such that

∑
e∈ext �

P�(e|ζ) = 1 and
∑

e∈ext �

e P�(e|ζ) = ξ ∀ζ ∈ Z,

where ext � represents the set of extreme points of �. ext � is finite since � is
a compact polytope. Observe that, if � is a nondegenerate simplex, the above
conditions uniquely determine P�(·|ζ) on ext �. In addition, introduce a Borel
measurable function ζ� = (η�, ξ�) : � → Z. Set ξ�(e) = e and

η�(e) =
∫

Z η P�(e|ζ) Pζ (dζ)∫
Z P�(e|ζ) Pζ (dζ)

Aggregation and discretization in multistage stochastic programming 71

if the denominator is nonzero. Otherwise, η�(e) is set to
∫

Z η Pζ (dζ). Using these
conventions, we can specify the conditional distribution of ζ u given ζ = ζ , i.e.,

Pζu|ζ (B|ζ) :=
∑

e∈ext �

P�(e|ζ) δζ�(e)(B). (4.3)

Here, δζ�(e) denotes the Dirac measure concentrated at ζ�(e). It is easily seen
that Pζu|ζ is in fact a probability measure in its first argument and a Borel
measurable function in its second argument. Moreover, we have

Pζu|ζ (·|ζ)

∑

e∈ext �

δζ�(e)(·), (4.4)

i.e., the regular conditional distribution of ζ u given ζ = ζ is absolutely
continuous with respect to a discrete measure independent of the parameter
ζ . The conditional density is ζ u �→ P�(ξu|ζ). Having constructed a candidate
random vector ζ u, we now should verify the conditions (3.1a) through (3.1d).
In the one-stage case under consideration, the conditions (3.1a) and (3.1b) are
trivially satisfied since X and Y are closed convex sets. In fact, the support of the
conditional expectation of some random vector with respect to any σ -algebra
is necessarily covered by the convex hull of the support of this very random
vector. Validation of the conditions (3.1c) and (3.1d) requires some more work.
To begin with, let us verify that

E(ξu|ζ) =
∫
Z

ξu Pζu|ζ (dζ u|ζ) =
∑

e∈ext �

e P�(e|ζ) = ξ P-a.s.

The first equality holds by a standard result in probability theory (1, Sect. 6.6)
while the second and the third equalities are due to the defining properties
of the regular conditional probability Pζu|ζ and the measurable function P�,
respectively. Thus, (3.1c) follows. In a next step, we will argue that

E(η|ζ u) =
∫
Z

η Pζ |ζu(dζ |ζ u) = η�(ξu) = ηu P-a.s.

As before, the first equality holds by a standard result, whereas the second
equality follows from the measure-theoretic version of Bayes’ theorem (39,
Theorem 1.31), which applies due to (4.4). Finally, the third equality is immedi-
ate from the construction of ζ u. This establishes (3.1d).

4.2 Flexible one-stage case

The one-stage case requires some more investigation since the specific con-
struction in Sect. 4.1 does not provide much flexibility in choosing the discrete

72 D. Kuhn

approximate process ζ u. Generally, such ζ u will not be close to the data pro-
cess ζ with respect to some Lp-norm, say. In any case, the conditions (3.1c)
and (3.1d) guarantee matching of the first moments, i.e.,

E(ξu) = E(E(ξu|F)) = E(ξ) and E(ηu) = E(E(η|Fu)) = E(η).

Moreover, equivalence of the second order cross-moments holds,

E(ξu ηu�) = E(ξu E(η|Fu)�) = E(ξu η�) = E(E(ξu|F) η�) = E(ξ η�),

but the higher order moments of ζ and ζ u are generically different. If we want to
ensure closeness of the data process and its discrete approximation beyond first
order moment matching, we need a more flexible approach for constructing ζ u.
Let us therefore assume that the data process is representable as

ζ =
∑
λ∈

1{λ=λ} ζ λ, (4.5)

where the random variable λ and the random vectors {ζ λ}λ∈ are mutually inde-
pendent, and is a finite index set. In particular, assume that λ takes values in
, while ζ λ is supported on a compact polytope Zλ = �λ × �λ with �λ ⊂ �

and �λ ⊂ � for all λ ∈ . By (4.5) and the independence assumption, the dis-
tribution of ζ can be written as a convex combination of the distributions of the
ζ λ with convex weights P(λ = λ). Moreover, if some process ζ ′ with the same
distribution as ζ allows for a representation of the form (4.5), then, without loss
of generality, we may set ζ := ζ ′. Any such redefinition is unproblematic since
only the distribution of ζ has practical relevance for the stochastic program P .
These insights suggest that a decomposition as in (4.5) always exists and that
the diameters of the state spaces Zλ can be made uniformly small.6 Next, we
apply the method of Sect. 4.1 to each ζ λ separately. Concretely speaking, we
construct random vectors {ζ u

λ}λ∈ with the properties
(i) E(ξu

λ | ζ λ) = ξλ P-a.s., λ ∈ ;
(ii) E(ηλ | ζ u

λ) = ηu
λ P-a.s., λ ∈ ;

(iii) λ and the paired random vectors {(ζ λ, ζ u
λ)}λ∈ are mutually independent.

Then, we define a candidate process

ζ u =
∑
λ∈

1{λ=λ} ζ u
λ, (4.6)

which reflects the structure of (4.5). As in Sect. 4.1, we have to verify that this
process complies with the conditions (3.1a) through (3.1d). Again, the rela-
tions (3.1a) and (3.1b) are trivially satisfied since we operate in a one-stage
framework. In order to check the identities (3.1c) and (3.1d), we observe that

6 Note that it is possible to represent any compactly supported distribution as a finite convex
combination of distributions with arbitrarily small supports; see also the example below.

Aggregation and discretization in multistage stochastic programming 73

σ(ζ) ⊂ σ(λ, {ζ λ}λ∈) and σ(ζ u) ⊂ σ(λ, {ζ u
λ}λ∈). (4.7)

For instance, the first inclusion holds because ζ is the image of λ and the ζ λ’s
under a continuous map (with respect to the Euclidean topology on Z on one
hand and the product of the discrete topology on and the Euclidean topologies
on the Zλ’s on the other hand). We may thus conclude that

E(ξu | ζ) = E

(
E

(∑
λ∈

1{λ=λ} ξu
λ

∣∣∣∣∣ λ, {ζ λ′ }λ′∈

) ∣∣∣∣∣ ζ

)

= E

(∑
λ∈

1{λ=λ} E
(
ξu

λ

∣∣ ζ λ

) ∣∣∣∣∣ ζ

)
= E(ξ | ζ) = ξ P-a.s.

The first equality uses (4.7) while the second and the third equalities are based
on the properties (iii) and (i) stated above. By a similar reasoning we obtain

E(η | ζ u) = E

(
E

(∑
λ∈

1{λ=λ} ηλ

∣∣∣∣∣ λ, {ζ u
λ′ }λ′∈

) ∣∣∣∣∣ ζ u

)

= E

(∑
λ∈

1{λ=λ} E
(
ηλ

∣∣ ζ u
λ

) ∣∣∣∣∣ ζ u

)
= E(ηu | ζ u) = ηu P-a.s.

As before, the first equality is due to (4.7) while the second and the third
equalities follow from the properties (iii) and (ii), respectively.

Example 1 We show a possibility to construct λ and {ζ λ}λ∈. Suppose that is
a finite index set and that {Z̃λ}λ∈ is a disjoint set partition of Z, i.e.,

Z =
⋃
λ∈

Z̃λ and Z̃λ ∩ Z̃λ′ = ∅ for λ �= λ′.

For simplicity of exposition, let us assume that P(ζ ∈ Z̃λ) > 0 for each λ ∈ .
Moreover, assume the closure of Z̃λ to be representable as Zλ = �λ × �λ,
where �λ ⊂ � and �λ ⊂ � are compact polytopes. We can now introduce a
discrete random variable λ valued in . Its distribution function Pλ is defined
through

Pλ(B) := P(ζ ∈ ∪λ∈BZ̃λ) for B ⊂ .

Moreover, for each λ ∈ we can introduce a random vector ζ λ valued in Z
whose distribution Pζ λ

is defined through

Pζ λ
(B) := P(ζ ∈ B ∩ Z̃λ)

P(ζ ∈ Z̃λ)
for B ∈ B(Z).

74 D. Kuhn

Assuming λ and the {ζ λ}λ∈ to be mutually independent,
∑

λ∈ 1{λ=λ} ζ λ and ζ

are equal in distribution and may be identified. With ζ u as in (4.6), we have

‖ζ − ζ u‖∞ ≤ max{diam(Zλ) | λ ∈ }

since both ζ λ and ζ u
λ are supported on Zλ for each λ ∈ . By making the

diameters of the Zλ uniformly small, we can thus construct a discrete process
ζ u that approximates ζ arbitrarily well with respect to the L∞-norm.

4.3 Independent multistage case

Let us now investigate the most simple multistage case where the random vec-
tors {ζ t}T

t=1 are mutually independent. Note that this independence assumption
will later be relaxed. In the present section, the random vectors ζ u

t correspond-
ing to the discrete approximate process ζ u are constructed successively with
increasing t. For notational convenience, let Pu

t be the (regular) conditional
distribution of ζ u

t given ζ = ζ and ζ u,t−1 = ζ u,t−1. The mapping Pu
t is chosen

such that the following statements hold true:

(i) E(ξu
t | ζ t, ζ u,t−1) = ξ t P-a.s.;

(ii) E(ηt | ζ u
t , ζ u,t−1) = ηu

t P-a.s.;
(iii) {ζ u

t } is conditionally independent of {ζ τ }τ �=t given {ζ t} ∪ {ζ u
τ }τ<t.

The conditions (i) and (ii) are e.g. satisfied if for all fixed {ζτ }τ �=t and {ζ u
τ }τ<t the

mapping (B, ζt) �→ Pu
t (B|ζ , ζ u,t−1) represents a conditional distribution of the

form (4.3) or one of its generalizations in the spirit of Sect. 4.2. Note that the
discrete conditional scenarios and probabilities corresponding to ζ u

t may now
depend on (ζ , ζ u,t−1). Furthermore, condition (iii) is e.g. satisfied if for every
fixed B ∈ B(Z) the Borel measurable function (ζ , ζ u,t−1) �→ Pu

t (B|ζ , ζ u,t−1)

is constant in ζτ for τ �= t (for a survey of the basic properties of the condi-
tional independence relation we refer to Appendix 7). These insights suggest
that a discrete process ζ u subject to the above conditions can systematically be
obtained, and there is considerable flexibility in its construction. In particular,
notice that we allow the {ζ u

t }T
t=1 to be mutually dependent, which complicates

scenario generation and makes it difficult to check the conditions (3.1). How-
ever, this extra flexibility has distinct numerical advantages and may accelerate
convergence of solution algorithms; cf. e.g. the related arguments in (20, Sect. 4).

In analogy to the previous sections, we must prove that the exogenous data
process ζ and the synthesized approximation ζ u satisfy the requirements (3.1).
In order to prove (3.1a) we choose some x ∈ X(Fu). By hypothesis, the support
of x is covered by X, which is convex and closed. Moreover, it is known that
the support of the conditional expectation E(x|F) is a subset of the convex
hull of the support of x.7 Consequently, E(x|F) is valued in X almost surely. It

7 Without being rigorous, evaluating the (regular) conditional expectation of x with respect to any
σ -algebra and at a fixed ω ∈ � can be viewed as taking an infinite convex combination of the points
in the support of x.

Aggregation and discretization in multistage stochastic programming 75

remains to be shown that E(xt|F) is F t-measurable almost surely for each t. An
equivalent statement is

E(xt | ζ) = E(xt | ζ t) P-a.s. for t = 1, . . . , T.

This, however, is true by Proposition 3 in the appendix, which asserts that
the sets of random vectors {ζ u

τ }τ≤t and {ζ τ }τ>t are conditionally independent
given {ζ τ }τ≤t. The proof of (3.1b) is widely parallel. First, choose y ∈ Y(F). By
repeating the above arguments, it can be shown that the conditional expectation
E(y|Fu) takes values in Y almost surely. Furthermore, one should verify that
E(yt|Fu) is Fu,t-measurable almost surely for t arbitrary. This statement can be
reformulated as

E(yt | ζ u) = E(yt | ζ u,t) P-a.s. for t = 1, . . . , T,

and it holds true by Proposition 3, which asserts that the sets of random vectors
{ζ τ }τ≤t and {ζ u

τ }τ>t are conditionally independent given {ζ u
τ }τ≤t. Let us now

check the remaining properties (3.1c) and (3.1d). From the above conditions
we may deduce the following chain of equalities, which holds almost surely with
respect to the probability measure P.

E(ξu
t | ζ) = E(E(ξu

t | ζ , ζ u,t−1) | ζ)

= E(E(ξu
t | ζ t, ζ

u,t−1) | ζ) by (iii)
= E(ξ t | ζ) = ξ t by (i)

As t is arbitrary, this argument proves (3.1c). Furthermore, we have

E(ηt | ζ u) = E(ηt | ζ u,t) = ηu
t P-a.s. for t = t, . . . , T.

The first equality follows from Proposition 4, which states that {ζ t} and {ζ u
τ }τ>t

are conditionally independent given {ζ u
τ }τ≤t. The second equality is due to (ii).

Thus, (3.1d) is established.
One of the simplest ways to discretize a serially independent stochastic pro-

cess is by discretizing each ζ t individually as in the example of Sect. 4.2. It
is easily seen that the pairs (ζ t, ζ

u
t) can be chosen mutually independent for

t = 1, . . . , T. Then, the conditions (i), (ii), and (iii) stated at the beginning of
this section are trivially satisfied. If the underlying set partitions of the stagewise
state spaces are suitably refined, ‖ζ − ζ u‖∞ can be made arbitrarily small.

4.4 Dependent multistage case

Let η̂ and ξ̂ be two stochastic processes with state spaces �̂ and �̂, respectively.
As usual, we further introduce a combined stochastic process ζ̂ := (η̂, ξ̂) with
state space Ẑ := �̂ × �̂. Let us assume that the corresponding random vectors
{ζ̂ t}T

t=1 are mutually independent. Consequently, ζ̂ has the same structure as the

76 D. Kuhn

data processes considered in Sect. 4.3. In this section, however, we will study
slightly more general data processes of the form

ζ = (η, ξ) = (Ho η̂, Hc ξ̂), (4.8)

where Ho : �̂ → � and Hc : �̂ → � are non-anticipative isomorphisms. In
other words, these transformations are linear, bijective, and lower block-trian-
gular with respect to the temporal structure. As far as Ho is concerned, for
instance, this means that the matrix elements coupling ηt and η̂s are zero for
s > t. However, they may be nonzero for s ≤ t, which implies that the η process
may be autocorrelated. Since ζ̂ consists of mutually independent random vec-
tors, we can proceed as in Sect. 4.3 to construct a process ζ̂ u. Thus, the processes
ζ̂ and ζ̂ u satisfy the conditions (3.1). Next, set

ζ u := (ηu, ξu) := (Ho η̂u, Hc ξ̂u).

Using the above definitions, we will prove that the processes ζ and ζ u also
comply with the conditions (3.1). To this end, we first notice that

F t := σ(ζ t) = σ(ζ̂ t) =: F̂ t and Fu,t := σ(ζ u,t) = σ(ζ̂ u,t) =: F̂u,t

for each t since the transformations Ho and Hc are linear, bijective, and non-
anticipative. Thus, the filtrations induced by the processes ζ u and ζ̂ u are iden-
tical, and the proof of (3.1a) is as in Sect. 4.3. Moreover, the filtrations induced
by the processes ζ and ζ̂ are identical, too. This implies that the proof of (3.1b)
may also be copied from Sect. 4.3. Finally, the conditions (3.1c) and (3.1d)
are immediate from the construction of ζ and ζ u as well as linearity of the
transformations Ho and Hc, i.e.,

E(ξu|F) = E(Hc ξ̂u |F) = Hc E(ξ̂u |F) = Hc ξ̂ = ξ

E(η|Fu) = E(Ho η̂ |Fu) = Ho E(η̂ |Fu) = Ho η̂u = ηu

}
P-a.s.

Notice that the data processes of the form (4.8) cover all ARMA processes
and are general enough for many interesting applications. Bounds of the type
considered in Sect. 3 are available also for stochastic programs involving more
general nonlinear data processes (31). For instance, lognormal stochastic pro-
cesses with serial correlations are investigated in (31, Sects. 6.3 and 6.4).

It should be mentioned that the approximation error is, again, completely
under our control. The remarks at the end of Sect. 4.3 provide some guidelines
on how to construct ζ̂ u such that ‖ζ̂ − ζ̂ u‖∞ becomes arbitrarily small. Uniform
continuity of the linear mappings Ho and Hc thus implies that ‖ζ − ζ u‖∞ can
be made arbitrarily small, as well.

Aggregation and discretization in multistage stochastic programming 77

5 Bounds based on stage-aggregation

After having studied a particular scenario generation method providing deter-
ministic error bounds, we now turn attention to stage aggregation, which is
often inevitable to achieve reasonable problem dimensions. In doing so, we use
similar techniques as in Sects. 3 and 4.

Let us introduce two aggregation operators ↑ and ↓ mapping the finite index
set {1, . . . , T} to itself (Fig. 1). We will refer to ↑ and ↓ as a pair of upper and
lower aggregation operators if the following conditions hold:

(i) monotonicity: both ↑ and ↓ are monotonically increasing;
(ii) idempotence: ↑ ◦ ↑=↑, ↓ ◦ ↓=↓, ↑ ◦ ↓=↓, and ↓ ◦ ↑=↑;

(iii) ordering: ↓ ≤ 1 ≤ ↑.

Here, 1 denotes the identity mapping on {1, . . . , T}. As follows from the defin-
ing conditions, the two aggregation operators are uniquely determined by their
fixed point sets {t | ↑ (t) = t} and {t | ↓ (t) = t}. Note that these sets coincide
with the ranges of ↑ and ↓, respectively, and are equal by the idempotence
property (ii). Next, introduce σ -algebras G↑,t := F↑(t) and G↓,t := F↓(t) for all t,
and define G

↑ := {G↑,t}T
t=1 and G

↓ := {G↓,t}T
t=1. Note that, by monotonicity

of the aggregation operators, G
↑ and G

↓ represent specific filtrations on the
sample space. By the ordering property (iii), the filtration F induced by the data
process is a subfiltration of G

↑ in the sense that F t ⊂ G↑,t for each t. Moreover,
F is a superfiltration of G

↓ in the sense that F t ⊃ G↓,t for each t.
In the present section, we will assume that the state spaces Zt are equal for

all t. This may be postulated without loss of generality if the dimension of the
random vectors ηt and ξ t is constant over time. Furthermore, assume that there
are stochastic processes ζ↑ = (η↑, ξ↑) and ζ↓ = (η↓, ξ↓), both of which are
valued in the common state space Z. These processes are determined through
the relations ζ

↑
t := ζ↑(t) and ζ

↓
t := ζ↓(t) for t = 1, . . . , T, and they will be viewed

as approximations of the data process ζ . The corresponding induced filtrations
are constructed in the usual way, i.e., set

F↑,t := σ(ζ↑,t) for t = 1, . . . , T, F↑ := F↑,T , F
↑ := {F↑,t}T

t=1,

F↓,t := σ(ζ↓,t) for t = 1, . . . , T, F↓ := F↓,T , F
↓ := {F↓,t}T

t=1.

Notice that F
↑ is a subfiltration of G

↑, while F
↓ is a subfiltration of G

↓; equality
holds if ↑ or ↓ coincides with the identity mapping, respectively. Moreover, F

↓ is
a subfiltration of the natural filtration F induced by the data process, though F

↑
is neither a sub- nor a superfiltration of F. The following proposition establishes
another useful connection between the newly introduced filtrations given that
ζ follows a Markov process. The insights gained will be important for proving
the main results in Sect. 5.1.

Proposition 2 If the data process ζ is Markovian, then the following conditions
hold for suitable versions of the conditional expectations, respectively.

78 D. Kuhn

5
10

15
20

25
30

0

5

10

15

20

25

30

↓(t)
 1(t)
↑(t)

 t

Fig. 1 Aggregation operators on a 30-point index set

(i) E(x|F↓) ∈ X(F↓) for all x ∈ X(G↓)

(ii) E(y|F↓) ∈ Y(F↓) for all y ∈ Y(G↓)

(iii) E(x|F↑) ∈ X(F↑) for all x ∈ X(G↑)

(iv) E(y|F↑) ∈ Y(F↑) for all y ∈ Y(G↑)

Proof The proof is based on a familiar argument known from Sect. 4.3. Choose
an arbitrary x ∈ X(G↓). The support of the conditional expectation E(x|F↓)

is a subset of the convex hull of the support of x, which in turn is covered
by X. Consequently, E(x|F↓) is valued in X almost surely. It remains to be
shown that E(xt|F↓) is F↓,t-measurable almost surely for each t. An equivalent
statement is

E(xt | ζ↓) = E(xt | ζ↓,t) P-a.s. for t = 1, . . . , T.

This, however, is true by Proposition 5 asserting that the sets of random vec-
tors {ζ τ }τ≤↓(t) and {ζ↓

τ }↓(τ)>↓(t) are conditionally independent given the set
{ζ↓

τ }↓(τ)≤↓(t). Consequently, assertion (i) is established. Notice that the proofs
of the other statements (ii) through (iv) are widely parallel and may thus be
omitted. ��

Aggregation and discretization in multistage stochastic programming 79

5.1 Makrov-martingale processes

In this section we will derive bounds on inf P via stage-aggregation. Numerical
complexity of the aggregated problems will be considerably reduced due to
lower dimensionality. This feature can be exploited in optimization algorithms
which would fail to cope with the original unaggregated problem. For technical
reasons, we have to impose suitable regularity conditions on the underlying
data process. In a first step, it is convenient to restrict attention to the class of
Markov-martingale processes. Thus, we assume that

E(ζ t |F s) = ζ s P-a.s. for 1 ≤ s ≤ t ≤ T. (5.9)

Notice that the martingale requirement can later be relaxed. The additional
requirement that the data process be Markovian is necessary since we want to
use Proposition 2 when constructing bounds (see Theorems 3 and 4).

Theorem 3 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ represents a Markov-martingale, then

inf P(F↓, F↑; η↓, ξ↑) ≥ inf P .

Proof The claim is proved by using the martingale property of the data process,
Jensen’s inequality, and specific relations between the relevant σ -algebras. In a
preliminary step, we obtain

inf P ≤ inf
x∈X(F)

sup
y∈Y(F)

E

(
T∑

t=1

ct(xt, ηt) + yt · ft(xt, ξ↑
t)

)

≤ inf
x∈X(G↓)

sup
y∈Y(F)

E

(
T∑

t=1

ct(xt, ηt) + yt · ft(xt, ξ↑
t)

)

≤ inf
x∈X(G↓)

sup
y∈Y(F)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)

≤ inf
x∈X(G↓)

sup
y∈Y(G↑)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)
.

The first inequality is based on the fact that, due to the martingale property,
the random vector ξ t can be written as E(ξ

↑
t |F t). Application of the conditional

Jensen inequality then yields the desired result. The second inequality is due
to restriction of the primal feasible set. In order to justify the third inequality,
we apply the conditional Jensen inequality once again and replace E(ηt|G↓,t) by
the random vector η

↓
t . Finally, the fourth inequality is due to relaxation of the

dual feasible set. Thus, we have shown

inf P(G↓, G↑; η↓, ξ↑) ≥ inf P .

80 D. Kuhn

Next, we will use the Markov property of the data process to prove that

inf P(G↓, G↑; η↓, ξ↑) = inf P(F↓, F↑; η↓, ξ↑). (5.10)

In order to show that the left hand side is no larger than the right hand side, we
proceed as follows:

inf P(G↓, G↑; η↓, ξ↑)

≤ inf
x∈X(F↓)

sup
y∈Y(G↑)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)

= inf
x∈X(F↓)

sup
y∈Y(G↑)

E

(
T∑

t=1

ct(xt, η↓
t) + E(yt|F↑) · ft(xt, ξ↑

t)

)

≤ inf
x∈X(F↓)

sup
y∈Y(F↑)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)
.

The first inequality is due to restriction of the primal feasible set, while the
equality follows from the law of iterated conditional expectations and line-
arity of the Lagrangian in the dual decisions. By Proposition 2 (iv), for each
y ∈ Y(G↑) there exists a version of E(y|F↑) which is an element of Y(F↑).
Thus, the last inequality holds by relaxation of the dual feasible set. In order to
prove that the left hand side of (5.10) is no less than the right hand side, we use
an analogous argument, i.e., we basically interchange the manipulations with
respect to primal and dual decisions.

inf P(G↓, G↑; η↓, ξ↑)

≥ inf
x∈X(G↓)

sup
y∈Y(F↑)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)

≥ inf
x∈X(G↓)

sup
y∈Y(F↑)

E

(
T∑

t=1

ct(E(xt|F↓), η↓
t) + yt · ft(E(xt|F↓), ξ↑

t)

)

≥ inf
x∈X(F↓)

sup
y∈Y(F↑)

E

(
T∑

t=1

ct(xt, η↓
t) + yt · ft(xt, ξ↑

t)

)
.

Here, the first inequality is due to restriction of the dual feasible set. Then,
we apply the conditional version of Jensen’s inequality (notice that F↓ = F↑
by the defining properties of the aggregation operators). The third inequality
follows from Proposition 2 (i) and relaxation of the primal feasible set, i.e., for
every x ∈ X(G↓) there exists a version of E(x|F↓) in X(F↓). Consequently, we
have proved (5.10), and thus the claim is established. ��

Aggregation and discretization in multistage stochastic programming 81

Unlike in Theorem 1, applicability of the conditional Jensen inequality relies
on the internal structure of the Lagrangian and not just its convexity properties.

Theorem 4 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ represents a Markov-martingale, then

inf P(F↑, F↓; η↑, ξ↓) ≤ inf P .

Proof Apart from minor exceptions, the proof is analogous to that of Theo-
rem 3. Without a detailed description of the involved manipulations, we may
therefore state the following chain of inequalities

inf P ≥ inf
x∈X(F)

sup
y∈Y(F)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ t)

)

≥ inf
x∈X(F)

sup
y∈Y(G↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ t)

)

≥ inf
x∈X(F)

sup
y∈Y(G↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)

≥ inf
x∈X(G↑)

sup
y∈Y(G↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)
.

When applying the conditional Jensen inequality in the third line, we explic-
itly use separability of the constraint functions8 with respect to decisions and
random parameters (note that xt is generally not G↓,t-measurable). Moreover,
we substitute ξ

↓
t for E(ξ t|G↓,t), which is allowed by the martingale property of

the data process. In summary, this yields

inf P(G↑, G↓; η↑, ξ↓) ≤ inf P .

As in the proof of Theorem 3, we will now use the Markov property of the data
process to justify the equality

inf P(G↑, G↓; η↑, ξ↓) = inf P(F↑, F↓; η↑, ξ↓). (5.11)

8 It should be emphasized that separability of the constraint functions is not needed in the proof
of Theorem 3.

82 D. Kuhn

By restricting the primal feasible set, using the law of iterated conditional
expectations, and relaxing the dual feasible set, we obtain

inf P(G↑, G↓; η↑, ξ↓)

≤ inf
x∈X(F↑)

sup
y∈Y(G↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)

= inf
x∈X(F↑)

sup
y∈Y(G↓)

E

(
T∑

t=1

ct(xt, η↑
t) + E(yt|F↓) · ft(xt, ξ↓

t)

)

≤ inf
x∈X(F↑)

sup
y∈Y(F↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)
.

In the last line we indirectly use Proposition 2 (ii), which guarantees that for
each y ∈ Y(G↓) there exists a version of E(y|F↓) which is in Y(F↓) . To prove
the converse inequality in (5.11), we first restrict the dual feasible set, then use
the conditional Jensen inequality, and finally relax the primal feasible set:

inf P(G↑, G↓; η↑, ξ↓)

≥ inf
x∈X(G↑)

sup
y∈Y(F↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)

≥ inf
x∈X(G↑)

sup
y∈Y(F↓)

E

(
T∑

t=1

ct(E(xt|F↑), η↑
t) + yt · ft(E(xt|F↑), ξ↓

t)

)

≥ inf
x∈X(F↑)

sup
y∈Y(F↓)

E

(
T∑

t=1

ct(xt, η↑
t) + yt · ft(xt, ξ↓

t)

)
.

Observe that the last inequality is based on Proposition 2 (iii), i.e., for all primal
decision vectors x ∈ X(G↑) there is a version of the conditional expectation
such that E(x|F↑) ∈ X(F↑). Combining the above results proves (5.11), and
thus the claim follows. ��

Notice that the approximate problem P(F↓, F↑; η↓, ξ↑), which provides an
upper bound on the original unaggregated stochastic program, is built on the
probability space induced by the random vectors {ζ t|1 ≤ ↓(t) = t = ↑(t) ≤ T}.
Depending on the specific design of the aggregation operators, the approximate
problem may thus have considerably lower dimension than the original prob-
lem P , which is built on the probability space induced by all random vectors
{ζ t}T

t=1. Using similar arguments, we may claim that P(F↑, F↓; η↑, ξ↓), which pro-
vides a lower bound on the original stochastic program, has typically much lower
dimension than P . As a consequence, the aggregated problems might occasion-
ally allow for numerical solution even in cases where the original problem is
computationally untractable.

Aggregation and discretization in multistage stochastic programming 83

5.2 Linear Markov processes

The bounds provided by Theorems 3 and 4 critically rely on the martingale
property of the data process. Although martingales enjoy wide popularity both
in discrete and continuous time finance, it is desirable to extend the results of
the previous section to more general stochastic models. Here, we will study the
class of linear Markov processes. By definition, a linear Markov process ζ is a
Markov process satisfying the conditions

E(ηt |F s) = Ho
t,s(ηs)

E(ξ t |F s) = Hc
t,s(ξ s)

}
P-a.s. for 1 ≤ s ≤ t ≤ T. (5.12)

The mappings Ho
t,s and Hc

t,s are linear affine and invertible. The corresponding
inverse mappings will be denoted by Ho

s,t and Hc
s,t, respectively. Notice that the

linear Markov processes cover the class of Markov martingales considered in
the previous section. Thus, we effectively work in a more general setting, here.
In order to keep notation simple, we introduce the combined mappings

Hi,α := Hi
1,α(1) × · · · × Hi

T,α(T) (i, α) ∈ {o, c} × {↑, ↓},

which depend on the aggregation operators. The next result generalizes The-
orems 3 and 4 by allowing for data processes which need not be martingales.

Theorem 5 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ represents a linear Markov process, then

inf P(F↓, F↑; Ho,↓(η↓), Hc,↑(ξ↑)) ≥ inf P ,
inf P(F↑, F↓; Ho,↑(η↑), Hc,↓(ξ↓)) ≤ inf P .

Proof The statements are proved exactly as in Theorems 3 and 4. However, the
relations (5.12) are used instead of the martingale property. ��

It is worthwhile to remark that the mappings Ho,↑ and Hc,↑ will diverge with
respect to the matrix 2-norm, say, if Ho,↓ and Hc,↓ become singular. This can
happen if correlation between the random vectors ζ t is low across neighbor-
ing stages. In any such situation, stage-aggregation may not be justifiable, and
the bounds proposed in Theorem 5 may become very coarse. In contrast, the
bounds are expected to be tight in case the ζ t’s are strongly correlated across
several stages.

Furthermore, it should be mentioned that the class of linear Markov pro-
cesses is general enough to cover many stochastic processes of practical interest.
In fact, recall that any autoregressive process can be represented as a (higher-
dimensional) linear Markov process, as is shown e.g. in (33, Sect. 2).

84 D. Kuhn

6 Joint aggregation and discretization

Stage-aggregation may considerably reduce the dimensionality of some given
stochastic optimization problem. However, numerical solution still requires dis-
cretization of the (reduced) probability space. Any attempt to aggregate certain
decision stages should thus be complemented by a suitable space-discretization
scheme as proposed in Sect. 3.

In order to formally elaborate the combination of aggregation and discreti-
zation schemes, we have to introduce some additional notation. First, assume
that suitable aggregation operators ↑ and ↓ have been selected, and consider
the associated stochastic processes ζ↑ and ζ↓ defined in Sect. 5. Then, let
ζ↓,u = (η↓,u, ξ↓,u) be a discrete process approximating ζ↓ in the sense of Sect. 3,
that is, assume ζ↓,u and ζ↓ to satisfy the conditions (3.1). As demonstrated
earlier, ζ↓,u can systematically be constructed if, for instance, ζ↓ has a compact
state space and is representable as some linear affine transformation of a seri-
ally independent noise process; see Sect. 4. We denote by F

↓,u = {F↓,u,t}T
t=1 the

filtration induced by ζ↓,u, and set F↓,u := F↓,u,T . Furthermore, we introduce
a compatible discrete stochastic process ζ↑,u = (η↑,u, ξ↑,u) approximating ζ↑.
The idempotence property of the aggregation operators implies

ζ
↑
t = ζ↑(t) = ζ↓◦↑(t) = ζ

↓
↑(t), t = 1, . . . , T.

Thus, it is natural to define ζ↑,u through ζ
↑,u
t := ζ

↓,u
↑(t) for t = 1, . . . , T. Using this

definition, it is easily seen that ζ↑ and its discrete approximation ζ↑,u also sat-
isfy the conditions (3.1). As usual, we denote by F

↑,u = {F↑,u,t}T
t=1 the filtration

induced by ζ↑,u, and set F↑,u := F↑,u,T .
For the further argumentation we need another discrete stochastic process

ζ↑,l = (η↑,l, ξ↑,l) which approximates ζ↑ in the sense that ζ↑,l and ζ↑ satisfy the
conditions (3.2). Moreover, we define a compatible process ζ↓,l = (η↓,l, ξ↓,l)

via ζ
↓,l
t := ζ

↑,l
↓(t) for t = 1, . . . , T. It can be verified that ζ↓,l and ζ↓ also satisfy

the conditions (3.2). Finally, let F
↑,l = {F↑,l,t}T

t=1 and F
↓,l = {F↓,l,t}T

t=1 stand for
the filtrations induced by ζ↑,l and ζ↓,l, respectively, and set F↓,l := F↓,l,T and
F↑,l := F↑,l,T . Now we are prepared to state our main theorem.

Theorem 6 Assume the conditions (C1), (C2), and (C3) hold. If the data process
ζ represents a linear Markov process, and the processes ζ↑,u, ζ↑,l, ζ↓,u, and ζ↓,l

have the postulated properties, then

inf P(F↓,u, F↑,u; Ho,↓(η↓,u), Hc,↑(ξ↑,u)) ≥ inf P ,
inf P(F↑,l, F

↓,l; Ho,↑(η↑,l), Hc,↓(ξ↓,l)) ≤ inf P .

Proof In order to keep notation simple, we prove the theorem under the
stronger assumption that ζ is a Markov martingale. Generalization to the case
of linear Markov processes is straightforward. First, by the Theorems 3 and 4
we have

Aggregation and discretization in multistage stochastic programming 85

inf P(F↓, F↑; η↓, ξ↑) ≥ inf P ≥ inf P(F↑, F↓; η↑, ξ↓).

Thus, the claim follows if we can show that

inf P(F↓,u, F↑,u; η↓,u, ξ↑,u) ≥ inf P(F↓, F↑; η↓, ξ↑),
inf P(F↑,l, F

↓,l; η↑,l, ξ↓,l) ≤ inf P(F↑, F↓; η↑, ξ↓).

The proofs of these inequalities follow exactly the same pattern as the proofs
of Theorems 1 and 2, relying only on the conditions (3.1) and (3.2) as well as
the convexity properties of the Lagrangian. There is one subtle point, how-
ever, which deserves special mention. When taking conditional expectations, it
should be noticed that the σ -algebras F↑ and F↓ are equal. This follows from
the fact that both aggregation operators have the same range. Similarly, we have
F↑,u = F↓,u and F↑,l = F↓,l. ��

Recall that the cardinality of the range of the aggregation operators deter-
mines the number of (effective) decision stages in the approximate models. This
number can be much smaller than T. The random vectors which are not elim-
inated in the aggregation step are further approximated in the discretization
step. Thus, the approximate stochastic programs suggested in Theorem 6 are,
in principle, numerically tractable. The computational costs for their solution
can be significantly lower than the cost for solving the discretized problems of
Sect. 3 (without stage-aggregation).

Example 2 We illustrate the proposed approximation scheme with the follow-
ing three-stage stochastic program.

minimize
x∈X(F)

E
(− η1x1 + η2x2 − η3x3

)
,

s.t. x1 ≤ ξ1
x1 + x2 ≤ ξ2

−x2 + x3 ≤ ξ3

⎫⎬
⎭ P-a.s.

(P)

In this example, the state space X of the primal decision process is set to the
three-dimensional unit cube [0, 1]3, and the data processes η and ξ are given
by real-valued Markov martingales with independent identically distributed
increments. Concretely speaking, we set

η1 = 1, η2 = η1 + η̂2, η3 = η2 + η̂3,

ξ1 = 1, ξ2 = ξ1 + ξ̂2, ξ3 = ξ2 + ξ̂3,

where the independent random variables η̂2, η̂3, ξ̂2, and ξ̂3 are uniformly dis-
tributed on [− 1

4 , 1
4]. It is easily seen that P satisfies (C1), (C2), and (C3).

First, we discuss stage-aggregation. To this end, we select a pair of aggrega-
tion operators satisfying the axioms of monotonicity, idempotence, and order-
ing. Our choice is ↑(1) = 1, ↑(2) = 3, ↑(3) = 3 and ↓(1) = 1, ↓(2) = 1, ↓(3) = 3.

86 D. Kuhn

Fig. 2 Tree representation of the discretized processes ζ↓,u and ζ↑,u: the state of the processes
is indicated next to each node, and the transition probabilities are indicated by circled numbers
assigned to the arcs

This results in approximating the original three-stage problem by effective two-
stage problems. The upper aggregated problem is given by P(F↓, F↑; η↓, ξ↑).
Note that η

↓
1 = η

↓
2 = ξ

↑
1 = 1 are deterministic while η

↓
3 and ξ

↑
2 = ξ

↑
3 fol-

low independent identical triangular distributions with lower limit 0.5, mode
1, and upper limit 1.5. Similarly, we introduce the lower aggregated problem
P(F↑, F↓; η↑, ξ↓). Here, ξ

↓
1 = ξ

↓
2 = η

↑
1 = 1 are deterministic, while ξ

↓
3 and

η
↑
2 = η

↑
3 follow independent identical triangular distributions with lower limit

0.5, mode 1, and upper limit 1.5.
Next, we address discretization. Notice that discretizing the aggregated pro-

cesses ζ↑ and ζ↓ reduces to discretizing the two-dimensional random vector
ζ 3 = (η3, ξ3), which coincides with ζ

↑
2 = ζ

↑
3 = ζ

↓
3 . All other components of

the aggregated processes are deterministic. Observe that the support of ζ 3 is
given by Z3 = �3 × �3 = [0.5, 1.5]2, which represents a product of compact
polytopes. Thus, we may proceed as in Sect. 4.1 to construct ζ u

3. By (4.3) the
conditional distribution of ζ u

3 given ζ 3 = ζ3 reads

Pζu
3 |ζ 3

(B|ζ3) = (ξ3 − 0.5) δ(1,1.5)(B) + (1.5 − ξ3) δ(1,0.5)(B) ∀B ∈ B(Z3).

It should be remarked that the involved weighting factors P�3(e|ζ3) for e ∈
ext �3 are uniquely determined since the interval �3 represents a nondegener-
ate simplex on the real line. The marginal distribution of ζ u

3 then becomes

Pζu
3
(B) = 0.5 δ(1,1.5)(B) + 0.5 δ(1,0.5)(B) ∀B ∈ B(Z3).

According to the general theory, we set ζ↑,u := (ζ 1, ζ u
3, ζ u

3) and ζ↓,u :=
(ζ 1, ζ 1, ζ u

3). These discrete stochastic processes are visualized in Fig. 2. By inter-
changing the roles of η and ξ in the above derivation, we can furthermore
construct the two processes ζ↑,l := (ζ 1, ζ l

3, ζ l
3) and ζ↓,l := (ζ 1, ζ 1, ζ l

3), where
the conditional and marginal distributions of ζ l

3 are given by

Aggregation and discretization in multistage stochastic programming 87

Table 1 Numerical results Problem Minimum

P(F↓,u, F↑,u; η↓,u, ξ↑,u) −1.250
P(F↓, F↑; η↓, ξ↑) −1.417
P −1.667
P(F↑, F↓; η↑, ξ↓) −1.917
P(F↑,l, F↓,l; η↑,l, ξ↓,l) −2.000

Pζ l
3|ζ 3

(B|ζ3) = (η3 − 0.5) δ(1.5,1)(B) + (1.5 − η3) δ(0.5,1)(B) and

Pζ l
3
(B) = 0.5 δ(1.5,1)(B) + 0.5 δ(0.5,1)(B) ∀B ∈ B(Z3).

After having found two approximate scenario tree representations for the data
process, the upper aggregated and discretized problem P(F↓,u, F↑,u; η↓,u, ξ↑,u)

is constructed in the usual way. The number of nontrivial decision variables in
this stochastic program equals the number of nodes of the ζ↓,u-tree (that is 4),
whereas the number of nontrivial constraints equals the number of nodes of
the ζ↑,u-tree (that is 5). Next, we construct the lower aggregated and discret-
ized problem P(F↑,l, F↓,l; η↑,l, ξ↓,l), where the number of nontrivial decision
variables corresponds to the number of nodes in the ζ↑,l-tree (that is 5), and
the number of nontrivial constraints corresponds to the number of nodes in
the ζ↓,l-tree (that is 4).9 Both discretized problems are computationally tracta-
ble. Furthermore, the original and the aggregated (undiscretized) problems are
analytically solvable since the chosen example is particularly simple. Table 1
provides a survey of the minimal values associated with the five stochastic pro-
grams under consideration. The order of these values is consistent with the
general theory presented above.

7 Conclusions and outlook

This article addresses the approximation of convex multistage stochastic pro-
grams via aggregation of decision stages and discretization of the underly-
ing probability space. Put differently, the temporal and spacial granularity of
some given stochastic program is coarsened in a systematic way. In doing so,
deterministic bounds on the optimal objective value are constructed (as op-
posed to a probabilistic confidence interval). By adapting the reasoning in
(31, Sect. 4.6), the proposed bounds could principally be used to construct
deterministic bounding sets for the optimal first stage decisions.

We interpret stochastic programs as abstract optimization problems over
infinite-dimensional Lebesgue spaces. These problems are conveniently ana-
lyzed in a Lagrangian framework where the underlying data and information

9 Observe that the ζ↑,l-tree is isomorphic to the ζ↑,u-tree, and the ζ↓,l-tree is isomorphic to the
ζ↓,u-tree.

88 D. Kuhn

processes (i.e., the filtrations governing the primal and dual strategies) repre-
sent exogenous parameters. Computationally accessible bounds on the optimal
objective value are obtained by slightly perturbing these parameters. In doing
so, we employ the conditional Jensen inequality together with some suitable
restrictions or relaxations of the primal and dual feasible sets. Notice that the
bounds based on space-discretization (cf. Sects. 3 and 4) can also be derived via
Frauendorfer’s barycentric approximation scheme (19,20). Our approach, how-
ever, is inspired by Theorem 2 in (4, Sect. 11.1) and avoids the use of dynamic
programming techniques.

The idea of simplifying the primal and dual information processes of some
given MSP goes back to Wright (44). We extend this idea by jointly controlling
the information and the data processes. Notice that Wright concentrates on
coarsening of the information processes only, which means that the involved
filtrations are replaced by suitable subfiltrations. Conversely, the stage-aggrega-
tion scheme presented here (see Sect. 5) also involves refining. In fact, certain
filtrations are replaced by suitable superfiltrations. In a Markovian framework,
the refined information processes can later be ‘re-coarsened’ without affecting
the optimal objective value. Our approach to stage-aggregation basically plays
with the timing of data revelation. If the observation of new data is delayed
to some extent, we end up with an upper bound on the true objective value.
Conversely, if future observations are foreseen some time ahead, we obtain a
lower bound.

Joint stage-aggregation and discretization may significantly reduce the com-
putational complexity of some given MSP. The resulting approximate problems
will generally exhibit few (effective) decision stages and a finite number of
scenarios. However, in case of extensive aggregation, the number of decision
variables per (effective) stage may become very large. Consequently, one might
eventually be forced to reduce the number of decision variables by using a
suitable heuristics and, of course, without sacrificing too much accuracy.

Future research will have to address the question of how (and under what
additional assumptions) the proposed bounds can be made tighter. In order to
study convergence of the bounds based on discretization, one should consider
two sequences of discrete stochastic processes {ζ u

J }J∈N and {ζ l
J}J∈N such that ζ

and ζ u
J satisfy the conditions (3.1) while ζ and ζ l

J satisfy the conditions (3.2) for
all J ∈ N. If both sequences converge to ζ with respect to the L∞-norm, and if
problem P is strictly feasible, then the optimal values of the approximate prob-
lems associated with ζ u

J and ζ l
J can be shown to converge to the optimal value

of the original problem. Details will be provided in forthcoming publications.
As for the bounds based on stage-aggregation, it is useful to consider two

sequences of aggregation operators {↑J}J∈N and {↓J}J∈N such that each pair
(↑J , ↓J) satisfies the axioms of monotonicity, idempotence, and ordering. If
these sequences are monotonic, that is, if ↑J ≥ ↑J+1 and ↓J ≤ ↓J+1 for all
J ∈ N, then the optimal values of the upper (lower) aggregated problems
corresponding to the pair (↑J , ↓J) are monotonically decreasing (increasing) in
J. If both sequences of aggregation operators converge to the identity opera-

Aggregation and discretization in multistage stochastic programming 89

tor,10 we have ↑J = ↓J = 1 for all J large enough. Then, the optimal values
of the stage-aggregated problems trivially converge to the optimal value of the
original problem. This theoretical result is of little practical relevance unless
the gap between the bounds can be shown to be small for pairs of aggregation
operators with considerably less than T fixed points.

A first numerical convergence analysis is provided in (22) for a real-life
decision problem with more than 2,000 stages and with random parameters
appearing only in the objective. It could be demonstrated that the lower bound
based on stage aggregation (in a maximization framework) saturates at around
ten effective stages. Additional computational experiments, however, will be
necessary to assess the practical value of the proposed aggregation and discret-
ization scheme.

Acknowledgments The author thanks the Swiss National Science Foundation for financial support.

Appendix: Conditional independence

Let V be a finite set of random vectors on the probability space (�, �, P). By
assumption, all random vectors considered in this appendix are valued in con-
vex closed subsets of some finite-dimensional Euclidean spaces. For A ⊂ V we
denote by σ(A) the sub-σ -algebra of � induced by the random vectors con-
tained in A. In the following, A, B, C, and D stand for arbitrary subsets of V.

Definition 3 (Conditional independence) We say that the sets of random vectors
A and B are conditionally independent given C if

E(α | σ(B ∪ C)) = E(α | σ(C)) P-a.s. ∀α ∈ L∞(�, σ(A), P; R).

We will use the shorthand notation A ⊥⊥ B | C for referring to conditional inde-
pendence of A and B given C. If C = ∅, we say that A and B are unconditionally
independent, and we will write A ⊥⊥ B.

Note that several equivalent definitions of conditional independence are avail-
able, see e.g. (7, Sect. 7.3). As shown in (9, Sects. 5 and 6), the conditional
independence relation has the following basic properties:

(i) Symmetry: A ⊥⊥ B | C ⇒ B ⊥⊥ A | C;
(ii) Decomposition: A ⊥⊥ B ∪ D | C ⇒ A ⊥⊥ B | C;

(iii) Weak Union: A ⊥⊥ B ∪ D | C ⇒ A ⊥⊥ B | C ∪ D;
(iv) Contraction: A ⊥⊥ B | C and A ⊥⊥ D | B ∪ C ⇒ A ⊥⊥ B ∪ D | C.

It can easily be checked from the definitions that the conditional independence
relation also exhibits the trivial independence property A ⊥⊥ B | B. In the sequel

10 Here, convergence of aggregation operators is with respect to the discrete topology on the index
set of decision stages.

90 D. Kuhn

we describe a method to detect unobvious conditional independence relation-
ships among certain subsets of V. In other words, given arbitrary disjoint subsets
A, B, and C of V we would like to establish an easily checkable criterion to
decide whether A is independent of B conditional on C. We will present a
graph-theoretic approach that has been developed in the context of artificial
intelligence research; see e.g. (34) and the references therein. To this end,
assume that the set of random vectors V = {ζ t}T

t=1 is totally ordered.11 Let
Vt be the set of the first t − 1 elements12 with respect to the given ordering,
and let Bt be a subset of Vt satisfying the a priori conditional independence
relationship {ζ t} ⊥⊥ Vt\Bt | Bt. This means that the conditional distribution of
ζ t given σ(Vt) almost surely coincides with the conditional distribution of ζ t
given σ(Bt). We will now construct a directed acyclic graph G = (V, E) which
reflects some conditional independence relationships of the underlying proba-
bilistic model (including at least all a priori relationships). To this end, interpret
the random vectors in V as the nodes or vertices of G. Moreover, create the
directed edges or arcs of G by designating each Bt as the set of parents of the
vertex ζ t, i.e., from each vertex in Bt draw an arc terminating in ζ t. The set of
edges E constructed in this manner is considered as a subset of V × V.

E =
T⋃

t=1

{(ζ s, ζ t) | ζ s ∈ Bt}

A sequence of arcs such that every arc has exactly one vertex in common with
the previous arc is called a path. A node along a path is head-to-head if the node
before it and after it along the path both point to it in the graph. A directed
path is a path in which the terminal node of each arc is identical to the initial
node of the next arc. A node is a descendant of another if there is a directed
path from the latter to the former.

Definition 4 (d-separation, Pearl (34, Sect. 3.3.1)) Let A, B, and C be three dis-
joint sets of nodes in the graph G. We say that C d-separates13 A and B if along
every path between a node in A and a node in B there is a node ζ t satisfying
one of the following conditions: (i) ζ t is a head-to-head node along the path and
neither ζ t nor any of its descendants are in C, or (ii) ζ t is not head-to-head but is
in C.

Theorem 7 (42, Theorem 2) Let A, B, and C be disjoint sets of nodes in the
graph G. If C d-separates A and B, then A ⊥⊥ B | C.

The converse statement need not be true, i.e., if A and B are conditionally
independent given C, then C can fail to d-separate the sets A and B; see the

11 Notice that there are T! different orderings on V. In principle, we are free to choose any ordering,
but frequently there is a natural choice.
12 Assume that V1 is the empty set.
13 d-separation stands for direction-dependent separation.

Aggregation and discretization in multistage stochastic programming 91

Fig. 3 Directed acyclic graph G′ = (V′, E′)

discussion at the end of (34, Sect. 3.3.1). Note that the proof of Theorem 7
exclusively relies on the four basic properties of the conditional independence
relation.

Proposition 3 Assume that V = {ζ t}T
t=1 and V∗ = {ζ ∗

t }T
t=1 are ordered sets of

random vectors with the same number of elements. Moreover, let Vt and V∗
t be

the sets of the first t − 1 elements with respect to the given orderings, respec-
tively. Assume that the random vectors in V are mutually independent and that
{ζ ∗

t } ⊥⊥ V\{ζ t} | V∗
t ∪ {ζ t} for t = 1, . . . , T. Then, we find

Vt ⊥⊥ V∗\V∗
t | V∗

t and V∗
t ⊥⊥ V\Vt | Vt, t = 1, . . . , T.

Proof Construct an ordering on V′ := V ∪V∗ by first enumerating the elements
of V and then those of V∗ using the respective individual orderings. Denote the
elements of V′ by ζ ′

t where the index t ranges from 1 to 2T and

ζ ′
t :=

{
ζ t for t = 1, . . . , T,

ζ ∗
t−T for t = T + 1, . . . , 2T.

As usual, Let V′
t be the set of the first t − 1 elements of V′. Furthermore, set

B′
t :=

{ ∅ for t = 1, . . . , T,
V∗

t−T ∪ {ζ t−T} for t = T + 1, . . . , 2T.

By construction, the postulated conditional and unconditional independence
relationships translate to {ζ ′

t} ⊥⊥ V′
t\B′

t | B′
t for t = 1, . . . , 2T. As before, we

can now construct a directed acyclic graph G′ = (V′, E′) with vertices V′ and
directed edges (Fig. 3 visualizes G′ for the special case T = 5)

E′ =
2T⋃
t=1

{(ζ ′
s, ζ

′
t) | ζ ′

s ∈ B′
t}.

92 D. Kuhn

The first statement now follows by application of Theorem 7 if we can show
that V∗

t d-separates Vt and V∗\V∗
t (all sets are considered as subsets of V′).

In fact, every path from Vt to V∗\V∗
t passes by some node in V∗

t which is not
head-to-head along the path. Thus, the claim follows. Conversely, the second
statement holds by Theorem 7 if we can show that Vt d-separates V∗

t and V\Vt.
It turns out that every path from V∗

t to V\Vt passes by some node in V∗\V∗
t

which is head-to-head along the path. Neither this specific node nor any of its
descendants belong to Vt. Therefore, the second claim is established. ��
Proposition 4 Under the assumptions of Proposition 3 we also have

{ζ t} ⊥⊥ {ζ ∗
τ }T

τ=t+1 | {ζ ∗
τ }t

τ=1, t = 1, . . . , T.

Proof Bearing in mind the special topology of the graph G′ = (V′, E′) consid-
ered in the proof of Proposition 3, it is clear that every path from ζ t to the set
{ζ ∗

τ }T
τ=t+1 passes by the node ζ ∗

t , which is not head-to-head along the path. This
implies d-separation of {ζ t} and {ζ ∗

τ }T
τ=t+1 given {ζ ∗

τ }t
τ=1. The claim now follows

from Theorem 7. ��
Definition 5 (Markov Process) Let V = {ζ t}T

t=1 be an ordered set of random
vectors and let Vt be the set of its first t − 1 elements, respectively. V is called a
Markov process if {ζ t+1} ⊥⊥ Vt | {ζ t} for each t = 2, . . . , T − 1.

For the further argumentation, let α : {1, . . . , T} → {1, . . . , T} be a generalized
aggregation operator, i.e., we require that α be monotonically increasing and
idempotent (α ◦ α = α). For instance, one can think of α as the upper or lower
aggregation operators ↑ or ↓ introduced in Sect. 5, or as the trivial aggrega-
tion operator 1. Then, let Ut be the set of the first t elements of V, and set
Uα

t := {ζα(τ)}t
τ=1 for t = 1, . . . , T. Moreover, define U := UT and Uα := Uα

T .

Proposition 5 (Locality) For each t = α(t) we have Ut ⊥⊥ Uα\Uα
t | Uα

t .

Proof We represent the Markov process in the usual way as a directed acyclic
graph G = (V, E). By Definition 5, the sets of parents of the individual vertices
can be chosen to be B1 := ∅ and Bt := {ζ t−1} for all t > 1. Next, choose an
arbitrary fixed point t = α(t). Since every path from Ut\Uα

t to Uα\Uα
t passes

by the node ζ t ∈ Uα
t , which is not head-to-head along the path, we may invoke

Theorem 7 to conclude that Ut\Uα
t ⊥⊥ Uα\Uα

t | Uα
t . The claim now follows

from the trivial independence and contraction properties of the conditional
independence relation. ��

References

1. Ash, R.: Real Analysis and Probability. Probability and Mathematical Statistics. Academic
Berlin Heidelberg Newyork (1972)

2. Birge, J.: Aggregation in stochastic production models. In: Proceedings of the 11th IFIP Con-
ference on System Modelling and Optimization. Springer Berlin Heidelberg Newyork, New
York (1984)

Aggregation and discretization in multistage stochastic programming 93

3. Birge, J.: Aggregation in stochastic linear programming. Math. Program. 31, 25–41 (1985)
4. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer Berlin Heidelberg

New York (1997)
5. Birge, J., Wets, R.B.: Computing bounds for stochastic programming problems by means of a

generalized moment problem. Math. Oper. Res. 12, 149–162 (1987)
6. Casey, M., Sen, S.: The scenario generation algorithm for multistage stochastic linear program-

ming. Math. Oper. Res. 30(3), 615–631 (2005)
7. Chow, Y., Teicher, H.: Probability Theory, 3rd edn. Springer Berlin Heidelberg, New York

(1997)
8. Dantzig, G., Infanger, G.: Large-scale stochastic linear programs–importance sampling and

Benders decomposition. Comput. Appl. Math. I, 111–120 (1992)
9. Dawid, A.: Conditional independence for statistical operations. Ann. Stat. 8(3), 598–617 (1980)

10. Dempster, M., Thompson, R.: EVPI-based importance sampling solution procedures for mul-
tistage stochastic linear programmes on parallel MIMD architectures. Ann. Oper. Res. 90,
161–184 (1999)

11. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming:
an approach using probability metrics. Math. Program. Ser. A 95, 493–511 (2003)

12. Edirisinghe, N., Ziemba, W.: Bounding the expectation of a saddle function with application to
stochastic programming. Math. Oper. Res. 19, 314–340 (1994)

13. Edirisinghe, N., Ziemba, W.: Bounds for two-stage stochastic programs with fixed recourse.
Math. Oper. Res. 19, 292–313 (1994)

14. Ermoliev, Y., Gaivoronski, A.: Stochastic quasigradient methods for optimization of discrete
event systems. Ann. Oper. Res. 39, 1–39 (1992)

15. Flåm, S., Wets, R.B.: Finite horizon approximates of infinite horizon stochastic programs.
Stochas. Optim. 81, 337–350 (1986)

16. Flåm, S., Wets, R.B.: Existence results and finite horizon approximates for infinite horizon
optimization problems. Econometrica 55, 1187–1209 (1987)

17. Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions –
the dependent case. Math. Oper. Res. 13, 377–394 (1988)

18. Frauendorfer, K.: Stochastic two-stage programming, Lect. Notes Econ. Math. Syst., vol. 392.
Springer, Berlin Heidelberg Newyork (1992)

19. Frauendorfer, K.: Multistage stochastic programming: Error analysis for the convex case.
Z. Oper. Res. 39(1), 93–122 (1994)

20. Frauendorfer, K.: Barycentric scenario trees in convex multistage stochastic programming.
Math. Program. 75(2), 277–294 (1996)

21. Gassmann, H., Ziemba, W.: A tight upper bound for the expectation of a convex function of a
multivariate random variable. Math. Program. Study 27, 39–53 (1986)

22. Haarbrücker, G., Kuhn, D.: Valuation of electricity swing options by multistage stochastic
programming. Working paper (2004)

23. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput.
Optim. Appl. 24, 187–206 (2003)

24. Higle, J., Sen, S.: Stochastic decomposition: An algorithm for two-stage linear programs with
recourse. Math. Oper. Res. 16, 650f́b–669 (1991)

25. Høyland, K., Wallace, S.: Generating scenario trees for multistage decision problems. Manage.
Sci. 47(2), 295–307 (2001)

26. Infanger, G.: Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs.
Boyd and Fraser, Danvers (1994)

27. Kall, P.: An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30,
267–276 (1991)

28. Kall, P., Wallace, S.: Stochastic Programming. Wiley, Chichester (1994)
29. Kaut, M., Wallace, S.: Evaluation of scenario-generation methods for stochastic programming.

The Stochastic Programming E-Print Series (SPEPS) (2003)
30. Korf, L.: An approximation framework for infinite horizon stochastic dynamic optimization

problems with discounted cost. Research report, Department of Mathematics, Washington
University, Seattle, USA (2000)

31. Kuhn, D.: Generalized Bounds for Convex Multistage Stochastic Programs. Lect. Notes Econ.
Math. Syst., vol. 548. Springer, Berlin Heidelberg Newyork (2004)

94 D. Kuhn

32. Madansky, A.: Inequalities for stochastic linear programming problems. Manage. Sci. 6,
197–204 (1960)

33. Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Berlin Heidelberg
New York (1996)

34. Pearl, J.: Probabilistic Reasoning in Intelligent Systems, 2nd edn. Morgan Kaufman, San Mateo
(1991)

35. Pflug, G.: Scenario tree generation for multiperiod financial optimization by optimal discreti-
zation. Math. Program., Ser. B 89, 251–271 (2001)

36. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)
37. Rachev, S., Römisch, W.: Quantitative stability in stochastic programming: the method of

probability metrics. Math. Oper. Res. 27, 792–818 (2002)
38. Rockafellar, R., Wets, R.B.: The optimal recourse problem in discrete time: L1-multipliers for

inequality constraints. SIAM J. Control Optim. 16, 16–36 (1978)
39. Schervish, M.: Theory of Statistics. Springer Berlin Heidelberg New York (1995)
40. Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8 (2006)
41. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. In: Jeyaku-

mar, V., Rubinov, A.: (eds.) Continuous Optimization: Current Trends and Applications, pp.
111–144. Springer Berlin Heidelberg Newyork (2005)

42. Verma, T., Pearl, J.: Causal networks and expressiveness. In: Proceedings of the 4th Workshop
on Uncertainty in Artificial Intelligence, pp. 352–359. Mountain View, CA (1988)

43. Dupačová (as Žáčková), J.: On minimax solutions of stochastic linear programming problems.
Časopis pro Pěstování Matematiky 91, 423–429 (1966)

44. Wright, S.: Primal-dual aggregation and disaggregation for stochastic linear programs. Math.
Oper. Res. 19(4), 893–908 (1994)

	Aggregation and discretization in multistage stochastic programming
	Abstract
	Introduction
	Problem formulation
	Bounds based on space-discretization
	Scenario generation
	Basic one-stage case
	Flexible one-stage case
	Independent multistage case
	Dependent multistage case
	Bounds based on stage-aggregation
	Makrov-martingale processes
	Linear Markov processes
	Joint aggregation and discretization
	Conclusions and outlook
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

