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Abstract We present a new semi-parametric model for the
prediction of implied volatility surfaces that can be es-
timated using machine learning algorithms. Given a rea-
sonable starting model, a boosting algorithm based on re-
gression trees sequentially minimizes generalized residuals
computed as differences between observed and estimated
implied volatilities. To overcome the poor predictive power
of existing models, we include a grid in the region of inter-
est, and implement a cross-validation strategy to find an op-
timal stopping value for the boosting procedure. Back test-
ing the out-of-sample performance on a large data set of im-
plied volatilities from S&P 500 options, we provide empiri-
cal evidence of the strong predictive power of our model.

Keywords Implied volatility · Implied volatility surface ·
Option pricing · Forecasting · Tree boosting · Regression
tree · Functional gradient descent

1 Introduction

Despite the discrepancy between the Black and Scholes (BS)
theory and reality, the concept of implied volatility surfaces
(IVS) is still very popular. The mapping from observed mar-
ket prices to implied volatilities (IV) is used as a way to
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compare options with different characteristics, i.e. differ-
ent strike, expiry date, underlying, . . . . Implied volatilities
of options are calculated and stored in financial databases.
Market makers, traders, and risk managers rely on IV to cal-
ibrate their pricing models.

Classical approaches assume volatility to be a determin-
istic function of spot price and time. Dumas et al. (1998) find
that estimated parameters are highly unstable over time, al-
lowing only for short time predictions. As Poon and Granger
(2003) point out, classical time series-based methods do not
perform well in predicting volatility. In addition, they report
that forecasting the volatility based on option-implied stan-
dard deviation provides superior performance across differ-
ent assets and over very long forecast horizons (up to three
years). This approach requires employing a strategy to de-
cide which point on the IVS or which weighting scheme
will be used to obtain a forecast of the volatility. Implied
volatility function (IVF) models allow for dependency on
state variables other than spot price and time. For example,
Shimko (1993) models the observed IV as a function of the
strike price and recovers the risk-neutral probability density
function. Rosenberg (2000) analyzes options on S&P 500
futures with a dynamic IVF model.

More recently, Gonçalves and Guidolin (2006) combine
a cross-sectional approach similar to that of Dumas et al.
(1998) with vector autoregressive models in order to model
the IVS dynamics. They try and partially succeeded (de-
pending on the transaction costs) in exploiting the one-step
and multi-step ahead volatility predictions produced by their
model to form profitable volatility-based trading strategies.
Skiadopoulos et al. (1999) popularize principal components
analysis (PCA) in the IVS literature. They apply PCA on a
multivariate time series of IV differences for a given mon-
eyness level and within a certain expiry range. For a surface
analysis, they only use three “expiry buckets” with 10 to 90,
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90 to 180, and 180 to 270 days to expiry. With the same goal,
Cont and da Fonseca (2002) apply the Karhunen-Loève de-
composition, a PCA method for random surfaces. Fengler et
al. (2007) combine methods from functional PCA and back-
fitting techniques for additive models in their dynamic semi-
parametric factor model (DSFM). By taking the degener-
ated option data structure explicitly into account, i.e. the fact
that there is only a discrete set of strikes with a very small
number of maturities available at each moment in time, they
overcome some of the difficulties that the above-mentioned
models based on PCA have encountered. They fit their func-
tional model directly on the aggregated data, without the
need to estimate IV with a non-parametric smoothing es-
timator on a fixed grid or to sort IV into moneyness/time to
expiry buckets in order to obtain a high dimensional time se-
ries of IV classes as an approximation of the IVS. In a com-
parison of the one-day out-of-sample prediction error, the
DSFM performs just 10 percent better on DAX option data
than a simple sticky-moneyness model, where IV is taken to
be constant over time at a fixed moneyness.

In contrast with the studies mentioned above, we propose
a new semi-parametric model based on an additive expan-
sion of simple fitted regression trees that does not resort to
variance reduction techniques like factor analysis or PCA to
forecast the dynamics of the IVS. Similarly to Fengler et al.
(2007), our model takes into account the degenerated option
data structure and can be easily estimated using standard
boosting techniques. Moreover, in contrast with most of the
previous studies, we are able to handle all options traded on
the market without applying preliminary filtering or discard-
ing any information. Any starting model can be enhanced
with the help of our framework by including exogenous fac-
tors. The most relevant ones are chosen automatically by the
regression trees used in our model to minimize the differ-
ence between observed and estimated implied volatilities.
In this way, our methodology aims to improve the out-of-
sample prediction of the IVS and is able to handle very high
values of IV for both in- and out-of-the-money options.

We fit our IVS model to S&P 500 option data using dif-
ferent starting model specifications in the estimation pro-
cedure. The results are very promising. Starting from the
model proposed by Dumas et al. (1998), our boosting al-
gorithm reduces the out-of-sample mean square prediction
error by 31 percent. When the starting model is taken to be
the DSFM model, improvements range up to 3 percent. Fur-
thermore, using a very simple regression tree as a starting
model, we get a model that outperforms all alternative com-
petitors, and consistently predicts implied volatilities up to
60 days out-of-sample with a daily averaged mean square
prediction error of not more than 0.0225.

The paper is organized as follows. Section 2 presents our
model and the estimation procedure used to estimate it in
detail. Section 3 contains the empirical part. We discuss the

included factors, the starting models, and compare the per-
formance of the alternative models in terms of IV forecast
accuracy. Section 4 concludes.

2 Model and estimation procedure

In this section we propose a new semi-parametric model for
the analysis and prediction of the time-varying dynamics of
the implied volatility surface. Our model can be easily esti-
mated using a classical boosting algorithm based on regres-
sion trees.

2.1 Implied volatility surface (IVS)

The multivariate time series of interest is the time-varying
implied volatility surface. Implied volatility (IV) should
be considered as a mapping from time t , option’s strike
price K , and expiry date T . The mapping

σ̃ IV
t : (K,T ) �−→ σ̃ IV

t (K,T ) (1)

is called the implied volatility surface (IVS). Plugging the
price of the underlying stock St , K , the risk-free interest
rate r , T , and σ̃ IV

t (K,T ) back into the well-known Black
and Scholes (BS) formula leads (by definition of implied
volatility) to the observed market price.1 Thus, knowing the
price of the underlying stock, the risk-free interest rate, and
the IVS at time t is equivalent to knowing the market price
of any option with any given contract characteristic.2 The
mapping allows us to compare two options, even ones with
different characteristics. The one with the higher IV is priced
relatively higher compared to the other one with lower IV.

As is usually done in the IV literature, we also describe
the IVS in relative coordinates. Let m = K/St denote the
moneyness and τ = T − t the time to maturity. The IVS is
then given by

σ IV
t : (m, τ) �−→ σ IV

t (m, τ) = σ̃ IV
t (m · St , t + τ) . (2)

2.2 Inspiration

As a starting point, we consider a non-parametric kernel-
smoothing estimator for the IVS introduced by Gouriéroux
et al. (1995) and Ait-Sahalia and Lo (1998). In particular, the

1According to the BS assumptions, this implicitly calculated volatility
should be constant. It can be easily shown empirically that a cross-
section of options with different strikes and expiry dates have different
IV (volatility smiles/smirks, term structure of IV). Even worse, IV also
changes over time.
2Type of option, strike, and expiry date.
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least square kernel (LSK) smoothing estimator introduced
by Gouriéroux et al. (1995) is defined by

σ̂ IV(m, τ) = arg min
σ̃

n∑

i=1

(
cti − cBS(·, σ̃ )

)2
ω(mti )

× K1

(
m − mti

h1

)
K2

(
τ − τti

h2

)
. (3)

The observed call prices are normalized by the price of the
underlying stock, ct = Ct/St , and cBS denotes the normal-
ized price obtained using the BS formula in terms of mon-
eyness. No inversion of the BS formula is needed, because
observed market prices act as inputs. The estimate for a par-
ticular point on the IVS is given by the minimum of the
loss function, which in this case is the weighted sum of
least squares. K1 and K2 are univariate kernel functions with
bandwidths of h1 and h2, respectively. ω(m) denotes a uni-
formly continuous and bounded weight function, depending
on m. Fengler (2005) presents a summary of possible weight
functions from the early literature on IV. Gouriéroux et al.
(1994) prove that under some weak conditions, the LSK esti-
mator σ̂ IV(mt , τ ) converges in probability to the true volatil-
ity of the underlying asset price process and that it belongs
to the class of kernel M estimators. It is therefore shown to
be both consistent and asymptotically normal.

Out-of-sample prediction is the greatest disadvantage of
smoothing techniques, because kernel functions explicitly
depend on observed data. To be able to obtain accurate fore-
casts, we suggest modifying the LSK estimator along the
lines that will be discussed in the next section.

2.3 The model

In a general nonparametric model, IV is regressed on a vec-
tor of predictors xpred through unspecified functions fm,τ

such that

σ IV
m,τ = fm,τ (xpred) + εm,τ (4)

with E[εm,τ ] = 0 and E[ε2
m,τ ] < ∞ for each m, τ > 0.

The regression functions fm,τ (·) are implicitly defined in
such a way that the expectation of a given loss function λ

(which is known as risk in supervised learning),

E
[
λ(σ IV

m,τ , fm,τ (xpred))
]

is minimized for each m, τ > 0.
According to (2), the IVS changes with m, τ and also

over time t , but one might include other factors and allow for
put or call dependency.3 Specifically, the predictor space is

3According to Noh et al. (1994), there are considerable advantages in
separately modeling the IVS for call and put options.

assumed to be xpred = (m, τ, cp flag, factors) where cp flag
indicates the type of the option (call or put) and the factors
are time dependent, either directly or indirectly, through
time-lagged and forecasted time-leading versions of them-
selves.4

The model we propose is a semi-parametric one, based
on a given (parametric or nonparametric) starting model
F0(xpred) that might fit the IVS quite well in certain (m, τ)

areas but not necessarily everywhere. To be able to estimate
the model using classical boosting algorithms, for each m,
τ > 0 we restrict the regression function fm,τ to be a linear
additive expansion of the form

fm,τ (xpred) = F0(xpred) +
M∑

j=1

Bj (xpred) (5)

where each Bj denotes a general, arbitrary statistical proce-
dure (function) called base learner in the machine-learning
context. The possible choices of the functions Bj are re-
stricted in the following way: Bj is assumed to belong to a
pre-defined class of statistical procedures that must be weak,
in the sense that they avoid overfitting by limiting the num-
ber of parameters involved in the estimation. Typical exam-
ples of base learners are regression trees and projection pur-
suit regressors. When choosing F0 and the base learners, one
needs to ensure that the IVS remains positive.

In our study, we decided to use regression trees as base
learners for several reasons. Classification and Regression
trees (CART) were popularized by Breiman et al. (1984),
and later their appeal spread because of their simplicity and
interpretability. A regression tree is a set of logical if/then
conditions that creates a binary partition of the predictor
space and models the response as a constant for each re-
gion. Its ability to chose automatically L − 1 split variables
(i.e. predictor variables on which the conditions are stated)
in order to construct a regression tree with L end-nodes is
of great importance. In our case, a very simple example of
a regression tree with three end-nodes where the predictor
variables are moneyness m and time to maturity τ may be
given by:

Bj (xpred) =
⎧
⎨

⎩

c1, if m ≤ d1,

c2, if m > d1 and τ ≤ d2,

c3, if m > d1 and τ > d2,

where ci, i = 1,2,3, are constant parameters, and di, i =
1,2, are constant thresholds for the relevant predictor vari-
ables that must be estimated from the data.

4Often, IV is interpreted as the market’s expectation of average volatil-
ity through the life time of the option. As a consequence IV at time t is
a forward-looking measure, depending on St and possibly other factors
at time t for t ∈ [t, T ].
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Previous studies showed that accurate out-of-sample pre-
dictions can be obtained using regression trees as base learn-
ers, in particular when the number of end-nodes L is kept
small, i.e. L ≤ 5. The lack of smoothness of the prediction
surface obtained using regression trees is not a disadvantage:
often m or τ are chosen as split variables when fitting the j th
regression tree, and plotting the contribution of Bj to fm,τ

mainly shows that IV residuals for small τ s are improved.
This is in line with results from the stochastic volatility lit-
erature, where the shape of the IVS for small τ s is better
fitted when jumps are introduced in the dynamics of the un-
derlying.

2.4 Estimation

We propose to use an optimization technique in function
space called functional gradient descent (FGD).5 This ma-
chine learning technique has shown its power in improv-
ing volatility forecasts in high-dimensional GARCH models
(see Audrino and Bühlmann 2003). In another case, FGD-
based filtered historical simulation was conducted to com-
pute reliable out-of-sample yield curve scenarios and confi-
dence intervals (see Audrino and Trojani 2007). Since only
a finite sample of observed IV is available, the FGD estimate
of fm,τ (·) is constructed from a constrained minimization of
the average observed loss (empirical risk). The constraints
require that f̂m,τ (·) is an additive expansion of base learner
functions as in (5). Boosting based on regression trees is a
simple version of FGD, using regression trees as base learn-
ers and a quadratic loss function.

2.4.1 Empirical local criterion

Let (mti, τti , σ
IV
t i ), i ∈ {1, . . . ,Lt } denote the observations

of moneyness, time to maturity, and IV at day t . The daily
number of observations Lt varies over time. As Fengler
(2005) points out, the biggest problem in estimating the IVS
comes from the degenerated design of the data. There is only
a discrete set of strikes with a very small number of maturi-
ties available at each moment in time. This string structure
calls for aggregation over time. This is necessary in order
to obtain a region where observed location parameters form
quasi a continuum, but this requires controlling for the time
to expiry. Long dated options can appear every day over the
aggregated sample period, whereas short dated ones soon
expire and are replaced by others. In order to improve the
implied volatility estimates in each iteration step, reducing
the errors of short expiring options needs to be the aim. We
propose an empirical local criterion that allows for learning
from in-the-money (ITM), at-the money (ATM), and out-of-
the-money (OTM) as well as from very short- to long-term
options and that is able to control for over-fitting.

5A short introduction to FGD is provided in Appendix.

Our approach relies on a fixed grid in the (m, τ) domain,
which should be laid over the region where forecasts of the
IVS are to be calculated. Using the following indexing

[1] := (m(1), τ(1)), [2] := (m(2), τ(1)), . . . ,

[Nm] := (m(Nm), τ(1)),

[Nm + 1] := (m(1), τ(2)), [Nm + 2] := (m(2), τ(2)), . . . ,

[2 · Nm] := (m(Nm), τ(2)),

...

[(y − 1) · Nm + x] := (m(x), τ(y)),

x ∈ {1, . . . ,Nm}, y ∈ {1, . . . ,Nτ }
(m(1) < m(2) < · · · < m(Nm), τ(1) < τ(2) < · · · < τ(Nτ ))

a grid with grid points GP = {[1], [2], . . . , [Nm · Nτ ]} is
obtained. This helps to get reasonable estimates (and fore-
casts), because our model is fitted via kernel weighting in
such a way that the focus is set to the region of the grid.

Starting from an initial model, additive expansions in the
form of regression trees with a small number of end-nodes
(typically L = 2,3 or 5) are used to fit the data. Similar
to (3), we focus on a quadratic loss function which depends
directly on implied volatilities:

λ(σ IV
t , σ̂ IV

t ) = (
σ IV − σ̂ IV)2

.

The empirical local criterion to minimize over the grid spec-
ified above is then defined by:

�grid =
N∑

t=1

Lt∑

i=1

∑

[g]∈GP

(
σ IV

t i − σ̂ IV
t i

)2
wt(i, [g]), (6)

with weights specified by

wt(i, [g]) = ω1(mti) · ω2(τti)

× K

(
m(x) − mti

h1
,
τ(y) − τti

h2

)
. (7)

In the above equation, the different quantities are defined as

[g] = (m(x), τ(y)) ∈ GP,

x ∈ {1, . . . ,Nm}, y ∈ {1, . . . ,Nτ },
K(u, v) = 1

2π
· e− 1

2 (u2+v2),

ω1(mti) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/π · arctan(α1(mti − 1)) + 1/2,

if option i is a call,

1/π · arctan(α1(1 − mti)) + 1/2,

if option i is a put,

ω2(τti) = 1/π · arctan(α2(1 − τti)) + 1/2.
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Fig. 1 Plot of the function
ω1(m) with α1 = 5 above and
ω2(τ ) with α2 = 0.5 below

The weight function (7) consists of three factors. The first
is ω1, taken from Fengler et al. (2007), with slight correc-
tions such that OTM options have more influence than ITM
options. The second one is ω2, and depends on the time to
maturity. It was chosen to reduce the influence of options
which expire far in the future and to increase the importance
of options that are soon due. Figure 1 shows a plot of ω1 and
ω2.6

6From a numerical point of view, it is convenient to normalize the
weight function in such a way that:

Lt∑

i=1

wt(i, [g]) = 100

2.4.2 A feasible algorithm

A cross-validation scheme is needed to avoid overfitting the
model. The first 70 percent of the days in the training data
are considered to be a learning sample and the remaining 30
percent a validation sample. The model is fitted on the ag-
gregated IV observations in the learning sample only. The
more additive components in the expansion there are, the
smaller the error in the learning sample becomes. It tends to
zero as the number of iterations increases, but this generally
goes along with a worsening predictive power. The empir-

for every [g] ∈ GP and t , because the product of three small factors can
become very small.
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ical local criterion (6) was tailored to highlight the impor-
tance of prediction errors in the grid region. The addition of
expansions is stopped when the empirical criterion takes on
its minimum in the validation sample. Slow convergence is
desired in order to find the optimal number of iterations M ,
but using the negative gradient of the loss function in (6)
leads to
∑

[g]∈GP

2(σ IV
t i − σ̂ IV

t i )wt (i, [g])

and requires too many iterations (>500). To make compu-
tation feasible, we use the unweighted residuals in grow-
ing the additive expansion (see step 2 of Algorithm below).
The learning rate can be further controlled by introducing a
shrinkage factor 0 < ν ≤ 1.

Taking all the above considerations into account, the fol-
lowing algorithm is proposed for estimating the IVS.

Algorithm: Tree-boosting for Implied Volatility Surfaces
(treefgd)

1. Fit initial model F0(m, τ, cp flag, factors) to the data t ∈
{1, . . . ,N}, i ∈ {1, . . . ,Lt } (separate for call (c) and put
(p) options):

σ̂
IV,0
t i = F̂0(mti, τti , cp flagt i , factorst )

= F̂ c
0 (mti, τti , factorst )1{cp flagt i=call}

+ F̂
p

0 (mti, τti , factorst )1{cp flagt i=put}, (8)

where cp flag indicates the type of the option (call or put),
and factors indicates that relevant exogenous factors may
be included as additional predictor variables fitting the
model.

2. For j = 1, . . . ,M :
(a) For t = 1, . . . ,N, i = 1, . . . ,Lt compute:

residualt i = σ IV
t i − σ̂

IV,j−1
t i

= σ IV(mti, τti , cp flagt i )

− F̂j−1(mti, τti , cp flagt i , factorst ).

(b) Fit a regression tree with L end-nodes to the residu-
als (separate for call (c) and put (p) options):

t̂ree(m, τ, cp flag, factors)

= ̂treec(m, τ, factors)1{cp flag=call}

+ ̂treep(m, τ, factors)1{cp flag=put}.

(c) Update:

F̂j (m, τ, cp flag, factors)

= F̂j−1(m, τ, cp flag, factors)

+ ν · t̂ree(m, τ, cp flag, factors),

with shrinkage factor 0 < ν ≤ 1 small.
3. Choose M̂ such that �grid(F̂M̂

) is minimal over the val-
idation sample. Use only the learning sample for fitting
the models in Steps 1 and 2.

Steps 1 and 2 of the algorithm are independent of the cho-
sen grid points. This makes estimation faster. On a standard
PC, 250 iterations of step 1 and 2 are calculated within 10
minutes for a learning sample of 175 days with about 70,000
observed IV and a 14 dimensional xpred. The same calcula-
tions for a 278 dimensional xpred require computation over
night.

Evaluating F̂j at (mti, τti , cp flagt i , factorst ) for t ∈ val-
idation sample, i ∈ {1, . . . ,Lt }, j ∈ {1, . . . ,250} and cal-
culating �grid(F̂j ) as in (6) is straightforward. The time
needed for the cross-validation scheme depends on the size
of the chosen grid and should not be underestimated. Once
the optimal stopping value M̂ has been found, F

M̂
has to be

estimated again, now using the whole sample and not only
the first 70% of the data.

The distributed computing capability of today’s standard
software makes it possible to optimize parameters like ν, L

and the number of time-lagged or leading factors by a simple
grid search. The weight function (7) is trickier to handle: it
depends on the chosen grid, kernel, bandwidths and α1, α2.
The choice of the grid is the most important. To avoid com-
plex adjustment procedures, we fit our model with the fol-
lowing default values: ν = 0.5, L = 5, 5 time-lagged and
forecasted time-leading factors, h1 = h2 = 0.5, α1 = 5 and
α2 = 0.5. Even with these fixed settings, the tree-boosting
algorithm is able to improve any starting model.

2.5 Keeping extremal IV in the sample

In-the-money options (ITM, m < 1 for call, m > 1 for put)
are often excluded in the IVS literature. ITM options con-
tain a liquidity premium: they have an intrinsic value which
increases their costs and leaves less leverage for speculation.
The costs in portfolio hedging are higher with those options.
Hence, they are traded less frequently. Cont and da Fonseca
(2002) claim that out-of-the-money (OTM) options contain
the most information about the IVS.

Gonçalves and Guidolin (2006) apply five exclusionary
criteria to filter their IVS data. They exclude thinly traded
options, options that violate at least one basic no-arbitrage
condition, options with fewer than six trading days to matu-
rity or more than one year, options with moneyness smaller
than 0.9 and larger than 1.1, and finally contracts with a price
lower than three-eighths of a dollar. Cassesse and Guidolin
(2006) investigate the pricing efficiency in a bid-ask spread
and transaction cost framework. They find a frictionless data
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set by dropping 51 percent of the original observations. Ski-
adopoulos et al. (1999) also screen the raw data. They elim-
inate data where the option price is less or equal to its in-
trinsic value, where prices are less than 10 cents and where
τ < 10 days. They construct smiles using OTM puts for low
strikes and OTM calls for high strikes only, relying on the
put-call parity. They also set a vega cutoff: options with vega
less than 8 are dropped from the sample. In this way, only
40 percent of the observations for calls and 70 percent for
puts are retained in the sample.

It is known that ITM calls and OTM puts are traded at
higher prices compared with corresponding at-the-money
(ATM) options in general. Especially when the expiry date
nears, observed prices and IV react violently: see Hentschel
(2003). Options with expiry further in the future have more
vega and less gamma than those expiring sooner. Low IV
precision close to expiration is inherent to options. These
options have very little vega: thus, inverting the pricing for-
mula gives a big change of volatility for a tiny price change.
This is usually amplified by the wider bid-ask spreads for
ITM options close to maturity. The usual trick is to focus on
ATM and OTM options. Excluding the strangely behaving
options from the sample helps any model to perform better,
but this still completely neglects the reality of having higher
IV values. Regardless of what causes very high IV, removing
them leads to a loss of information that may be important for
prediction.

The model proposed in this study should be able to han-
dle all options, including ITM, ATM and OTM as well as
options shortly before the expiry date. A weight function
guarantees that extremal IV can be kept in the sample while
controlling their influence.

3 Application

3.1 Data

We use Option Metrics’ Ivy database and analyze implied
volatilities of call and put options with different strikes and
maturities on the S&P 500 index for this project. The data
range from 4 January 1996 to 29 August 2003 and consist
of 777,887 observations on 1,928 days. There are approxi-
mately 400 observations of IV per day on average over the
whole sample. They appear in a so-called string structure,
which means that usually only options with a few standard-
ized times to maturity are traded, but for each τ there are
many different strikes. The observations of the next day con-
tain yesterday’s options where the times to maturity are net
of 1/365 and the moneyness of each option has changed be-
cause the underlying has as well. Table 1 shows summarized
statistics of the option data under investigation.

We fit our model to five different sub-samples 250 days in
length. They are chosen to occur before five special days of

interest, where—from today’s perspective—a more or less
heavy structural break is expected to happen. On 7 August
1998 two bomb attacks on US embassies in Africa occurred.
The impeachment trial of President Clinton was opened in
the Senate on 7 January 1999. The first date for which we
have IVS observations in our sample after President Bush’s
oath of office and the disruption caused by the unclear out-
come in the 2000 presidential election is 22 January 2001.
17 September 2001 is six days after the 11 September terror-
ist attacks, and 20 March 2003 marks the official beginning
of the military campaign against Iraq. Table 2 summarizes
the explicit sub-samples.

The sub-samples end 4 to 25 days before the special
days of interest. Our goal is to attain 60 days out-of-sample
predictions of the IVS, such that we can compare the ob-
served IV with the predicted one, before and after a sup-
posed structural break. The accuracy is measured by evalu-
ating our fitted model at exactly the same (m, τ) locations
as observed, and finally by calculating the sum of squared
residuals (SSR) and the value of the empirical criterion. We
use a linearly spaced 15 × 15 grid with values from m = 0.2
to 2 and from τ = 1

365 to 3 for the empirical local criterion
defined in Sect. 2.4.1.

3.2 Forecasting accuracy: the setting

We specify in this section the general setting we use for de-
riving the out-of-sample results of the next section. We in-
troduce performance measures, predictor variables used in
the estimation and for forecasting, and the competing ap-
proaches under investigation.

3.2.1 Out-of-sample (OS) performance measures

We compare the OS performance by evaluating the IVS
models at the same (m, τ, cp flag) locations as the ones
of recorded OS IV entries in our database. We measure
goodness-of-fit of the different competitors with respect to
the daily and overall averaged mean square forecast errors:

daily SSRt = 1

Lt

Lt∑

i=1

(σ IV
t i − σ̂ IV)2, (9)

overall SSR = 1

N

N∑

t=1

daily SSRt . (10)

We also consider as additional performance measures the
daily and the overall averaged empirical criteria, daily ECt

and overall EC, defined as

daily ECt = 1

Lt

Lt∑

i=1

∑

[g]∈GP

(
σ IV

t i − σ̂ IV
t i

)2
wt(i, [g]), (11)



428 Stat Comput (2010) 20: 421–434

Table 1 Descriptive statistics of implied volatilities of options on the
S&P 500 index, from 4 January 1996 to 29 August 2003, 777,887 ob-
servations on 1,928 days. Mean and standard deviation (Std) are in
percentage. Moneyness m is defined as strike price divided by the
closing price of the underlying asset. Maturity is measured in calen-

dar days. Moneyness categories for call options are defined in the fol-
lowing way: deep in-the-money (DITM) equals m ≤ 0.8, in-the-money
(ITM) 0.8 < m ≤ 0.94, at-the-money (ATM) 0.94 < m ≤ 1.04, out-of-
the-money (OTM) 1.04 < m ≤ 1.2, deep out-of-the-money (DOTM)
1.2 < m. For put options, the reverse order has to be considered

Maturity in days

Less than 90 90 to 240 More than 240

Call Put Call Put Call Put

DITM Mean 76.75 71.96 35.33 24.49 29.92 19.73

Std 61.99 62.21 9.34 7.77 6.57 3.13

Observations 15,176 4,667 16,302 2,510 25,227 4,694

ITM Mean 35.50 27.53 25.56 20.12 24.79 21.02

Std 21.75 18.87 5.08 3.53 4.59 3.33

Observations 41,347 20,673 22,489 12,782 30,309 22,011

ATM Mean 22.10 22.15 21.06 21.17 22.14 22.36

Std 7.09 6.34 4.33 4.36 4.33 3.97

Observations 61,768 61,707 19,771 19,910 25,368 25,443

OTM Mean 21.83 32.06 18.64 25.64 19.86 25.13

Std 10.27 10.97 3.50 4.96 3.65 4.33

Observations 44,562 49,061 21,285 23,037 31,920 30,544

DOTM Mean 43.07 49.25 20.65 34.95 18.38 30.25

Std 34.72 19.41 5.67 7.33 2.90 5.65

Observations 19,642 24,037 19,521 22,724 29,906 29,494

Table 2 In-sample (IS) periods of length 250 days and out-of-sample (OS) periods of length 60 days. The special days of interest in the OS
periods for the 5 different sub-samples under investigation

Sub-sample Training data Forecasting Special day

In-sample period Out-of-sample period of interest

1 21 Jul. 1997–16 Jul. 1998 17 Jul. 1998–09 Oct. 1998 07 Aug. 1998 16th OS day

2 06 Jan. 1998–31 Dec. 1998 04 Jan. 1999–30 Mar. 1999 07 Jan. 1999 4th OS day

3 20 Dec. 1999–13 Dec. 2000 14 Dec. 2000–13 Mar. 2001 22 Jan. 2001 25th OS day

4 15 Aug. 2000–10 Aug. 2001 13 Aug. 2001–09 Nov. 2001 17 Sep. 2001 21st OS day

5 18 Mar. 2002–13 Mar. 2003 14 Mar. 2003–09 Jun. 2003 20 Mar. 2003 5th OS day

overall EC = 1

N

N∑

t=1

daily ECt . (12)

3.2.2 Predictor variables and factors

Unlike in the theoretical Black and Scholes (BS) frame-
work, option prices might depend on more than their con-
tract characteristics, the price of the underlying and the risk-
free interest rate. It is not appropriate to use the 3-month US
Treasury-bill rate, fixed at the day the option is issued, as
the constant r in the BS formula. Allowing for stochastic
interest rates or including proxies for the term structure of
interest rates is common nowadays.

Our model allows for an arbitrary number of exogenous
factors, directly or indirectly time-dependent. IV can be seen
as a predictor of future volatility, so time-lagged as well as
forecasted time-leading factors should be included in the
predictors.7 Time-leading factors are predicted without us-
ing any future information in the following way: For sim-
plicity, we model the log returns of each factor time series
in the case of an asset price, the first differences in the case

7Note that including forecasts for time-leading factors in the predictor
space of a regression tree does not cause problems. Regression trees
can handle missing values and a huge number of predictors. Only the
most relevant ones are automatically chosen as split variables.



Stat Comput (2010) 20: 421–434 429

of interest rates, as a univariate ARMA(1,1)–GARCH(1,1)
process and use its mean forecast as a prediction of the un-
known, future time-leading predictor variable in the regres-
sion trees. We use standard filtered historical simulation8 to
reduce the forecast errors. Parameters of the ARMA(1,1)–
GARCH(1,1) process are estimated on a (rolling) time-
window of the past 500 observations. Then the predictions
for future returns (or differences) are based on the estimated
parameters.

Possible exogenous factors to consider are implied asset
prices (Garcia et al. 2003), the bid-ask spread, net buying
pressure (Bollen and Whaley 2004), trading volume, other
stock or index returns, and interest rates. Another strategy
would be to include IV time series for options with fixed
specifications as predictors. If the goal is for example to
model the IVS in the neighborhood of 30 days ATM, one
could make use of the explanatory capabilities of competing
option pricing methods by calculating IV time series for a
call and a put with this specification.

In this study, we limit ourselves to three different sets of
predictor variables (pv set). We define them such that

pv set 1 ⊂ pv set 2 ⊂ pv set 3.

In addition to the original factors, we include five time-
lagged and five forecasted time-leading versions of each.

pv set 1 consists of the closing prices of the underlying.

pv set 2 additionally includes the {3,6}-month and {1, 3,
5, 10}-year Treasury Constant Maturity Rates as represen-
tatives of the interest rates’ term structure. The time series
are available on the St. Lous Fed Homepage in the FRED
database and their series IDs are labeled DGS.

pv set 3 comprises another 18 factors. The factors are ac-
tually option prices for different characteristics (call and
put, m ∈ {0.8,1,1.2}), and τ ∈ {30,60,90 days}, obtained
with the Heston Nandi GARCH (HNG) model. We choose
it because HNG is a discrete time series model based on an
asymmetric GARCH process for the spot asset price with
a closed-form solution for option prices (Heston and Nandi
2000). Thus, it is simple and can be quickly implemented
computationally. In the continuous-time limit, it contains
Heston (1993) stochastic model which is still very popular in
practice. Including the 18 HNG factors acts as guidance for
our model. Intuitively, if a regression tree chooses a HNG
factor as split variable, it implies realigning the minimiza-
tion of the sum of squared differences between observed and

8Filtered historical simulation is a particular technique based on
the bootstrap of the estimated residuals. See Barone-Adesi and Gi-
annopoulos (1998) and Barone-Adesi and Vosper (1999) for a detailed
description of filtered historical simulation.

estimated IV to option prices calculated with the analytical
Heston-Nandi pricing formula.9

3.2.3 Competitors and starting models

We compare the accuracy of the IVS predictions from our
model with several alternative approaches. Each alternative
competitor is also used as starting model in the boosting pro-
cedure explained in Sect. 2.4.2. In particular, we compare
results from our model with those from the following com-
petitors.

Regression tree (regtree) We fit a regression tree with 10
end-nodes on all observed in-sample calls and puts sepa-
rately. We use Gini’s diversity index as a criterion for choos-
ing a split. Positivity of the IVS is guaranteed since the
model depends on the aggregated observed positive IV.

Ad hoc BS model (adhocbs) Dumas et al. (1998) perform
a goodness-of-fit test for several functions of quadratic form
in a deterministic volatility framework. They find that the
best parametrization is given by

σ(K, τ) = max(0.01, a0 + a1K + a2K
2 + a3τ + a4Kτ).

Since we use relative coordinates m = K/St and τ =
T − t , we fit

σ IV
t i = at0 + at1mtiSt + at2(mtiSt )

2

+ at3τti + at4mtiSt τti + εti (13)

by least square, using observations on day t . In case of a
negatively estimated IV, values are also set to 0.01. The co-
efficients estimated on a reference day t̃ < tf are used to
obtain the IVS on a future date tf .

Sticky moneyness model (stickym) The sticky moneyness
model is a ‘naïve trader model.’ It assumes that IV is con-
stant at fixed moneyness. The term structure of the IVS at a
reference day t̃ < tf is used to interpolate the IV on a future
date tf .

Bayesian vector autoregression (bvar) We evaluate the
IVS on a linearly spaced 10 × 10 grid with values from
m = 0.2 to 2 and from τ = 1/365 to 3 for each day in the
sample using a Nadaraya-Watson estimator with a Gaussian
product kernel and step width chosen to minimize the mean
squared error at each grid point. We obtain a 100 dimen-
sional time series over the whole in-sample period on which,
for simplicity, we fit a Bayesian vector autoregression of or-
der 2. The Econometrics Toolbox by James P. LeSage in
Matlab contains functions to estimate, evaluate, and forecast
Bayesian vector autoregressive models.

9The choice of the HNG model is not restrictive: other models can be
used to obtain reliable and informative factors.
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Table 3 60 days out-of-sample performance in terms of overall aver-
aged mean square forecast errors (10) for different predictor variable
sets (Sect. 3.2.2) and sub-samples (Table 2). The alternative models
considered are a regression tree (regtree), the ad-hoc Black-Scholes

model (adhocbs), and the dynamic semiparametric factor model (dsfm)
proposed by Fengler et al. (2007). The models are considered alone
(first three columns) and in connection with our boosting procedure
based on regression trees (treefgd, second three columns)

Sub-sample Only starting model Improved with treefgd

regtree adhocbs dsfm regtree adhocbs dsfm

pv set 1 1 0.0188 0.0223 0.0280 0.0166 0.0267 0.0260

2 0.0118 0.0661 0.4993 0.0032 0.0191 0.4979

3 0.0112 0.0264 0.1325 0.0022 0.0115 0.1304

4 0.0225 0.0755 15.4498 0.0061 0.0252 15.4485

5 0.0117 0.1362 0.0267 0.0066 0.0910 0.0240

pv set 2 1 0.0188 0.0223 0.0280 0.0149 0.0234 0.0271

2 0.0120 0.0661 0.4993 0.0027 0.0173 0.4987

3 0.0112 0.0264 0.1325 0.0026 0.0378 0.1314

4 0.0225 0.0755 15.4498 0.0066 0.0259 15.4492

5 0.0117 0.1362 0.0267 0.0055 0.0968 0.0243

pv set 3 1 0.0188 0.0223 0.0280 0.0149 0.0279 0.0275

2 0.0120 0.0661 0.4993 0.0028 0.0260 0.4987

3 0.0112 0.0264 0.1325 0.0028 0.0213 0.1314

4 0.0225 0.0755 15.4498 0.0101 0.0376 15.4492

5 0.0117 0.1362 0.0267 0.0045 0.0968 0.0244

Dynamic semiparametric factor model (DSFM) In the
DSFM of Fengler et al. (2007), the smooth functions are
multiplied by latent factor loadings. It is accordingly more
difficult to fit a DSFM to data. We choose 4 smooth basis
functions, each a linear combination of cubic B-splines on
a uniformly spaced knot sequence of length 6 between the
minimum and maximum values of time-aggregated obser-
vation in both dimensions of the (m, τ) plane. We apply
the DSFM algorithm directly on IV data instead of on the
log IV. We find that this improves the out-of-sample predic-
tions; otherwise errors in predicting the latent factor load-
ings are raised to a higher power. We set eventual negative
IV to 0.01.

Our choice of the tuning parameters in the different al-
ternative models described above is driven by a trade-off
between computational feasibility and optimization. Given
some restriction on the maximal number of parameters, we
derived the optimal tuning parameters by minimizing the ex-
pected square prediction error approximated by using the
same cross-validation scheme adopted in the estimation pro-
cedure introduced in Sect. 2.4.2.10

10Nevertheless, the different competing approaches are also used as
starting models in our estimation procedure and therefore only need to
provide a first rough approximation of the true IVS dynamics.

3.3 Out-of-sample results

Result of our out-of-sample investigations are summarized
in Table 3. It shows the OS averaged mean square fore-
cast error introduced in (10) over the whole OS period of
60 days for the different approaches under investigation
alone and taken as starting models in our estimation pro-
cedure. Two models, stickym and bvar, are not listed. The
former is omitted because the OS errors are still quite large,
even after using a filtered sample to fit the model. The lat-
ter is excluded because of instability, since the forecast for
the Bayesian vector autoregression yields unexpectedly high
predicted values after maximal 10 OS days.

A regression tree as starting model (regtree) in combina-
tion with our boosting algorithm based on regression trees
(treefgd) beats all other models that we have considered.
This starting model partitions the (m, τ, cp flag) domain into
regions with 10 different IV levels each for calls and puts.
We obtain two piecewise constant IVS, one for calls and one
for puts. Each of them captures to a certain extent an average
IVS over time. The additive expansions in the boosting algo-
rithm are regression trees as well, but with larger predictor
spaces, including time series of factors. Our suggested cross-
validation strategy works very well with the simple starting
model regtree. We obtain a precise dynamical IVS model
that does not overfit the data.

As an illustration, let us examine the out-of-sample pre-
dictions from that model for the 23 February 1999, the 35th
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Table 4 Summary of automatically chosen split variables. Each row
shows the composition of chosen split variables when applying the
boosting procedure based on the regression tree algorithm proposed
in Sect. 2.4.2 on all five sub-samples. We vary starting models
(Sect. 3.2.3) and predictor variable sets (Sect. 3.2.2). m and τ are loca-
tion parameters, close is the option’s underlying closing price. DGS

are treasury-constant maturity rates with different maturities. HNG

stands for option prices calculated according to the Heston Nandi

GARCH model. Time-lagged and forecasted time-leading versions

of close, DGS, and HNG are included as predictor variables; past =
{t −5, . . . , t −1}, contemporaneous = t , and future = {t +1, . . . , t +5}

Split variables

M̂total # splits m τ close DGS HNG past contemp future

pv set 1 regtree 1,066 8,528 39.8% 29.6% 30.6% 1,146 269 1,191

adhocbs 228 1,824 46.4% 22.8% 30.8% 262 49 251

stickym 10 80 36.3% 53.7% 10.0% 2 4 2

bvar 430 3,440 35.6% 29.5% 34.9% 496 138 568

dsfm 282 2,256 20.8% 35.6% 43.6% 459 87 437

pv set 2 regtree 1,185 9,480 42.0% 30.7% 9.2% 18.1% 1,173 289 1,124

adhocbs 152 1,216 43.9% 22.3% 7.9% 25.9% 199 46 166

stickym 21 168 29.8% 37.4% 1.8% 31.0% 7 3 45

bvar 446 3,568 36.2% 28.4% 12.2% 23.2% 614 105 544

dsfm 11 88 36.4% 43.2% 3.4% 17.0% 10 1 7

pv set 3 regtree 890 7,120 42.3% 31.1% 0.8% 6.6% 19.1% 841 243 806

adhocbs 182 1,456 43.7% 19.3% 0.8% 9.3% 26.9% 235 53 250

stickym 13 104 35.6% 37.5% 1.0% 1.9% 24.0% 2 20 6

bvar 497 3,976 38.8% 25.9% 1.0% 9.6% 24.7% 658 127 619

dsfm 11 88 31.8% 47.7% 1.2% 10.2% 9.1% 10 2 6

Total 5,424 43,392 39.4% 29.3% 15.9% 9.1% 6.4% 6,114 1,436 6,022

OS day of sub-sample 2. There are 235 calls and 206 puts in
our database for that day. Figure 2 shows how close the IV
predictions are to the effectively observed IV values. Put in
numbers, daily SSR equals 0.0010 and daily EC 0.0002.

Our estimation procedure is able in all cases to improve
the predictive accuracy of the starting model considered. In
particular, the boosting algorithm reduces the overall aver-
aged SSR by 58, 31 and 3 percent for the starting models
regtree, adhocbs and dsfm on average over 60 OS days and
all combinations of sub-samples and predictor variable sets
in Table 3.

Let us finish the discussion of the OS results with some
other comments on the alternative approaches considered.
First, the ad hoc BS model (adhocbs) works most of the time
quite well when its parameters are estimated on a filtered
sample.11 By contrast, it produces IV estimates and fore-
casts that are not accurate when considering the sample data
on its entirety. The relative high OS prediction errors can be
traced back to a substantial number of outliers.

Second, the sticky moneyness model (stickym) is a sim-
ple interpolation scheme that produces good IS results, but

11When filtering the data in the spirit of Gonçalves and Guidolin
(2006), 60 to 70 percent of the IV data in the sub-samples are excluded.

it is inappropriate for OS predictions. Our cross-validation
scheme suggests an optimal value of only three linear addi-
tive expansions on average. At best, our tree-boosting algo-
rithm improves OS predictions slightly for the first 30 OS
days. Over the whole period of 60 OS days, the OS overall
averaged sum of squared residuals remains so high that it
does not make worthwhile to report the results in Table 3.

Third, the Bayesian vector autoregressive model (bvar)
catches the IVS dynamic reasonably well in-sample. Unfor-
tunately, bvar does not produce stable OS predictions. Af-
ter maximum 10 OS days, OS prediction errors increase ex-
orbitantly. Our tree-boosting algorithm is not able to stabi-
lize the function out-of-sample. Fourth, the dynamic semi-
parametric factor model (dsfm) fits the IVS very well in-
sample. Predicting the latent factors over the whole OS pe-
riod of 60 days is very inaccurate, especially in the presence
of a possible structural break.

3.4 Relative importance of predictor variables

In the same fashion as our interpretation of boosting algo-
rithms, here we address the question of the relevance of the
different predictors in our real data application. Performing
cross-validation on all 5 sub-samples leads to a total number
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of optimal stopping values M̂total = ∑5
i=1 M̂i . Each addi-

tive expansion consists of two regression trees with L = 5
end-nodes, one for the calls and one for the puts. Hence, the
number of total split variables is M̂total · (5 − 1) · 2. Table 4
summarizes all of the information about the predictor vari-
ables that are chosen in the boosting procedure.

Regardless which starting model or predictor variable set
is used, location parameters m and τ are chosen about 70
percent of the time. Knowing the cut values12 enables us
to see on which regions the base learners improve the start-
ing model. The cut values for m lie between 0.4 and 1.5,
uniformly distributed over this interval. Only 5 percent of
the cut values are greater than 1.5, the mean is 0.9067, and
the maximum 2.4007. The distribution of cut values for split
variable τ is concentrated around small values. 25 percent
are smaller than 0.0164 (6 days), 50 percent are smaller than
0.0466 (17 days), and the average is 0.2112 (77 days).

In only 30 percent of the time, regression trees select
time-lagged/forecasted time-leading factors as split vari-
ables. Including forecasts of time-leading factors in the pre-
dictor variable sets turns out to be as important as including
time-lagged factors: both are chosen about the same number
of times. Adding ever more exogenous factors reduces the
OS errors, but it is computationally expensive and the gain
in precision is small.

3.5 A robustness check

Recently, Battalio and Schultz (2006) discussed problems
related to the use of the Option Metric’s Ivy database for
academic studies when arbitrage violations must be taken
into account. The problems are mainly due to the non-
synchronicity of the prices stored in the database: in many
cases, time stamps of the options differ from time stamps
of the underlying. To verify that the forecasting results dis-
cussed in the previous sections are not a consequence of
this non-synchronicity issue, we perform a small robustness
check. We consider the first sub-sample, explicitly given in
Table 2. We construct a new data set of option prices. The
underlying S&P 500 index levels are implicitly obtained
from the original reported option prices, similar to the proce-
dure proposed by Manaster and Rendleman (1982). We use
non-linear least-square estimates of index levels and divi-
dend yields that minimize the sum of the squared differences
between the Black and Scholes (BS) option prices and the
option prices reported in the Option Metrics database over
each day. Then, we recompute BS implied volatilities and
moneyness, using the implied S&P 500 levels and implied

12The CART algorithm of Breiman et al. (1984) provides us with four
split variables and cut values in order to obtain a base learner that par-
titions the predictor space into five areas.

dividend yields. This new data set of option IVs is not depen-
dent on underlying prices that are asynchronous with respect
to the reported closing option prices.

There is no qualitative difference in the results. Compar-
ing the accuracy of the OS predictions obtained using the
new database with those obtained using the Option Met-
rics database, we observe only small changes. In particular,
our boosting procedure of using a regression tree as starting
model outperforms all other competitors. The overall aver-
aged mean square forecast error is 0.0101. Using the Option
Metrics database yielded 0.0149. Stickym and adhocbs pro-
duce slightly better OS results with the filtered,13 implied
database than the filtered Option Metrics database. The over-
all averaged mean square forecast errors are now 0.0502 and
0.0170 for stickym and for adhocbs, respectively. Previous
results were 0.0608 and 0.0223. Qualitatively identical re-
sults are found when using the averaged overall EC. Results
for the other alternative approaches do not change signifi-
cantly.

4 Conclusions

We proposed a new model to estimate and, in particular,
predict implied volatility surfaces. Our approach relies on a
starting model that is improved by semi-parametric additive
expansion of simple fitted functions using regression trees
for the dynamics of implied volatilities. A modified version
of classical boosting procedures can handle very high di-
mensional predictor variable sets. Consequently, there is no
need for variance reduction or other excluding data tech-
niques to fit the model to real data, avoiding the possibility
of a dangerous information loss.

We tested the predictive potential of various IVS models
on a huge data set of S&P 500, options collecting strong em-
pirical evidence that our method improves the performance
of any reasonable starting model in forecasting short- and
middle-term future implied volatilities (up to 60 days), and
even under possible structural breaks in the time series. Sim-
ilar results are also obtained when fitting the models to the
data of a volatile stock option. The model completely based
on regression trees (i.e. regression tree as starting model and
regression trees as base learners) turns out to be the best
performing model and proves to be a powerful tool in fore-
casting IVS dynamics.
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13The filtered option data contain only those options from the new data
set with moneyness between 0.9 and 1.1 and time to maturity between
six days and one year.
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Appendix: Functional gradient descent method

Gradient descent methods are an iterative way of finding a
minimum of a function f of several real-valued variables.
The negative gradient gi = −∇f (Pi) is the direction of the
steepest descent at the point Pi . In the line search step, we
find λi ∈ R, such that Pi+1 = Pi + λigi is the lowest point
along this path. Iterating those two steps leads to a sequence
of points which converges to the minimum of f . The draw-
back of this method is that it converges slowly for functions
that have a long, narrow valley. A better choice for the di-
rection in this case would be the conjugate gradient.

Applying the steepest descent method in a function space
F = {f |f : R

d → R} leads, as the name indicates, to the
FGD technique. Based on data (Yi,Xi), i = 1, . . . , n, an es-
timation of a function F ∈ F which minimizes an expected
loss function E[λ(Y,F (X))], where λ : R × R → R

+ is de-
veloped.

The FGD estimate of F(·) is found by minimizing �, the
empirical risk, defined as:

�(F)(x1, . . . , xn, y1, . . . , yn) = 1

n

n∑

i=1

λ(yi,F (xi)). (14)

Starting from an initial function F̂ , the steepest descent di-
rection would be given by the negative functional derivative
−d�(F̂ ). Due to smoothness and regularization constraints
on the minimizer of �(F̂ ), we must restrict the search to
finding a function f̂ which is in the linear span of a class
of simple base learners S and close to −d�(F̂ ) in the sense
of a functional metric. This is equivalent to fitting the base
learner h(x, θ) ∈ S to the negative gradient vectors:

Ui = − ∂λ(Yi,Z)

∂Z

∣∣∣∣
Z=F̂ (Xi)

, i = 1, . . . , n. (15)

The minimal function F ∈ F is approximated in an addi-
tive way with simple functions f̂m(·) = h(·, θ̂U,X) ∈ S :

F̂M(·) =
M∑

m=0

ŵmf̂m(·), (16)

where the ŵms are obtained in a line search step as in the
previous procedure.

FGD is a derivative of boosting and bagging (cf. Fried-
man et al. 2000; Friedman 2001). Audrino and Bühlmann
(2003) already successfully applied FGD to estimate volatil-
ity in high-dimensional GARCH models, and Audrino et al.
(2005) used it to model interest rates.
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