
Methodol Comput Appl Probab (2013) 15:485–509
DOI 10.1007/s11009-011-9254-7

Exact Computation and Approximation
of Stochastic and Analytic Parameters
of Generalized Sierpinski Gaskets

Uta Freiberg · Christoph Thäle

Received: 26 July 2010 / Revised: 4 September 2011 /
Accepted: 12 September 2011 / Published online: 4 October 2011
© Springer Science+Business Media, LLC 2011

Abstract The interplay of fractal geometry, analysis and stochastics on the one-
parameter sequence of self-similar generalized Sierpinski gaskets is studied. An
improved algorithm for the exact computation of mean crossing times through the
generating graphs SG(m) of generalized Sierpinski gaskets sg(m) for m up to 37
is presented and numerical approximations up to m = 100 are shown. Moreover,
an alternative method for the approximation of the mean crossing times, the walk
and the spectral dimensions of these fractal sets based on quasi-random so-called
rotor walks is developed, confidence bounds are calculated and numerical results
are shown and compared with exact values (if available) and with known asymptotic
formulas.

Keywords Crossing time · Einstein relation · Fractal geometry ·
Hausdorff dimension · Rotor walks · Sierpinski gasket ·
Spectral dimension · Walk dimension

AMS 2000 Subject Classifications 28A80 · 60J10 · 65C50 · 05C81

The second author was supported by the Swiss National Science Foundation Grant SNF
PP002-114715/1.

U. Freiberg
University of Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3,
57068 Siegen, Germany
e-mail: freiberg@mathematik.uni-siegen.de

C. Thäle
Department of Mathematics, University of Fribourg,
Chemin du musée 23, 1700 Fribourg, Switzerland

Present Address:
C. Thäle (B)
Institute of Mathematics, University of Osnabrück, Albrechtstr. 28a,
49076 Osnabrück, Germany
e-mail: christoph.thaele@uni-osnabrueck.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159146831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

486 Methodol Comput Appl Probab (2013) 15:485–509

1 Introduction

1.1 General Introduction

In this paper we consider a one-parameter family sg(m), m = 2, 3, 4, . . . of self-
similar fractals, which we call generalized Sierpinski gaskets, because the classical
Sierpinski gasket is included as the special case m = 2 (see Falconer (2003) for the
classical theory of self-similar fractals). For an illustration of the sets sg(2), sg(3),
sg(4) and sg(5) see Fig. 1, the precise definition will follow in Section 2.1. These
fractal sets belong to the class of so-called nested self-similar fractals, which opens
the door to the machinery of analysis on fractals developed in Barlow (1998) or
Kigami (2001) (for an introduction to analysis on fractals we also cite the survey
article Freiberg (2005)). The results of this beautiful theory show that it is possible
to construct a natural Laplacian on the family of sets sg(m). To analyze further
properties of this operator, it is necessary to calculate explicitly the so-called energy
scaling factors ρ(m). These energy scaling factors are strongly connected with the
spectral dimensions of the fractal sets sg(m). The spectral dimension dS(m) is thereby
twice the exponent of the leading term in the eigenvalue counting function of the
natural Laplacian on sg(m), see Kigami (2001, Chap. 4). Denoting by N(m) the
number of similitudes of the iterated function system (IFS) generating sg(m), we
have the following formula

dS(m) = 2 ln N(m)

ln(N(m)ρ(m))
,

see Kigami and Lapidus (1993) or Kigami (2001). On the other hand, it is well known
from classical probability theory that there exists a strong relationship between the
Laplace operator and the Brownian motion process. More precisely, 1/2 times the
d-dimensional Laplacian is the infinitesimal generator of the standard Brownian
motion on R

d, see Kallenberg (2002) for example. This relationship can also be
utilized in the fractal setting. Once we have constructed a Laplacian on a fractal
set, we also have a Brownian motion on it and vice versa. Also well known in the
classical setting is the fact that a standard Brownian motion can be obtained as
the limit of a sequence of suitably rescaled random walks (Donsker’s invariance
principle). On finitely ramified self-similar fractals there is a natural sequence of
graphs approximating the fractal and hence it is natural to construct a Brownian
motion on the fractal as the limit of appropriately time-changed simple random
walks on these pre-fractal graphs. In order to obtain the correct time-scaling factors
it is—because of the Markov property of the random walks and the self-similarity
of the underlying sets—sufficient to regard the time-space scaling on the first-order
approximations of the fractals sg(m). We call these first-order approximating graphs
the generalized Sierpinski graphs in this paper and denote them by SG(m) (the exact
mathematical definition will follow in Section 2.1).

A fundamental parameter of a fractal as sg(m) that is related to the Brownian
motion on it is the so-called walk dimension, which expresses the natural time-space

Methodol Comput Appl Probab (2013) 15:485–509 487

Fig. 1 The generalized Sierpinski gaskets sg(2)–sg(5)

scaling of the stochastic process. In order to define the walk dimension dW(m) of
sg(m) we denote by τ(B(x, R)) the first exit time of the Brownian motion on sg(m)

from a ball centered at x with radius R. Then, the walk dimension is given by

dW(m) := ln Exτ (B(x, R))

ln R
,

where Ex stands for expectation conditioned on starting at x ∈ sg(m). If the stochastic
process is translation invariant, the dependence of x can be omitted. We will later on
concentrate on the case where x is a vertex of one of the triangles in the fractal.
One readily verifies that these points form a dense set. Note that in graph theory the
limit as R → ∞ is taken, but we will see that due to the self-similarity we will have a
reasonable value for the walk dimension independently of the radius R.

Furthermore, the geometry of the fractals sg(m) in connection with the arising
natural strong reflection principle of the corresponding random walks on the pre-
fractal graphs allows to reformulate the walk dimension in terms of the mean crossing
time of the natural random walk on the generalized Sierpinski graph SG(m). This
mean crossing time will be denoted by T(m) and is the mean value of the time (i.e.

488 Methodol Comput Appl Probab (2013) 15:485–509

the number of steps in this discrete setting), a simple random walk on SG(m) starting
at a vertex A needs to reach vertex B or C, when A, B and C are the vertices of the
regular triangle generating SG(m) and sg(m), see Section 2.1. In this setting we can
rewrite dW(m) as

dW(m) = ln ET(m)

ln m
,

where we have written ET(m) instead of EAT(m). Moreover, the so-called Ein-
stein relation holds, which connects the Hausdorff dimension dH—reflecting the
geometry—, the spectral dimension dS—reflecting analytic properties—and the walk
dimension dW—reflecting the stochastic properties—of sg(m), see Hilfer and Blumen
(1988), Telcs (2006) and Zhou (1993). Einstein’s relation in its dimensional form
reads

2dH(m) = dS(m) · dW(m). (1)

For the definition of the Hausdorff dimension of a self-similar fractal we refer to
Falconer (2003). Its value is given by

dH(m) = ln N(m)

ln m
,

where N(m) is again the number of similitudes generating sg(m) having joint
contraction ratio 1/m. Using the definition of the three different types of dimensions
we can also reformulate the Einstein relation as

N(m)ρ(m) = ET(m). (2)

We would like to point out that the knowledge of the precise values of the parameters
in Eq. 1 or Eq. 2 is of particular interest in physics. Transport phenomena in porous
media are often modelled with the help of (partial) differential equations on fractals
and properties of those materials can be derived from the different dimensions, see
Freiberg (2005) and Hilfer and Blumen (1984) and the references cited therein.

1.2 Problem and Overview

In this subsection we describe a naive approach for the calculation of the mean
crossing times ET(m) through the graphs SG(m) and give a short survey of our
results and the structure of the paper. We have already described in the previous
section that due to the self-similarity of the fractal sets sg(m) and the Markov
property of the simple random walks on SG(m) we have to calculate the mean
crossing times ET(m) through SG(m) to obtain the correct time-scaling, see Barlow
(1998) or Kigami (2001). To illustrate the problem, we specialize for a moment to the
simple example m = 2, see Fig. 2. It is easily verified by writing down a linear system

Methodol Comput Appl Probab (2013) 15:485–509 489

Fig. 2 The Sierpinski graph
SG(2)

of equations that the mean crossing time through SG(2) equals 5. Indeed, writing
Exτ for the mean number of steps a simple random walk needs to reach vertex B or
C when starting at x, we have

EAτ = 1
2

(Ecτ + Eb τ) + 1,

Ecτ = 1
4

(EAτ + EBτ + Eaτ + Eb τ) + 1,

Eb τ = 1
4

(EAτ + Ecτ + Eaτ + ECτ) + 1,

Eaτ = 1
4

(EBτ + ECτ + Eb τ + Ecτ) + 1,

EBτ = 0, ECτ = 0,

which yields after a simple calculation the solution EAτ = 5, Eb τ = Ecτ = 4 and
Eaτ = 3. This means that the simple random walk on SG(2) is 5-times slower than a
random walk on the unilateral triangle �ABC. Having calculated ET(2) = 5, we are
now able to proceed with analysing further properties of the Brownian motion and
the Laplacian on sg(2). For example, it is easily seen that

N(2) = 3 and ρ(2) = 5
3
,

where for the last equality we have used Eq. (2). Furthermore, using the three
dimension formulas from above, we obtain

dH(2) = ln 3
ln 2

, dW(2) = ln 5
ln 2

, dS(2) = ln 9
ln 5

.

However, only for a very few numbers of m, these characteristic properties of the
fractal sets sg(m) are explicitly known, which is yet of particular physical interested,

490 Methodol Comput Appl Probab (2013) 15:485–509

see Hilfer and Blumen (1984). To be more precise, we recall that Given and Mandel-
brot (1983) have calculated the mean crossing times of SG(2)–SG(4) and in Freiberg
and Thäle (2008) the authors confirmed these earlier results and extended the list
until m = 7 by developing a first version of an algorithm based on Markov chains.
It was a main disadvantage of this algorithm that in order to calculate the mean
crossing time of SG(m), a so-called connection matrix has to be entered by hand
into a program. The aim of this paper is twofold. On the one hand side, we develop
the mentioned algorithm from Freiberg and Thäle (2008) further and overcome the
main difficulty. The only input of the new algorithm is simply the natural number
m. This allows us to calculate explicitly the values of the mean crossing time for
considerably larger values of m, namely until m = 37. However, the runtime of the
algorithm is rather slow so that explicit expressions for the mean crossing times
ET(m) for larger values of m are currently out of reach. For this reason, we will also
present another approach, which allows approximations of ET(m), the walk and the
spectral dimensions dW(m) and also of dS(m) by using Einstein’s relation. Moreover,
it will be shown, how (at least for small m, i.e. m ≤ 50 for example) inequalities or
confidence intervals for the true values can be obtained from these approximations.
Our approach is based on a rather new technique, namely that of quasi-random rotor
walks. These deterministic walks replace the random walks on SG(m) and reduce
the original problem to a simple counting procedure. The recent theory (Holroyd
and Propp 2010) shows that the convergence behaviour of these rotor walks is much
better than that of their random counterparts. Also our numerical results will confirm
this observation: The rotor walks yield quite accurate approximations, whereas it was
not possible for us to obtain results with only nearly the same precision with the help
of random walks using the same number of steps of the algorithm (Monte-Carlo
simulation). We are convinced that the new method presented here has applications
far beyond the family of generalized Sierpinski gaskets and we hope that some new
aspects may be explored in the near future. It should be possible to modify our
algorithms in order to get the exact expected crossing times (or estimations for them)
for general nested fractals (in particular for fractal n-gons) and even p.c.f. fractals.
Even more appealing would be to calculate expected crossing times for certain classes
of random fractals with our methods.

Both of our methods allow to obtain new insight into the asymptotic behaviour
of the mean crossing times, the walk and the spectral dimensions of sg(m) for
large values of m. This was considered from a theoretical viewpoint in Hambly
and Kumagai (2002), where it was proved that the mean crossing time of SG(m)

asymptotically behaves as m2. In contrast to this we will see that the growth rate is
rather different for small m, say m between 2 and 100. We will observe that the mean
crossing times behaves for such m as m2.3 and the decay down to m2 is extremely
slow.

2 An Exact Algorithm

The current Section presents an exact algorithm for the determination of the mean
crossing times of generalized Sierpinski graphs based on Markov chain methods. It

Methodol Comput Appl Probab (2013) 15:485–509 491

is an advancement and a considerable improvement of an earlier algorithm from
Freiberg and Thäle (2008). At first, some basic notions and notation are fixed.

2.1 Basic Notation

In this subsection, we formally introduce the class of generalized Sierpinski gaskets
sg(m) and explain how they can be approximated by a sequence of nested networks.
Hereby, some “building pattern”—the graph SG(m) will play a crucial role.

Let us be given a unilateral triangle �ABC with unit side length and apply the
following construction: Divide each side of the triangle into m, m ≥ 2, pieces of
the same length 1/m and connect all pairs of dividing points such that the arising
connection line is parallel with one of the original triangle sides. We end up with
m2 small equilateral triangles having side length 1/m, m(m+1)

2 of them pointing up,
and m(m−1)

2 of them pointing down. Now, we “waste” all the triangles pointing
downwards, and then we iterate the procedure with the remaining (upward pointing)
triangles, which means that we replace each of the triangles we kept by a figure of
the same shape and suitable size. Proceeding that way, we obtain in the limit a self-
similar set, which we will call generalized Sierpinski gasket and which we denote by
sg(m). The sets sg(m) for m = 2, 3, 4, 5 are shown in Fig. 1.

In the language of Iterated Function Systems (IFS’s), see for example Falconer
(2003) or Kigami (2001), the set sg(m) is the unique compact non-empty set which is
invariant under the family of contractive similitudes

�m :=
{
ψi, i = 1, . . . ,

m(m + 1)

2

}

acting on the real plane R
2 with

ψi(x) := 1
m

x + ti, x ∈ R
2,

for some ti ∈ R
2, i = 1, . . . , m(m+1)

2 . In order to introduce some “numbering” on the

smaller triangles, we agree upon the following notation: Denote by u := −−→
AB and

v := −→
AC the two-dimensional unit vectors pointing from the vertex A to the vertex

B and the vertex C, respectively. Then,

{
ti : i = 1, . . . ,

(m + 1)m
2

}

is the set of all vectors
{

k
m

u + l
m

v : k, l ≥ 0, k + l < m
}

and we choose the indices i in such a manner that the triangles ψi(�ABC) are ordered
from the bottom to the top, and in each row from the left to the right.

492 Methodol Comput Appl Probab (2013) 15:485–509

Due to a result of Hutchinson, for which we refer to Hutchinson (1981), the
Hausdorff dimension of the generalized Sierpinski gasket sg(m) is given by

dH(m) = ln(m + 1) + ln m − ln 2
ln m

. (3)

Now, fix some m ≥ 2. The fractal sg(m) can be approximated by an increasing
sequence of nested graphs as follows: Define �0 = (V0, E0) to be the graph with
vertex set V0 := {A, B, C} and edges E0 := {AB, BC, AC}. We define an increasing
sequence of vertex sets by

V(m)
n+1 :=

(m+1)m
2⋃

i=1

ψi(V(m)
n), n ≥ 0.

Note, that

⋃
n≥0

V(m)
n = sg(m),

where the closure is taken with respect to the Euclidean metric in the plane.
We say that two points p, q ∈ V(m)

n are connected by an edge of E(m)
n if there is a

n-tuple (i1, . . . , in) of indices from the index set {1, . . . , (m + 1)m/2} such that

p = ψi1 ◦ . . . ◦ ψin(P)

and

q = ψi1 ◦ . . . ◦ ψin(Q)

for some P, Q ∈ V0 and some ψi1 , . . . , ψin ∈ �m. By the self-similarity of sg(m), the
graph �(m)

n = (V(m)
n , E(m)

n) consists of [(m + 1)m/2]n just-touching copies of graph
�

(m)
1 = (V(m)

1 , E(m)
1). We denote this ‘building graph’ by SG(m).

As already discussed in the introduction, when investigating such fractals, one
is in particular interested in calculating their spectral and walk dimension. Besides
the Hausdorff dimension dH(m) of sg(m), which reflects the geometric properties
of the set, these numbers are related to the analytic and stochastic features of
sg(m). The spectral dimension is twice the leading exponents in the asymptotic
expansion of the eigenvalue counting function of the canonical Laplacian on sg(m)

(see Kigami and Lapidus 1993; Kigami 2001). The walk dimension dW(m) of sg(m)

reflects the time-space-scaling of the canonical Brownian motion on sg(m). This time
continuous stochastic process can be constructed as the limit of a suitable normalized
sequence of random walks on the approximating graphs �(m)

n = (V(m)
n , E(m)

n), see
Lindstrøm (1990). To be more precise, we regard a simple random walk on the graph

Methodol Comput Appl Probab (2013) 15:485–509 493

�(m)
n = (V(m)

n , E(m)
n) and ask how long it takes the random walker to pass from A to B

or C, i.e. we ask for the mean crossing time τm,n through a triangle which has (graph
theoretical) side length mn. The walk dimension of sg(m) is given by (see Freiberg
2011; Telcs 2006; Zhou 1993)

dW(m) := lim
n→∞

ln τm,n

ln(mn)
.

We make the following crucial observation: From the self-similarity and finite
ramification of the graphs �(m)

n , it follows that τm,n = τ n
m,1. The proof can be given

by a simple induction. We look at the crossing through �
(m)
2 and regard this graph

as the “union” of small �
(m)
1 -graphs. Then we use a black-box-argument which yields

τm,2 = τm,1 · τm,1.
Thus, we get

dW(m) = ln τm,1

ln m
= ln ET(m)

ln m
.

Hence, calculation of the walk dimension of sg(m) can be reduced to the determina-
tion of the mean crossing time ET(m) through the building graph SG(m).

2.2 An Example

The aim of this subsection is to demonstrate the mathematical idea of our algorithm
in the case of the generalized Sierpinski graph SG(3). To this end, we start with the

Fig. 3 The disconnected and the connected ‘version’ of the graph SG(3)

494 Methodol Comput Appl Probab (2013) 15:485–509

regular triangle �ABC with vertices A = (0, 0), B = (1, 0) and C =
(

1
2 ,

√
3

2

)
. As in

the last subsection, let ψ1, . . . , ψ6 be the six similarities mapping �ABC onto the 6
disconnected triangles shown in Fig. 3. We furthermore introduce the 3 × 3 adjacency
matrix

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

and the 18 × 18 block diagonal matrix M := diag(A, A, A, A, A, A). From the
structure of M we see that M is the adjacency matrix of a graph consisting of 6
disconnected triangles shown in Fig. 3. In order to build from these six copies of
�ABC the generalized Sierpinski graph SG(3), we have to connect several vertices
of the currently unconnected graph. To this end, we introduce the connection
matrix

C =
(

2 3 5 6 9 11 12 15
4 10 7 11 14 13 16 17

)
,

in which all necessary identifications of vertices are coded up. Here, for example,

the column
(

2
4

)
means that vertex with number 2 has to be connected with vertex

having number 4. We now use the information coded in the connection matrix C in
order to connect the six small copies of �ABC. To do so, we read out the columns(

c1,k

c2,k

)
, 1 ≤ k ≤ 8, and add row and column c1,k to row and column c2,k of the block

diagonal matrix M and call the resulting matrix M′. This matrix is the adjacency
matrix of a graph consisting of 6 connected triangles and 18 nodes, but with several
nodes identified. To remove these double points (nodes) we use again the connection
matrix C and delete row and column c1,k for 1 ≤ k ≤ 8. The result is the matrix

M′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We see that M′′ is the adjacency matrix of the generalized Sierpinski graph SG(3).

Methodol Comput Appl Probab (2013) 15:485–509 495

It is the next goal to define a simple random walk on the approximating graph
SG(3). To this end we transform the matrix M′′ into a stochastic matrix (by
normalizing each row such that it sums up to one), which yields the transition matrix
of a simple random walk on the Sierpinski graph SG(3). To calculate the mean
crossing time ET(3) of SG(3) we introduce the two cemetery (absorbing) states B
and C by removing row and column associated with the two vertices B and C. The
resulting matrix will be

M′′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2

0
1
2

0 0 0 0

1
4

0
1
4

1
4

1
4

0 0 0

0
1
4

0 0
1
4

1
4

0 0

1
4

1
4

0 0
1
4

0
1
4

0

0
1
6

1
6

1
6

0
1
6

1
6

1
6

0 0
1
4

0
1
4

0 0
1
4

0 0 0
1
4

1
4

0 0
1
4

0 0 0 0
1
4

1
4

1
4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note, that this matrix is no longer a stochastic matrix. In each row, which corresponds
to a neighbouring point of an absorbing state, the row sum is strictly less than
one.

From the theory of Markov chains (see for example Kemeny and Snell 1983) it is
well known that the vector T = (E1T, E2=4T, . . . , E18T) of expected crossing times
(i.e. EkT is the mean number of steps the Markov chain stays in the non-absorbing
component, provided we start in vertex k) is connected with the sub-stochastic matrix
M′′′ by

T = M′′′T + 1,

where 1 := (1, . . . , 1)T . Thus, the mean crossing time ET(3) = E1T is the first
component of the vector

(
E − M′′′)−1 1,

496 Methodol Comput Appl Probab (2013) 15:485–509

where E is the identity matrix of suitable size (compare also with the linear system
for ET(2) presented in Section 1.2). In our case we calculate

(
E − M′′′)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

15
7

16
7

8
7

16
7

15
7

6
7

8
7

6
7

8
7

853
315

79
63

587
315

15
7

277
315

65
63

263
315

4
7

79
63

113
63

65
63

11
7

55
63

43
63

41
63

8
7

587
315

65
63

853
315

15
7

263
315

79
63

277
315

5
7

10
7

22
21

10
7

19
7

20
21

22
21

20
21

3
7

277
315

55
63

263
315

10
7

523
315

41
63

257
315

4
7

65
63

43
63

79
63

11
7

41
63

113
63

55
63

3
7

263
315

41
63

277
315

10
7

257
315

55
63

523
315

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and hence

ET(3) = e1
(
E − M′′′)−1 1 = e1

(
90
7

,
83
7

,
59
7

,
83
7

,
72
7

,
53
7

,
59
7

,
53
7

)T

= 90
7

,

where e1 = (1, 0, . . . , 0). In the next subsection we algorithmise the idea shown here
and generalize to arbitrary integers m ≥ 2.

2.3 The Algorithm

We will now present the main steps of our algorithm using a pseudo-code, which
should be readable without knowledge of a specific programming language.

Step 1: Input. In contrast to the algorithm presented in Freiberg and Thäle (2008)
the input is here simply the natural number m ≥ 2:

input m;

Step 2: Build isolated copies. In this step the block diagonal matrix M =
diag(A, . . . , A︸ ︷︷ ︸

m(m+1)/2

) with

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

Methodol Comput Appl Probab (2013) 15:485–509 497

is created:

M:=DiagonalMatrix(A,m(m+1)/2);

As explained in Section 2.2, this is the adjacency matrix of a graph consisting
of m(m+1)

2 disconnected triangles, which are the scaled copies of a regular
triangle �ABC.

Step 3: Create the connection matrix. Now, the connection matrix C is computed.
This is a matrix with 2 rows and m2 − 1 columns

C =
(

c1,1 c1,2 . . . c1,m2−1
c2,1 c2,2 . . . c2,m2−1

)

with the property that c1,k < c1,l and c1,k < c2,k for all 1 ≤ k, l ≤ m2 − 1

with k < l. The column
(

c1,k

c2,k

)
in the matrix C means that node c1,k is

identified with node c2,k. The algorithmic computation of C was one of the
main problems to solve. Here, we will only use the ‘black-box-command’
ConnectionMatrix(m):

C:=ConnectionMatrix(m);

and refer to the Appendix, where a MATLAB-solution is presented. The
connection matrix of the generalized Sierpinski graph SG(3) was already
shown in Section 2.2. For m = 4 we have for example

C =
(

2 3 5 6 8 9 12 14 15 17 18 21 23 24 27
4 13 7 14 10 17 20 16 22 19 23 26 25 28 29

)
,

when using the canonical enumeration of the nodes as shown in Fig. 4
(left). The graph with associated adjacency matrix M is shown in Fig. 4
(right) together with a visualization of the action of the connection matrix
C. Observe that in the k-th row of triangles we have nodes with numbers

Fig. 4 Graph with adjacency matrix M and canonical enumeration (left); Visualization of the action
of the connection matrix C (right)

498 Methodol Comput Appl Probab (2013) 15:485–509

3(k − 1)m − 3
2 (k − 1)(k − 2) + 1 up to 3km − 3

2 k(k − 1), which follows from
simple combinatorial arguments.

Step 4: Connect the isolated copies. The information coded in the connection
matrix C is now used to connect the isolated triangles of the graph with
adjacency matrix M. In order to glue together node k with node l, k < l, we
add row and column k of the matrix M to row and column l:

for n from 1 to m^2-1 do AddRow(M,C[1,n],C[2,n]);
AddColumn(M,C[1,n],C[2,n]); end do;

The matrix M (this was the matrix M′ in Section 2.2) is now the adjacency
matrix of a graph consisting of isolated triangles but with several nodes
identified. The double points are removed in

Step 5: Remove double points. Here, we only use the first row of the connection
matrix C, which consists of all nodes c1,k identified with nodes c2,k, where
c1,k < c2,k. In order to obtain a graph without double points we remove now
all rows and columns of M with numbers c1,k, 1 ≤ k ≤ m2 − 1:

for n from 1 to m^2-1 do RemoveRow(M,C[1,n]);
RemoveColumn(M,C[1,n]); end do;

The resulting matrix M is after Step 5 (this was the matrix M′′ in Section
2.2) the adjacency matrix of the generalized Sierpinski graph SG(m).

Step 6: Transform into a stochastic matrix. We transform here the matrix M into
the transition matrix of a Markov chain associated with the graph SG(m):

for n from 1 to Dimension(M) do r:=RowSum(M,n);
MultiplyRow(M,1/r); end do;

We can think of the resulting Markov chain as a simple random walk on
SG(m).

Step 7: Remove the absorbing states B and C. In this step we remove the rows and
columns associated with the the two corners B and C of the parent triangle
�ABC:

RemoveRow(M,r(B)); RemoveColumn(M,r(B));
RemoveRow(M,Dimension(M));
RemoveColumn(M,Dimension(M));

Here r(B) is the row associated with the corner B and can be calculated
using the first row of the connection matrix C. Details can be found in the
programming code in the Appendix. The matrix M after the final removal
(this was in Section 2.2 the matrix M′′′) is the transition matrix of a Markov
chain with two cemeteries B and C, i.e. an absorbing Markov chain in the
sense of Kemeny and Snell (1983). Note that M has full rank, which will be
important in the next step of our algorithm.

Step 8: Solve the linear system. In this last step we apply the theory of Markov
chains as developed for example in Kemeny and Snell (1983) to calculate
the mean time ET(m) (i.e. expected number of steps) the Markov chain
with transition matrix M is in the non-absorbing component, i.e. on the

Methodol Comput Appl Probab (2013) 15:485–509 499

nodes of the graph SG(m) with the two corners B and C removed. This
time can be computed with the formula

ET(m) = e1(E − M)−11,

where again E is the identity matrix, 1 is the vector 1 = (1, 1, . . . , 1)T and
e1 = (1, 0, . . . , 0).

E:=IdentityMatrix; e:=Vector(1,Dimension(M));
T(m):=Multiply(Inverse(E-M),e)[1];

The output of our algorithm is an exact fraction for ET(m), which is the first
component of the computed vector.

3 The Rotor-Router Approach

In this section we develop another approach for the calculation of the mean crossing
times through generalized Sierpinski graphs, which does not yield exact values,
but rather accurate approximations. Moreover, for small parameters m, reasonable
confidence bounds or inequalities can be found.

3.1 Background Material

We describe here an alternative algorithmic approach for calculating or approxi-
mating the crossing times through the family of graphs SG(m). The idea is to de-
randomize the problem and to study ‘deterministic random walks’. The concept we
will use is the so-called rotor-router method, which produces rotor walks on the
graphs SG(m) instead of random ones. By a rotor walk (Yn)n∈N on a graph � =
(V, E) with vertex set V and edge set E ⊆ V × V we mean a deterministic cellular
automaton associated with the Markov chain introduced above, defined as follows:
First, we are given an initial vertex v0 ∈ V and an initial rotor configuration (r(v))v∈V ,
r : V → V is a function, which assigns to each vertex one of its neighbouring vertices.
We can imagine r(v) as an arrow pointing to one of the neighbours of v. Second, we
are given a deterministic rule s : V → V, which assigns to each neighbouring vertex v′
of each vertex v ∈ V a so-called successor s(v′), which is another neighbouring vertex
of v. This means that with the help of the rule s we have introduced an ordering of
all neighbouring vertices of a given vertex. The rotor walk develops according to the
following transition rule: Y0 := v0 and for each n ∈ N, Yn+1 := r(Yn), i.e. the walker
walks along the current arrow assigned to the vertex Yn. Moreover, the rotor r(Yn)

is shifted after the transition to its successor, i.e. r(Yn) �→ s(r(Yn)). It is clear from
the construction that once the rule s is fixed, the sequence (Yn)n∈N only depends
on the initial position Y0 ∈ V and the initial rotor configuration (r(v))v∈V . For an
introduction to this topic we refer to Holroyd et al. (2008) and to Holroyd and Propp
(2010).

We specialize now the ideas explained so far to the case, where � is the generalized
Sierpinski graph SG(m). This graph has seven different types of vertices: (1) vertex
A, (2) vertex B, (3) vertex C with degree 2, each time (m − 1) vertices with degree 4,
(4) on the lower, (5) on the left and (6) the right boundary and (7) 1

2 (m − 1)(m − 2)

500 Methodol Comput Appl Probab (2013) 15:485–509

vertices with degree 6. For these types we show in Fig. 5 the ordering of the six
directions named 1, 2, 3, 4, 5, 6, necessary to define the successor rule s. We define:

(1) s(n) :=
{

1 : n = 2
2 : n = 1

(2) s(n) :=
{

3 : n = 4
4 : n = 3

n ∈ {1, 2} n ∈ {3, 4}

(3) s(n) :=
{

5 : n = 6
6 : n = 5

(4) s(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 : n = 4
2 : n = 1
3 : n = 2
4 : n = 3

n ∈ {5, 6} n ∈ {1, 2, 3, 4}

(5) s(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 : n = 6
2 : n = 1
5 : n = 2
6 : n = 5

(6) s(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 : n = 6
4 : n = 3
5 : n = 4
6 : n = 5

n ∈ {1, 2, 5, 6} n ∈ {3, 4, 5, 6}
and furthermore

(7) s(n) :=
{

1 : n = 6
n + 1 : n ∈ {1, 2, 3, 4, 5}

n ∈ {1, 2, 3, 4, 5, 6}.

Fig. 5 Illustration of the
successor rule s(n) of the 7
different types of vertices

Methodol Comput Appl Probab (2013) 15:485–509 501

For the meaning of the direction indicating numbers 1 to 6 we refer to Fig. 5. In order
to calculate the mean crossing time of SG(m) we modify our rotor walk by adding the
following rule: Whenever Yn ∈ {B, C}, we put Yn+1 := A. This means that we move
immediately to vertex A when we reach one of the vertices B or C. Furthermore, we
define the initial vertex to be the vertex A, i.e. Y0 := A and denote by Nn(W) the
the number of times the rotor walk (Yn) visits the set of vertices W ⊂ V before time
step n (but not including n), i.e.

Nn(W) = #{k < n : Yk ∈ W}.
We reformulate now a result from Holroyd and Propp (2010) (Theorem 2 therein),
which connects the mean crossing time ET(m) of SG(m) with the number Nn(m) :=
Nn({B, C}) of visits of the rotor walk on SG(m) of set of vertices {B, C} for the special
case of generalized Sierpinski graphs SG(m):

Theorem 1 There exists a f inite constant K(m) depending on m such that for all n ∈ N

we have

∣∣∣∣ET(m) −
(

n
Nn(m)

− 1
)∣∣∣∣ ≤ K(m)

Nn(m)
.

Thus, the average number of time steps Nn(m) for the rotor walk on SG(m) to get
from A to B or C concentrates around the mean crossing time when n gets larger
and larger. It is also known that the optimal constant K(m) is given by

K(m) := max
v∈V(m)

Evτ{B,C} + 1
2

∑
v∈V(m)

u∈V\{B,C}

deg(u)p(u, v)
∣∣Euτ{B,C} − Evτ{B,C} − 1

∣∣ ,

where V(m) is the vertex set of SG(m), which was denoted by V(m)
1 in Section 2.1 and

where p(u, v) is the transition probability from vertex u to vertex v. In our case we
have p(u, v) = 1

deg(u)
for any vertex u ∈ SG(m) (deg(u) is the degree of vertex u, i.e.

the number of adjacent edges) and so K(m) reduces to

K(m) ≤ ET(m) + 1
2

∑
v∈V(m)

u∼v

∣∣Euτ{B,C} − Evτ{B,C} − 1
∣∣ , (4)

where u ∼ v means that u is a neighbour of v in SG(m).

3.2 The Algorithm

In this section we present the algorithm used to produce the numerical values for the
mean crossing times ET(m) which will be shown in Section 4. For the formulation
of the algorithm, we will use again a pseudo-code, which should be readable without
knowledge of a specific programming language.

502 Methodol Comput Appl Probab (2013) 15:485–509

Step 1: Input. The input of our algorithm is the model parameter m and a natural
number n, which fixes the total number of steps the algorithm is running.

input m; input n;

Step 2: Create the initial Rotor Matrix. In order to avoid exceptional cases, we
choose for the initial rotor position a random one, uniformly chosen from
the set of all possible configurations. This configuration is coded up in the
so-called rotor matrix R, which has 2 rows and (m+1)(m+2)

2 columns. In the
first row the labels from 1 to (m + 1)(m + 2)/2 of all vertices of SG(m)

are written. In the second row we write for each vertex v a random rotor
direction in {1, 2, 3, 4, 5, 6} (compare with Section 3.1 and especially Fig. 5
for the enumeration of the possible rotor directions). For this we have to
distinguish the 7 cases discussed above.

R:=CreateRandomRotorMatrix(2,(m+1)(m+2)/2);

A typical rotor matrix for m = 2 could be

R =
(

1 2 3 4 5 6

1 3 5 1 6 4

)
,

whose meaning is explained in Fig. 6, first picture in the first row.
Step 3: Perform the Rotor Walk. In this step of the algorithm the rotor walk is

running and the number Nn(m) of hits of the vertices B and C is counted.
In the programming code, this number is abbreviated by z. The current

Fig. 6 A rotor walk for n = 0, 1, 2, 3, 4, 5; z counts the number of hits of the vertices B and C

Methodol Comput Appl Probab (2013) 15:485–509 503

position of the rotor walk will be the number w. We read out the entry
R(2, w) (second row and column with number w) of the rotor matrix R
which is the direction assigned to vertex with number w. After this, we walk
from w to the next vertex in direction associated with w and rotate the rotor
of w according to the rule from Section 3.1. If we hit one of the vertices B
or C we increase our counter z by 1 until we reach the previously fixed total
number n of steps.

z:=0; w:=1; for k from 1 to n do
direction:=ReadRotorMatrix([2,w]);
w:=NextVertex(w,direction);
RotateRotor(w);
if ((w=B) OR (w=C)) then z:=z+1; end if;
end do;

For m = 2 and for the initial rotor matrix R from above the first 5 steps of
the rotor walk are illustrated in Fig. 6.

Step 4: Output. In the last step of our algorithm we simply use the approximation
from Theorem 1 and print the result of our simulation.

print(n/z-1);

It is important to note that the complexity of the algorithm does not grow
with m, but with n and that with m growing complexity is main problem of
the exact algorithm from Section 2.

In order to use Theorem 1 for the construction of confidence bounds (or maybe
more precisely inequalities, because the confidence bounds we obtain here are not
confidence bounds in the usual statistical sense) for the mean crossing time ET(m) of
SG(m) from the quantity Nn(m) obtained by rotor-walk-simulation, we have to find
an upper bound for the constant K(m) given by Eq. (4). To this end we first note that
the total number |SG(m)| of verticies in the graph SG(m) equals

|SG(m)| = 3 + 3(m − 1) + 1
2
(m − 1)(m − 2),

which may be obtained simply by counting the number of vertices of type (1) to (7),
see Section 3.1. Next, we apply (Hambly and Kumagai 2002, Corollary 2.3), which
implies that the mean crossing time ET(m) is bounded from above by m2 ln m. This
implies that the constant 4 is bounded from above by

K(m) ≤ ET(m) + 1
2

∑
v∈SG(m)

u∼v

|Euτ{B,C} − Evτ{B,C} − 1|︸ ︷︷ ︸
≤ET(m)

≤ ET(m) + 1
2

· 6|SG(m)|ET(m)

= ET(m)

(
1 + 3

(
3 + 3(m − 1) + 1

2
(m − 1)(m − 2)

))

≤ m2
(

3
2

m2 + 9
2

m + 4
)

ln m.

504 Methodol Comput Appl Probab (2013) 15:485–509

Here we have used the fact that each vertex of SG(m) has at most six neighbours.
For m = 2 we have K(2) ≤ 53, for m = 10, K(10) ≤ 45822, for m = 100 we have
K(100) ≤ 7.1169 · 108 and for m = 1000 we obtain K(1000) ≤ 1.0393 · 1013.

For abbreviation we define

T̂(m) := n
Nn(m)

− 1,

K̃(m) := m2
(

3
2

m2 + 9
2

m + 4
)

ln m.

Now, the above considerations in connection with Theorem 1 show that the mean
crossing time ET(m) of SG(m) must lie in the interval

[
T̂(m) − K̃(m)

Nn(m)
, T̂(m) + K̃(m)

Nn(m)

]
.

Moreover, for the walk and the spectral dimension of sg(m) we have

ln
(

T̂(m) − K̃(m)

Nn(m)

)
ln m

≤ dW(m) ≤
ln

(
T̂(m) + K̃(m)

Nn(m)

)
ln m

and

2(ln m + ln(m + 1) − ln 2)

ln
(

T̂(m) + K̃(m)

Nn(m)

) ≤ dS(m) ≤ 2(ln m + ln(m + 1) − ln 2)

ln
(

T̂(m) − K̃(m)

Nn(m)

)

by using Einstein’s relation 1 from the introduction.

4 Results

We show at first the output of our exact algorithm developed in Section 2 for m
from 2 to 37, which has been implemented in MAPLE in order to get explicit and
exact fractions. For these values we restrict ourself to m ∈ {2, . . . , 10}, because they
become rather infeasible for growing m. For example we have for m = 20 the exact
crossing time

ET(20) = 2340425320103121908358156260467969264300218514030
2280953681678853992710829759059455027077686193

.

For m greater than 10 we show the numerical approximations of the mean crossing
times ET(m), the exact values of ET(m) for m between 2 and 37 can be found in the
technical note Freiberg and Thäle (2010), which is available on the second authors
homepage. We like to point out that an explicit formula for ET(m) depending on m is
still unknown and the task of finding it seems in view of the values quite intractable.

ET(8) = 69549468
554417

, ET(9) = 5892677181
35789105

, ET(10) = 27739580424985
132150155017

Methodol Comput Appl Probab (2013) 15:485–509 505

m 2 3 4 5 6 7 8 9 10

ET(m) 5
90
7

1030
41

8315
197

452739
7025

904836
9823

ET(8) ET(9) ET(10)

dW(m) 2.3219 2.3247 2.3254 2.3255 2.3249 2.3244 2.3236 2.3228 2.3220
m 11 12 13 14 15 16 17 18 19
ET(m) 261.39 319.24 383.60 454.60 532.35 616.97 708.56 807.21 913.02
dW(m) 2.3212 2.3204 2.3196 2.3188 2.3180 2.3173 2.3165 2.3158 2.3152

m 20 21 22 23 24 25 26 27 28
ET(m) 1026.1 1146.5 1274.2 1409.5 1552.3 1702.8 1860.9 2026.8 2200.5
dW(m) 2.3145 2.3138 2.3132 2.3126 2.3119 2.3114 2.3108 2.3103 2.3097
m 29 30 31 32 33 34 35 36 37
ET(m) 2382.1 2571.6 2769.0 2974.6 3188.2 3409.9 3639.9 3878.0 4124.5
dW(m) 2.3091 2.3087 2.3082 2.3077 2.3072 2.3068 2.3063 2.3058 2.3054

For larger values of m, i.e. m ∈ {38, 39, . . . , 100} we have used the power of
MATLAB, which becomes noticeable especially in the step including the matrix
inversion. More precisely, we have used the iterative generalized minimum residual
method implemented in MATLAB.

At this place, we would like to give an interpretation of the results: In Hambly and
Kumagai (2002), the authors have shown that the walk dimension of sg(m) behaves
asymptotically like

dW(m) = 2 + log log m
log m

+ O(1)

log m
, m → ∞,

where O(1) vanishes, as m → ∞. Hence, dW(m) → 2, as m → ∞. However, the rate
of convergence is rather slow. It was observed in Freiberg and Thäle (2008) and
confirmed by the values presented in Freiberg and Thäle (2010) that for small m
the mean crossing times are much better approximated by m2.3 than by m2, which
would be the correct asymptotical fit.

We now show the numerical results obtained for ET(m), dW(m) and dS(m) for m
between 2 and 100 by simulation of the rotor walks introduced in Section 3. They are
compared with the asymptotic upper bounds m2 ln m for the mean crossing time, 2 +
ln ln m
ln m for the walk dimension and 2 − ln ln m

ln m for the spectral dimension from Hambly
and Kumagai (2002)—these are the green curves in Figs. 7 and 8:

m 2 10 20 30 40 50 60 70 80
ET(m) 5.0000 209.91 1026.1 2571.5 4914.5 8102.7 12176 17163 23072
dW(m) 2.3219 2.3220 2.3145 2.3087 2.3042 2.3006 2.2976 2.2951 2.2926

A comparison with the exact values for ET(m), dW(m) and dS(m) for m between 2
and 100 from above shows that the error between ET(m) and T̂(m) is of small order
(here less than 19) and we have ∣∣∣∣∣dW(m) − ln T̂(m)

ln m

∣∣∣∣∣ ≤ 10−4 and

∣∣∣∣dS(m) − 2(ln m + ln(m + 1) − ln 2)

ln T̂

∣∣∣∣ ≤ 10−4.

506 Methodol Comput Appl Probab (2013) 15:485–509

Fig. 7 Rotor-walk approximations for ET(m) (left), dW(m) (middle) and dS(m) (right) for 2 ≤ m
≤ 100

For the simulations we have run our algorithm with the parameter n = 150,000,000.
The confidence bounds from Section 3.2 turn out to be reasonable good for small

m, but unfortunately very rough for large ones (for the same parameter n). For m =
2, m = 10 and m = 20 we have

ET(2) ∈ [5.0000, 5.0000], ET(10) ∈ [209.84, 209.97],
ET(20) ∈ [1020.4, 1031.8], dWsg(2) ∈ [2.3219, 2.3219],

dWsg(10) ∈ [2.3219, 2.3222], dWsg(20) ∈ [2.3126, 2.3163],
dSsg(2) ∈ [1.3652, 1.3652], dSsg(10) ∈ [1.4989, 1.4991],

dSsg(20) ∈ [1.5412, 1.5436].
The values for m = 50 are notedly more imprecise, i.e ET(50) ∈ [6524.9, 9677.9],
dWsg(50) ∈ [2.2452, 2.3460], dSsg(50) ∈ [1.5583, 1.6282] and for m = 100 they are
even unrealistic. The reason for this phenomenon lies in the constant K(m), which
grows to fast with m, i.e. K(m) is of order (3/2)m4 ln m. Because of that it is an open
and non-trivial problem to improve the confidence bounds from Section 3.2. Note,
that a lower bound is provided by m2 ln m, which leaves some theoretical margin of
m2. Another way out is to increase considerably the number of steps the rotor walk
is running. In this case the number Nn(m) of hits of the vertices B and C grows and
the bound of Theorem 1 gets sharper.

Fig. 8 Rotor-walk approximations for ET(m) (left), dW(m) (middle) and dS(m) (right) for 100 ≤
m ≤ 500

Methodol Comput Appl Probab (2013) 15:485–509 507

In any case, the numerical results obtained with the rotor walk algorithm are quite
accurate and much more precise than their random (Monte-Carlo) counterparts
using the same total number of steps. When simulating a random walk on SG(m) and
using as an estimator for ET(m) the quotient of the total number of steps divided by
the total number of hits of the vertices B and C we obtain with the same n as above

ET(2) ≈ 6.9332, ET(10) ≈ 190.1471, ET(20) ≈ 691.8593,

dWsg(2) ≈ 2.7935, dWsg(10) ≈ 2.2791, dWsg(20) ≈ 2.1829,

dSsg(2) ≈ 1.1347, dSsg(10) ≈ 1.5272, dSsg(20) ≈ 1.6354.

The comparison with the true values shows that these estimates are considerably
more biased than the values obtained via rotor walks and that they are actually not
contained in the above calculated confidence intervals. This is due to the fact that the
variance of the crossing times grows very fast compared with the number of hits of
the vertices B and C (it is at least of order m4 ln2 m).

For m between 100 and 500 we have simulated with the rotor-walk method
the following values as approximations for the mean crossing times and the walk
dimensions:

m 100 150 200 250 300

ET(m) 37,835 92,592 173,730 284,090 421,940
dW(m) 2.2889 2.2823 2.2772 2.2742 2.2709

m 350 400 450 500 –
ET(m) 596,660 797,870 1,049,000 1,298,700 –
dW(m) 2.2697 2.2682 2.2676 2.2651 –

They may be compared with the values computed with the exact algorithm
combined with numerical matrix inversion techniques, which yields

∣∣∣ET(m) − T̂(m)

∣∣∣ ≤ 261 400
∣∣∣∣∣dW(m) − ln T̂(m)

ln m

∣∣∣∣∣ ≤ 0.0161,

∣∣∣∣dS(m) − 2(ln m + ln(m + 1) − ln 2)

ln T̂

∣∣∣∣ ≤ 0.0245.

Note, that dS(m) can be computed from dH(m) and dW(m) by Eq. 1. Thus, the
approximations for the walk and spectral dimension are fairly good, even if—due
to the constants K(m)—the confidence bounds do not lead to reasonable results. For
the computations for large the m we have used the parameter n = 300,000,000.

Appendix: MATLAB Code

We do not present here the full MATLAB code of our algorithm, but only the crucial
steps that were not explained in detail in Section 2.

508 Methodol Comput Appl Probab (2013) 15:485–509

#Step 3: Calculate the connection matrix
C=zeros(2,m*m-1);
for k=1:m
a=0; u=1;
for l=(3*(k-1)*m-(3*(k-1)*(k-2)/2-1)):(3*k*m-3/2*k*(k-1))
if (l~=((3*k*m-3/2*k*(k-1))-1))
if (a<3) a=a+1; else a=1; u=u+1; end;
b=1;
for n=1:(m*m-1) if (C(1,n)~=0) b=b+1; end; end;
if (((a==2)|(a==3))&(b<=m^2-1)) C(1,b)=l;
if ((a==2)&(l<(3*k*m-3/2*k*(k-1))-1)) C(2,b)=l+2; end;
if ((a==2)&(l>=(3*k*m-3/2*k*(k-1))-1))

C(2,b)=3*m*(k+1)-3/2*k*(k+1)-1; end;
v=3*k*m-(3/2*k*(k-1)+1)+3*(u-1)+2;
w=3*k*m-(3/2*k*(k-1)+1)+3*(u-2)+3;
if ((a==3)&(u==1)&(l~=(3*(k-1)*m-(3*(k-1)*(k-2)/2-1))))

C(2,b)=v; end;
if ((a==3)&(u>1)&(l~=(3*(k-1)*m-(3*(k-1)*(k-2)/2-1))))

C(2,b)=w; end;
end;

end;
end;
end;

#Step 7: Remove row and column associated with the corners B
and C a=0;
for k=1:(m*m-1)
if C(1,k)<(3*m-1) a=a+1; end;
end;
M(col,:)=[]; M(:,col)=[]; M(3*m-1-a,:)=[]; M(:,3*m-1-a)=[];

References

Barlow M (1998) Diffusions on fractals. Lecture notes in mathematics, vol 1690. Springer, New York
Falconer KJ (2003) Fractal geometry, 2nd edn. Wiley, New York
Freiberg U (2005) Analysis on fractal objects. Meccanica 40:419–436
Freiberg U (2011) Einstein relation on fractal objects. To appear in Discrete Contin Dyn Syst, Ser B
Freiberg U, Thäle C (2008) A Markov chain algorithm for determining crossing times through nested

graphs. In: DMTCS proc. AI, pp 505–522
Freiberg U, Thäle C (2010) Exact values for the mean crossing times of generalized sierpinski graphs.

Technical note
Given JA, Mandelbrot BB (1983) Diffusion on fractal lattices and the fractal Einstein relation.

J Phys A 16:L565–L569
Hambly BM, Kumagai T (2002) Asymptotics for the spectral and walk dimension as fractals ap-

proach Euclidean space. Fractals 10:403–412
Hilfer R, Blumen A (1984) Renormalization of Sierpinski-type fractals. J Phys A 17:L537–L545
Hilfer R, Blumen A (1988) Probabilistic interpretation of the Einstein relation. Phys Rev A

37:578–581
Holroyd AE, Levine L, Mészáros K, Peres Y, Propp J, Wilson DB (2008) Chip-firing and rotor-

routing on directed graphs. Prog Probab 60:331–364

Methodol Comput Appl Probab (2013) 15:485–509 509

Holroyd AE, Propp J (2010) Rotor walks and Markov chains. Algorithmic Probability and Combi-
natorics. Contemp Math 520:105–126

Hutchinson JE (1981) Fractals and self–similarity. Indiana Univ Math J. 30:713–747
Kallenberg O (2002) Foundations of modern probability, 2nd edn. Springer, New York
Kigami J, Lapidus ML (1993) Weyl’s problem for the spectral distribution of Laplacians on p.c.f.

self–similar fractals. Commun Math Phys 158:93–125
Kigami J (2001) Analysis on fractals. Cambridge University Press, Cambridge, UK
Kemeny JG, Snell JL (1983) Finite Markov chains. Springer, New York
Lindstrøm T (1990) Brownian motion on nested fractals. Mem Am Math Soc 420
Telcs A (2006) The Einstein relation for random walks on graphs. J Stat Phys 122:617–645
Zhou XY (1993) The resistance dimension, random walk dimension and fractal dimension. J Theor

Probab 6:635–652

	Exact Computation and Approximation of Stochastic and Analytic Parameters of Generalized Sierpinski Gaskets
	Abstract
	Introduction
	General Introduction
	Problem and Overview

	An Exact Algorithm
	Basic Notation
	An Example
	The Algorithm

	The Rotor-Router Approach
	Background Material
	The Algorithm

	Results
	Appendix: MATLAB Code
	References

