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Abstract This work evaluates three techniques of cali-

brating capacitance (dielectric) spectrometers used for

on-line monitoring of biomass: modeling of cell properties

using the theoretical Cole–Cole equation, linear regression

of dual-frequency capacitance measurements on biomass

concentration, and multivariate (PLS) modeling of scan-

ning dielectric spectra. The performance and robustness of

each technique is assessed during a sequence of validation

batches in two experimental settings of differing signal

noise. In more noisy conditions, the Cole–Cole model had

significantly higher biomass concentration prediction errors

than the linear and multivariate models. The PLS model

was the most robust in handling signal noise. In less noisy

conditions, the three models performed similarly. Esti-

mates of the mean cell size were done additionally using

the Cole–Cole and PLS models, the latter technique giving

more satisfactory results.

Keywords On-line biomass monitoring �
In-situ spectroscopy � Scanning capacitance (dielectric)

spectroscopy � Cole–Cole equation � PLS �
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Introduction

Over the last few decades, the field of biotechnology has

gained significant importance, both in industry and on a

purely academic level. The number of related processes,

products and applications has increased at an exponential

rate, paving the way for cutting-edge research in the dis-

cipline and heightening the technology’s economic

position. Growing efforts are made to optimize the pro-

cesses, increase their efficiency and productivity, improve

the quality of the desired product, and thus, increase

product safety and manufacturing profitability. One way to

achieve these improvements is through accurate bioprocess

monitoring and control [1–3]. As biomass is one of the key

parameters in biotechnological processes, monitoring this

variable in real-time is highly desirable [4]. On-line moni-

toring of biomass concentration allows control of culture

conditions in order to obtain the desired (or constant) cell

density or to choose the optimal moment to induce the

production of a recombinant protein. Real-time measure-

ments of the average cell size or volume provide

information about the morphology of the microorganisms

and can serve, for example, as an on-line indicator of

osmotic stress on the cells [5].

On-line monitoring of biomass is a fairly recent field that

is still undergoing considerable development. Various

methods of monitoring biomass have been explored, and

they are usually classified into two groups: indirect and

direct methods. Indirect methods do not measure the
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biomass concentration itself. Instead, they monitor other

parameters that can be related to it, for example the con-

centration of compounds that are produced or consumed

during biomass growth. The most commonly used para-

meters are oxygen uptake rate (OUR) and carbon dioxide

evolution rate (CER). Knowing the specific rates for the cell

type used in the culture, the biomass concentration can be

estimated. The major problem with this method is that the

specific uptake or evolution rates are assumed to be constant

during the culture, which is not always the case since these

specific rates may fluctuate with the physiological state of

the cells [6]. These methods are, thus, based on only par-

tially valid assumptions and may lead to significant errors in

the predictions. In the field of spectroscopy, indirect bio-

mass monitoring has been reported using fluorescence

measurements [4, 7]. Direct determination of biomass

concentration is done either by biological quantification

methods (viable cell counting or petri plating) or by

exploring the physical properties of the cells. For applica-

tions involving on-line monitoring of biomass, only

physical methods give the required real-time measurement.

Physical methods are based mostly on the quantification of

optical, acoustic, magnetic or electrical properties. The

most frequently used optical method is optical density (OD)

measurement. Unfortunately, its use in in-situ applications

is limited because the measurement is very sensitive to

bubbles, cell aggregation and non-cellular scattering parti-

cles present in the suspension [8]. Success in on-line, in-situ

monitoring of biomass with near-infrared probes has been

shown by several authors [9–11]. Optical monitoring of cell

concentration and average cell volume can also be achieved

with in-situ microscopy (ISM) [5, 12]. Amongst acoustic

methods, the technique known as acoustic resonance

densitometry (ARD) is based on the relationship between

the resonant frequency of the suspension and the fluid

density. After subtracting the density of the supernatant

fluid, the cell concentration is determined by correlating it

linearly to the fluid density [6]. The drawbacks of this

approach are its poor sensitivity and the significant depen-

dence on temperature, medium characteristics and, again,

the presence of bubbles. Nuclear magnetic resonance

(NMR) techniques are used mostly for fundamental

research and not for bioprocess monitoring [1]. The main

disadvantages of these methods are the long measurement

time needed to obtain acceptable sensitivity and the rela-

tively expensive equipment. Finally, over the last few years,

satisfactory results and enhanced in-situ applicability were

achieved using dielectric spectroscopy [4, 8, 13–15].

Dielectric spectroscopy, also known as capacitance

spectroscopy, is based on the principle that under the

influence of an electrical field, cells suspended in a con-

ducting medium act as capacitors and are capable of storing

electrical charge. The overall capacitance of the

suspension, observed over the so-called b-dispersion range

of frequencies (typically between 3 and 10 MHz) is

directly proportional to the total volume of viable cells

affected by the field [15–17]. In addition, by collecting

capacitance readings over the characteristic range of fre-

quencies of the electrical current, observations can be made

as to the size of the cells in the suspension [18, 19]. One of

the main advantages of this technology is that only viable

biomass is measured while cell debris, necromass and other

non-cellular particles are not [15]. Capacitance probes are

typically non-invasive and in-situ sterilizable, making them

attractive for bioprocesses. Measuring frequency in cur-

rently available instruments is in the order of several scans

per minute, thus quick enough to follow adequately the

kinetics of most cell cultures and appropriate for on-line

process control. Many successful monitoring applications

of dielectric spectroscopy have been reported, mainly

involving animal cell cultures [18–22] and microbial fer-

mentations [14, 17, 19, 23–25].

One of the predicaments with dielectric spectroscopy is

that signal characteristics and measurement reproducibility

are strongly influenced by factors like electrode polariza-

tion or variable medium conductivity, as well as by the

physical setup of the bioreactor, exact positioning of the

probe and the proximity of stationary (baffles) and moving

(agitator) metal components. For this reason, dielectric

instruments are usually calibrated in-situ, maintaining

constant experimental settings. Choosing appropriate data

pre-treatment routines and developing accurate and robust

calibration models is essential to ensure good prediction

performance of the instruments in on-line conditions. The

desired compromise is to attain a suitable equilibrium

between prediction precision and the model’s robustness in

future applications.

The goal of this work is to evaluate the performance of

three techniques of calibrating capacitance measurements

for on-line biomass monitoring. The first method involves

the application of the Cole–Cole equation, a reference

theoretical representation of the dielectric behavior of cell

suspensions. The remaining two methods are based on

purely empirical modeling of dielectric signals: direct lin-

ear correlation of capacitance measurements to biomass

concentration and multivariate modeling of capacitance

spectra for the estimation of biomass concentration and

mean cell size.

The article begins with a brief theoretical introduction

outlining the major characteristics of capacitance spec-

troscopy. The following section presents the three

calibration approaches proposed in this study. The experi-

mental segment of the work involves a quantitative

assessment of the models’ performance in strictly predic-

tive conditions. Aerobic batch cultures of Kluyveromyces

marxianus and Saccharomyces cerevisiae in two
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laboratory-scale bioreactors are used as case studies for

validation and performance evaluation. The discussion

aims to provide a methodology of choosing the appropriate

calibration approach in order to increase the overall utility

of capacitance spectroscopy in on-line biomass monitoring

and control and eliminate the need for frequent instrument

recalibration and post-run measurement adjustments.

Principles of dielectric spectroscopy

The theoretical principles of dielectric spectroscopy in the

context of biotechnology have been described in detail by

various authors [8, 13, 15–17], so only the major points are

summarized here. In essence, dielectric studies are based

on quantifying the response of a material to an electric field

applied to it. The response is typically described by the

material’s conductivity and permittivity. Conductivity (r),

measured in S/m, quantifies of the ability of the material to

conduct the electrical charge. Permittivity (e), measured in

F/m, is the amount of charge that is stored by the material

due to the polarization of its components. Permittivity of

the material is often expressed as relative to the permit-

tivity of vacuum (e0 = 8.854910-12 F/m), giving the

dimensionless relative permittivity (also called dielectric

constant), eT = e/e0. By dividing conductivity and permit-

tivity by the probe constant (d/A in m-1, the ratio of the

distance between the electrodes and the electrodes’ area),

one obtains the corresponding conductance (G in S) and

capacitance (C in F) of the material, respectively.

The permittivity of a material tends to fall (and its

conductivity to rise) in a series of step-like shifts as the

frequency of the electrical field rises. These step changes,

called dispersions, are due to losses of certain characteristic

polarization abilities of the substance [8, 13]. In the case of

cell suspensions, three major dispersions are identified: the

a-, b- and c-dispersions. The a-dispersion is caused pre-

dominantly by the activity of ions by the charged surfaces

of cells and particles. The c-dispersion is due mainly to the

bipolar rotation of water molecules. Of particular interest

in biomass quantification is the b-dispersion, resulting from

the build-up of electrical charge at the cell membranes.

Under the influence of an electric field applied to a cell

suspension, the ions present in the electrolytic medium

migrate towards the electrodes. The cytoplasm of the cells

is also conducting but due to the presence of the non-

conducting plasma membrane, the charged ions inside the

cells are constrained to the cell volume. Trapped inside the

membrane, the ions accumulate at the sides of the cell, and

the cell becomes polarized as shown in Fig. 1. Clearly,

only cells with undamaged membranes capable of electri-

cal insulation contribute to the increase in capacitance.

Most dead cells autolyse shortly after death and their

membranes rupture, while non-cellular material cannot

store electrical charge. Thus, only viable biomass is mea-

sured. Each living cell in the suspension assumes the

behavior of a tiny electrical capacitor and the overall

capacitance of the suspension rises as a function of the total

biovolume (i.e. the volume fraction of the suspension

which is enclosed by an intact membrane).

Measuring the capacitance over a predetermined range of

electrical field frequencies is the basic idea of scanning

dielectric spectroscopy. The typical frequency range used in

bioprocesses monitoring is in the order of 0.1–10 MHz,

where the b-dispersion occurs. At the lower frequencies of

this range, there is enough time for electrical charge to build

up at the cell membranes. However, at the high-frequency

end of the spectrum, the electrical field changes direction too

rapidly for the cell membrane to polarize, and the biomass

no longer contributes to the measured capacitance. The net

rise from the background capacitance (C?) at high fre-

quencies to the increased capacitance at low frequencies is

expressed as DC and can be attributed to the charge-storing

properties of the biomass. The frequency corresponding to

half of the measured DC is called the characteristic fre-

quency (fc). A typical capacitance spectrum obtained with

scanning dielectric spectroscopy is illustrated in Fig. 2.

One of the most common theoretical ways of describing

the dielectric properties of cell suspensions and the

b-dispersion is to use the Cole–Cole equation [26]. The

Fig. 1 Cell polarization at the

plasma membrane
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Cole–Cole equation is itself based on the Debye equation

[27] which is derived from theoretical modeling of a

polarized object. The Debye equation assumes that the

polarization of materials decays exponentially when the

applied electric field is removed. The Cole–Cole equation

recognizes that in reality not many systems obey the Debye

model and introduces an empirical fitting parameter, the

so-called Cole–Cole a, which has the effect of broadening

the dispersion. The equation models the shape of the

b-dispersion graph in terms of its magnitude, DC, its

characteristic frequency, fc, its high frequency component,

C?, and the Cole–Cole a:

Cðf Þ ¼
DC 1þ f

fc

� �ð1�aÞ
sin p

2
a

� �� �

1þ f
fc

� �ð2�2aÞ
þ2 f

fc

� �ð1�aÞ
sin p

2
a

� �� �þ C1 ð1Þ

The Debye equation can be regained from the above

Cole–Cole expression by setting a equal to zero. Fig. 3

shows the effects of changing the value of the Cole–Cole

parameter. The four curves are calculated using constant

parameter values of DC = 20 pF, fc = 5 MHz and

C? = 10 pF and then altering the Cole–Cole a from 0 to

0.6. It can be clearly seen that increasing this value has the

effect of broadening the dispersion significantly.

The physical origin of the empirical value a is disputed

and no single convincing explanation for its value has been

discovered. It seems likely that the value of a is often due to

a variety of effects, some of which are more or less

important in different systems. The following are some of

the suggested origins of this parameter’s value: distribution

of cell shapes and sizes [28], morphology of extra-cellular

spaces [29], mobility of membranous proteins [30, 31] and

the fractal nature of dielectric relaxation [32]. Typical val-

ues of a for biological cells are in the order of 0.1 to 0.2 [13].

Modeling of capacitance data

Because of the sensitivity of dielectric signals to equipment

setup and process conditions, capacitance instruments are

usually calibrated in-situ. A calibration experiment repre-

sentative of future applications is carried out, and samples

are collected at regular intervals to provide standards for

the calibration model. The three techniques used for

modeling the capacitance data and calibrating the spec-

trometer are described below.

Physical modeling of dielectric properties of cell

suspensions

The physical modeling algorithm predicts cell size and

concentration using a three-stage approach [33]. In the first

step, the Cole–Cole equation is fitted to experimental

permittivity data [34]. The permittivity formulation is used

instead of the capacitance one since permittivity is a

property of the material whilst capacitance depends on both

material and geometry.

Four variables are fixed at this stage: De, the difference

between low and high frequency permittivity; xc, the

characteristic angular frequency in radians per second; a,

the Cole–Cole parameter; and e?, the high frequency

(background) permittivity.

eðxÞ ¼
De 1þ x

xc

� �ð1�aÞ
sin p

2
a

� �� �

1þ x
xc

� �ð2�2aÞ
þ2 x

xc

� �ð1�aÞ
sin p

2
a

� �� �þ e1 ð2Þ

In the second step, the Cole–Cole equation for

conductivity is fitted to experimental conductivity data

[35]:

rðxÞ ¼
�Dr 1þ x

xc;2

� �ð1�a2Þ
sin p

2
a2

� �� �

1þ x
xc;2

� �ð2�2a2Þ
þ2 x

xc;2

� �ð1�a2Þ
sin p

2
a2

� �� �

þ ðrL þ DrÞ:

ð3Þ

Fixed at this stage are the following four variables: Dr, the

difference between high and low conductivity; xc,2 is the

characteristic angular frequency for conductivity; a2, the

Cole–Cole parameter for conductivity; and rL, the low

Fig. 2 Typical capacitance spectrum obtained with scanning dielec-

tric spectroscopy
Fig. 3 The shape of b-dispersion with changing values of the

Cole–Cole a
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frequency conductivity. It should be noted that the values

of the angular frequency and the Cole–Cole a are different

in Eqs. 2 and 3. Fig. 4 summarizes, schematically, the

eight parameters determined at the first two stages of the

algorithm.

In the third step of the algorithm, the values of the cell

radius (r) and the cell number density (Nv) are obtained

using the iterative process described below. To relate the

magnitude of De and the characteristic frequency to the

properties of the cells, the following pair of equations

based on the Pauly-Schwan spherical cell model can be

used [15, 19, 36]:

De ¼ 3 Nvp r4Cm

e0

ð4Þ

xc ¼
1

r Cm
1
ri
þ 1

2re

� � ð5Þ

where r is the cell radius, Nv is the number density (cells per

unit volume), Cm is membrane capacitance per unit area, ri is

the internal conductivity of the cell and re is the conductivity

of the suspending medium. The values of De and xc are

known from the first stage. The parameters Cm and ri are

either known from a reference source or can be determined

through calibration. The last remaining unknown, re, can be

calculated using the following model [36]:

re ¼
rL

ð1� PÞ1:5
ð6Þ

where P is the volume fraction of cells ðP ¼ 4
3
p r3 NvÞ and

rL is known from the second stage. Thus, the problem

contains three non-linear equations (Eq. 4–6) and three

unknowns: r, Nv and re. The iteration starts by choosing an

initial value of re. A good initial estimate is the value of

the high-frequency conductivity:

re � rL þ Dr: ð7Þ

Note that at low volume fractions (little biomass), Dr will

be close to zero and the external conductivity will be

similar to the low-frequency conductivity re � rL. Having

the initial value for of re, the cell radius is calculated using

Eq. 5 and the number density is obtained from Eq. 4. In the

next step of the iteration, re is calculated using Eq. 6 and

the procedure is repeated until convergence.

To improve the algorithm’s predictions further, con-

straints can be added to limit the solutions to some

predefined plausible ranges. For example, the estimates of

the cell radius can be confined to fall within the range

expected for the particular cell type.

Linear modeling of dielectric signals

Linear modeling is the simplest and most common

empirical calibration method used in dielectric spectro-

scopy. The approach is based on determining a linear

correlation between capacitance measured in the b-dis-

persion region and biomass concentration or cell number.

The frequency at which the capacitance is measured

depends on the organism. Typically, excitation frequencies

of around 1,000 kHz are used for bacteria cells and

between 500 and 600 kHz for yeasts and mammalian cells

[20, 37]. A somewhat more sophisticated technique is the

dual-frequency method, where the background capacitance

of the medium (C?) measured at an elevated frequency

([10 MHz) is systematically subtracted from the measured

capacitance values. In this case, the linear correlation is

derived between values of delta-capacitance (see DC in

Fig. 2) and biomass concentration. This approach corrects

for potential baseline shifts during the process.

Multivariate modeling of scanning dielectric signals

Scanning dielectric spectroscopy creates the opportu-

nity for more advanced modeling techniques based on

multivariate analysis and chemometrics. Chemometric

regression methods, described in detail elsewhere [38–41]

work by decomposing multivariate data sets into a reduced

form containing more informative principal components

Fig. 4 Parameters established

by fitting the Cole–Cole

permittivity and conductivity

equations to experimental data
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that describe the major trends present in the data. Applying

this technique in spectroscopy allows the extraction of

latent patterns from spectra and using this information

to model specific variables that are difficult to quantify

directly, often due to their intrinsic interactions. For

example, since the dielectric properties of a cell suspension

are dependent actually on the amount of biomass volume

present in the system, linear correlations between capaci-

tance and biomass weight concentration could fail if the

cells change size during the process. Multivariate analysis

can be used to model biomass concentration and cell size as

two separate variables by exploiting the distinctive shapes

of the capacitance spectra. A parameter of particular

importance is the position the characteristic frequency,

which should ideally be indicative of the morphology and

average size of cells in the system [18, 19, 42]. Smaller

cells are more readily polarized so the characteristic fre-

quency of suspensions containing these cells will be greater

than that of a suspension of larger cells (Fig. 5). Using a

partial least squares (PLS) model, Cannizzaro et al.

[18, 23] succeeded in estimating the median size of yeast

and mammalian cells, as well as proposed a way of

detecting important changes in the process by analyzing the

scores and loadings of the model and graphing capacitance

phase plots.

Just like in linear modeling, the residual capacitance at a

high frequency (C?) can be subtracted from capacitance

values at lower frequencies to eliminate the effects of

potential baseline shifts.

Experimental

In total, eight aerobic batch experiments were performed in

this study using two bioreactor settings and two types of

wild type yeast obtained from the Centraalbureau voor

Schimmelcultures (Utrecht, NL): the Crabtree-negative

strain CBS 5670 Kluyveromyces marxianus and the Crab-

tree-positive strain CBS 8066 Saccharomyces cerevisiae.

Pre-cultures and growth medium

Source cells were stored at -80 �C in 1.8 ml aliquots. For

each batch, the reaction inoculum was obtained by adding

one aliquot into a 1-l Erlenmeyer flask containing 100 ml

of a sterile complex pre-culture medium (10 g/l yeast

extract OXOID, 10 g/l peptone BACTO and 20 g/l glu-

cose) and incubating it for 24 h at 30 �C and 200 rpm. The

defined culture medium was sterilized by filtration and

contained, per liter: 20 g glucose, 5 g (NH4)2SO4, 3 g

KH2PO4, 0.5 g MgSO4 9 7H2O, as well as trace elements

and vitamins (adapted from Verduyn et al. [43] and Can-

nizzaro et al. [44]). The medium was supplemented with

0.5 ml/l of a standard antifoam agent to prevent foaming.

Culture conditions

The four batch cultures of K. marxianus (KMB01–

KMB04) were cultivated in a fully automated 2-l labora-

tory bioRC1 calorimeter from Mettler Toledo (Greifensee,

Switzerland). The batch cultures of S. cerevisiae (SCB01–

SCB04) were grown in a 3.6-l laboratory bioreactor from

Bioengineering (Wald, Switzerland). Both vessels were

equipped with a Rushton-type agitator, baffles, temperature

and pH probes and control mechanisms, gas inlet and outlet

ports, a base inlet port and a sampling port. The reactors

were sterilized in-situ at 121 �C for 20 min. All cultures

were grown at 30 �C with an agitation speed of 800 rpm

and an inlet air flow rate of 1.3 vvm. A solution of 2 M

NaOH or KOH was used to control the pH at 5; no acid

control was necessary.

Reference measurements

Samples of about 10 ml were collected at intervals between

1 and 2 h using an in-house developed automated sampling

robot, BioSampler 2002 [23]. Dry cell weight (DCW) was

determined by putting 8 ml of the culture medium through

a pre-weighed 0.22 lm pore filter, drying the filter and

subsequently reweighing it. Optical density measurements

were performed as a backup method at 600 nm using the

Spectronic Helios-Epsilon spectrophotometer from Thermo

(Waltham, MA, USA).

Cell size distribution data were obtained using a Coulter

Counter Model ZM equipped with a Channelyzer 256

(Coulter Electronics Limited, UK). An orifice tube of 70 lm

was used, and the instrument settings were the following:

current: 200 lA, gain: 2, attenuation: 8, Kc = 6.811. The

instrument was calibrated with latex beads of 5.06 lm

diameter before using it the first time and the orifice tube

was rinsed before each use. For each measurement, the

mean cell volume and diameter were calculated using the

Fig. 5 Idealistic representation of how biomass concentration and

mean cell size is estimated in scanning dielectric spectroscopy using

multivariate modeling
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following equations obtained from the instrument’s refer-

ence manual:

Vave ¼
1

Nt

X255

i¼4

ViNi ð8Þ

dave ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6 Vave

p
3

r
ð9Þ

where Nt is the total number of cells in all channels, Ni is

the number of cells in channel i and Vi is the volume

corresponding to channel i. To eliminate noise caused by

small particles, channels 1 through 3 were omitted. Each

sample was analyzed twice, and an average value was

taken of the two measurements.

Capacitance spectrometer

The dielectric instrument used in this study is the Biomass

Monitor 210 from Aber Instruments (Aberystwyth, UK).

The spectrometer was equipped with a 12 mm sterilizable

probe containing four annular electrodes. This configura-

tion is particularly favorable, as four-terminal probes (as

opposed to two-terminal probes) may reduce electrode

polarization [17, 36]. The probe was introduced directly

into the reactor and sterilized in-situ. The biomass monitor

was switched on 3 h before starting the experiments to

allow stabilization of the signal. During the cultures, 25

frequencies from 0.1 to 20 MHz were scanned every 15 s

and the capacitance as well as the conductivity of the cell

suspension was registered at each frequency. A program

developed in-house using LabView (National Instruments,

Austin, TX) was used to collect and store the measured

data. Due to the significant level of noise, all data were

smoothed with respect to time using the Savitzky-Golay

algorithm over a moving window of 81 points (20 min).

Spectrometer calibration results

The first batch of each cell strain (KMB01 and SCB01)

served to collect calibration data sets in-situ. Fourteen

calibration samples were used for KMB01 and seventeen

for SCB01. The reference measurements of biomass con-

centration and mean cell diameter were obtained using the

methods described above. The performance of all calibra-

tion models was evaluated by calculating the standard error

of calibration (SEC):

SEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnC

i¼1 ŷi � yið Þ2

nC

s
ð10Þ

where ŷ and y are the reference and model-predicted values,

respectively, and nC is the number of calibration samples.

Cole–Cole model

The Cole–Cole modeling algorithm was designed and

implemented in the Java programming language using the

Levenberg-Marquardt non-linear least squares technique

[45]. The values of De and Dr were constrained to be

positive, the xc values were confined to the range

0–1 9 1010 rad/s and the Cole–Cole a values were limited

to within 0–0.5. The cell radius was constrained to 2–3

microns for K. marxianus and 2–3.5 microns for S. cere-

visiae, while the number density was constrained to be

greater than 1 9 1010 cells/m3. The values of Cm and ri

were determined using the calibration data sets and then

applied to the remaining validation data sets.

The standard error of calibration obtained with the

Cole–Cole model during KMB01 was 1.44 g/l for biomass

and 0.32 lm for cell diameter. For SCB01, these values

were 0.45 g/l and 0.40 lm, respectively. Figure 6 shows

the fit obtained for these calibration batches.

Linear model

Linear calibration models were built using the Excel

spreadsheet program. The dual-frequency mode was used

and delta-capacitance values (DC) were obtained by sub-

tracting the capacitance reading at the background

frequency of 15.56 MHz (C?) from the capacitance read-

ing at the excitation frequency of 370 kHz. Calibration was

performed by obtaining a linear correlation coefficient

between biomass dry cell weight and the corresponding

values of DC. Negative concentration values were zeroed.

The standard error of calibration for the linear models was

0.64 g/l for KMB01 and 0.42 g/l for SCB01. Figure 7

shows the fit obtained for the two calibration cultures.

Multivariate model

Multivariate modeling was carried out in Matlab (The

MathWorks, Inc., Natick, MA, USA). Capacitance spectra

were collected over 18 frequency points between 370 kHz

and 15.56 MHz and the background capacitance reading at

15.56 MHz (C?) was subtracted from all capacitance

readings at lower frequencies. All data were mean-cen-

tered. A PLS model was built for biomass dry cell weight

and mean cell diameter using the PLS_Toolbox 4.1

(Eigenvector Research, Inc., Wenatchee, WA, USA). Two

latent variables were used and explained 99.1% of the

variance in the calibration spectra from KMB01 and 99.6%

in those from SCB01. Negative concentration values were

zeroed. The standard errors of calibration for the multi-

variate models were 0.37 g/l (biomass concentration) and

0.09 lm (cell diameter) for KMB01. For SCB01, these

values were, respectively, 0.31 g/l and 0.20 lm. The fit
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obtained with the PLS model for the two strains can be

seen in Fig. 8.

Signal noise

From the calibration results of all three models, it appeared

that signal noise in the smaller bioRC1 reactor (K. marxi-

anus batches) was stronger than in the larger Bioengineering

reactor (S. cerevisiae cultures). To verify this observation,

the standard deviation of the filter residuals obtained for

both cultures with the Savitzky-Golay smoothing algorithm

was plotted in Fig. 9 as a function of frequency.

The noise in batch KMB01 was considerably higher,

most likely due to the limited space in the bioRC1 vessel

resulting in increased interference of reactor components

with the probe’s field of activity. Indeed, the radius of the

probe’s field of detection is typically around 3 cm

according to the manufacturer, while in the bioRC1 reactor,

the probe was located only about 1 cm from the reactor

walls, 1 cm from the baffles and 2 cm from agitator. In the

larger Bioengineering vessel, the capacitance probe was

somewhat more isolated: 1 cm from the reactor walls and

2.5 cm from the metal baffles and agitator. It should also be

noted that in both reactors the signal noise decreases with

Fig. 6 Cole–Cole calibration

models for biomass

concentration (triangles) and

mean cell diameter (circles)

developed for K. marxianus (a)

and S. cerevisiae (b)

Fig. 7 Linear calibration

models for biomass

concentration developed for K.
marxianus (A) and S. cerevisiae
(B)

Fig. 8 Multivariate (PLS)

calibration models for biomass

concentration (triangles) and

mean cell diameter (circles)

developed for K. marxianus (a)

and S. cerevisiae (b)
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increasing frequency. This phenomenon is due to the more

acute influence of electrode polarization on capacitance

measurements and increased sensitivity to phase noise at

lower excitation frequencies.

Validation results

Following the calibration cultures, the three succeeding

batches for each strain (KMB02-04 and SCB02-04) were

used for evaluating the models. Baseline synchronization

with respect to the calibration culture was performed at the

moment of inoculation. The predictive performance of all

models was evaluated by calculating the standard error of

prediction (SEP) using validation samples obtained for

each cell strain during the validation cultures:

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnP

i¼1 ŷi � yið Þ2

nP

s
ð11Þ

where ŷ and y are the reference and predicted values,

respectively, and nP is the number of validation samples.

Kluyveromyces marxianus batches

The average standard errors of prediction obtained for the

three validation batches of K. marxianus are shown in

Fig. 10.

In the estimation of biomass concentration, the Cole–

Cole model produced prediction errors that were signifi-

cantly higher than those obtained with the linear and

multivariate models. The linear model was somewhat less

accurate and robust than the PLS model. A possible reason

for this is that signal noise was stronger at lower values of

the frequency range (see Fig. 9), where the linear model

had been calibrated. The multivariate model, being cali-

brated over the entire spectrum was influenced by signal

noise to a lesser extent. Finally, the PLS model was also

more accurate than the Cole–Cole model in the prediction

of mean cell diameter.

The predicted profiles of biomass concentration and

mean cell diameter obtained for the K. marxianus cultures

are shown in Fig. 11.

Saccharomyces cerevisiae batches

The average standard errors of prediction obtained for the

three validation batches of S. cerevisiae are shown in Fig. 12.

In the prediction of biomass concentration, the predic-

tion errors of all three models were considerably lower for

the S. cerevisiae batches, compared to the errors obtained

for the K. marxianus batches. This is most likely due to the

lower level of signal noise observed in the larger Bioen-

gineering reactor. The Cole–Cole algorithm performed

nearly as well as the linear and multivariate methods,

although the increased standard deviation of the prediction

error could point to a lower level of robustness. Also owing

to the relatively constant noise across the frequency range

(see Fig. 9), the linear model performed on par with the

PLS model. The PLS model was again more accurate and

more stable than the Cole–Cole model in the prediction of

mean cell diameter.

Fig. 9 Standard deviation of the filter residuals obtained for the two

calibration cultures

Fig. 10 Mean standard error of

prediction obtained for the K.
marxianus validation batches

using the three models for

biomass concentration (a) and

mean cell diameter (b)
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The predicted profiles of biomass concentration and

mean cell diameter obtained for the S. cerevisiae cultures

are shown in Fig. 13.

Discussion and outlook

On-line monitoring of biomass using capacitance spec-

troscopy offers great potential for process development,

optimization and control studies. Yet, as is the case in other

spectroscopic methods, the development of accurate and

robust calibration routines often remains the Achilles’ heel

of the technique. In this study, two direct calibration

techniques based on linear and multivariate (PLS) model-

ing of capacitance data were compared to the theoretical

model of cell suspensions based on the Cole–Cole equa-

tion. Validation results involving six yeast fermentations

revealed that the linear and PLS models were generally

more robust and outperformed the Cole–Cole model,

especially in the more noisy conditions of a smaller bio-

reactor. For the estimation of biomass concentration, the

linear and multivariate models provided similar results in

experimental settings involving lower levels of signal

noise. However, in more noisy conditions, the PLS model

Fig. 11 Predicted profiles of biomass concentration (square reference points) and mean cell diameter (round reference points) obtained for the

three validation batches of K. marxianus with the Cole–Cole model (a), the linear model (b) and the PLS model (c)
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Fig. 12 Mean standard error of

prediction obtained for the

S. cerevisiae validation batches

using the three models for

biomass concentration (a) and

mean cell diameter (b)

Fig. 13 Predicted profiles of biomass concentration (square reference points) and mean cell diameter (round reference points) obtained for the

three validation batches of S. cerevisiae with the Cole–Cole model (a), the linear model (b) and the PLS model (c)
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showed greater robustness and had lower prediction errors.

The linear calibration was more sensitive to noise since the

correlation was established at a low excitation frequency

where the effects of electrode polarization, phase noise and

other interferences are more pronounced. The PLS model

was built over the entire frequency domain, which resulted

in a greater noise averaging capacity. Predictions of the

average cell diameter were also achieved using the Cole–

Cole and PLS models, with the latter technique giving

more accurate results.

In addition to the comparison of calibration methods, the

study exposed the impact of the reactor size on noise in the

dielectric signal. In the smaller vessel studied, where

the probe was closer to various reactor components, the

obtained signal was considerably noisier and more difficult

to model than in the larger reactor, where the probe had

more space. Hence, in small-scale in-situ applications of

capacitance spectroscopy, care should be taken when

positioning the probe so that it is placed as distant as

possible from the reactor’s walls, baffles, agitator and other

components, especially metal objects, as their presence

close to the probe’s field of detection may cause interfer-

ence in the signal. Because of this problem, it is expected

that the performance of dielectric spectroscopy in micro-

reactor applications may be limited.

The modeling of the average cell size needs to be

studied more carefully and over a wider range of cell sizes.

Furthermore, future studies should seek to exploit the latent

information behind the characteristic shape of the capaci-

tance spectra. The width of the inflection point (described

by the Cole–Cole a) has been shown to provide some

insight into the distribution of cell sizes in the suspension

[28]. With sufficiently low signal noise and a higher fre-

quency resolution, cell size distribution could be modeled

using an appropriate distribution function and multivariate

analysis.
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