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Abstract The internal dynamics of recombinant Ma-

jor Urinary Protein (rMUP) have been investigated by

monitoring transverse nitrogen-15 relaxation using

multiple-echo Carr–Purcell–Meiboom–Gill (CPMG)

experiments. While the ligand-free protein (APO-

rMUP) features extensive evidence of motions on the

milliseconds time scale, the complex with 2-methoxy-3-

isobutylpyrazine (HOLO-rMUP) appears to be much

less mobile on this time scale. At 308 K, exchange rates

kex = 500–2000 s–1 were typically observed in APO-

rMUP for residues located adjacent to a b-turn com-

prising residues 83–87. These residues occlude an entry

to the binding pocket and have been proposed to be a

portal for ligand entry in other members of the lipoc-

alin family, such as the retinol binding protein and the

human fatty-acid binding protein. Exchange rates and

populations are largely uncorrelated, suggesting local

‘breathing’ motions rather than a concerted global

conformational change.

Keywords Carr–Purcell–Meiboom–Gill (CPMG) �
Slow protein dynamics � Recombinant Major Urinary

Protein (rMUP) � 2-Methoxy-3-isobutylpyrazine

(IBMP)

Introduction

A good grasp of internal dynamics is of crucial

importance to understand the biological role and the

properties of proteins. NMR spectroscopy offers the

unique ability to monitor dynamics over a wide range

of time scales. Fast motions (picoseconds to nanosec-

onds) can be detected using the model-free approach

(Lipari and Szabo 1982a, b), while a range of other

techniques are used to detect alternative time scales

(Carr and Purcell 1954; Meiboom and Gill 1958;

Deverell et al. 1970; Wagner et al. 1985; Kloiber and

Konrat 2000; Frueh 2002; Früh et al. 2002; Wist et al.

2004). In particular, chemical or conformational pro-

cesses that stochastically change the magnetic envi-

ronment of a spin and occur on a time scale of micro-

to milliseconds are known as ‘chemical exchange’.

Such slow processes can be studied by NMR using

Carr–Purcell–Meiboom–Gill experiments (CPMG)

(Carr and Purcell 1954; Meiboom and Gill 1958; Loria

et al. 1999; Millet et al. 2000; Mulder et al. 2001a;

Wang and Palmer 2003; Ishima and Torchia 2005).

Note that ‘slow processes’ in this context should not be

confused with ‘slow exchange’ in the sense established

by Millet (when pa » pb), who used this expression

whenever the parameter a = (dRex/Rex)/(dB0/B0) which

Electronic supplementary material The online version of this
article (doi:10.1007/s10858-006-9110-1) contains supplementary
material, which is available to authorized users.

C. Perazzolo (&) � M. Verde � G. Bodenhausen
Institut des Sciences et Ingénierie Chimiques,
Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland
e-mail: Chiara.Perazzolo@epfl.ch

S. W. Homans
Institute of Molecular and Cellular Biology,
University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK

G. Bodenhausen
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can range between 0 £ a £ 2, is smaller than one

(Millet et al. 2000). Many critical biological activities

occur in this micro- to millisecond time scale:

for example many ligand-binding on- and off-rates

(Mulder et al. 2001b, c, Akke 2002 and bibliography

therein).

MUP proteins are part of the lipocalin family and

are produced mainly by sexually mature male mice.

MUPs can bind a variety of volatile pheromones that

have important effects on the mouse physiology and

behaviour, like acceleration of female puberty,

blocking of pregnancy and inter-male aggression. The

main function of MUPs is to act as a slow releaser,

allowing the chemical signal to persist longer in the

environment. Their 3D fold comprises an eight-

stranded b-barrel and a long a-helix, so that the

interior of the barrel forms a hydrophobic cavity

where the binding site is located. The general name

for an isoform of the family of Major Urinary Pro-

teins is recombinant MUP (rMUP) (Ferrari et al.

1997; Lücke et al. 1999), and our isoform is consti-

tuted of 162 amino-acids, with a mass around 20 kDa,

and so it is small enough to be analysed readily by

high resolution NMR. Fast motions on time-scales

between pico- and nano-seconds have been studied in

both APO-rMUP and in the HOLO-rMUP complex

with the pheromone 2-methoxy-3 isobutylpyrazine

(Bingham et al. 2004).

The aim of the present work is to characterize

conformational exchange processes taking place on

micro- to milli-second time-scales in recombinant

rMUP in both its ligand-free APO form and its HOLO

form with the pheromone 2-methoxy-3-isobutylpyr-

azine. We believed that any differences in slow time-

scale dynamics may shed light on the hitherto unknown

mechanism of ligand entry into the occluded binding-

pocket of this protein.

Materials and methods

The transverse relaxation rates R2(1/scp) of 15N were

measured as a function of the CPMG pulse repetition

rate 1/scp, where scp is the interval between two con-

secutive p pulses, at a static magnetic field of 14.1 T

(600 MHz for protons) at temperatures of 298 K and

308 K. In this study we used relaxation-compensated

CPMG sequences (Loria et al. 1999), which take into

account the different relaxation rates of in- and anti-

phase single-quantum coherences Nx and 2NxHz. We

made simple modifications of the sequences A and B of

Palmer and co-workers (Millet et al. 2000). The main

modification, which is useful for proteins that are not

only enriched in 15N but also in 13C, consists in the

inclusion of p pulses applied to both 13C¢ and 13Ca in

the middle of the s delays (i.e., at 1/4 and 3/4 of each

interval scp = 2s between two consecutive 15N refo-

cusing pulses) to attenuate the build-up of anti-phase

terms 2NxCz¢ and 2NxCz
a due to scalar couplings

J(15N13C¢) � 15 Hz and J(15N13Ca) � 4–10 Hz. These

anti-phase terms might otherwise become a source of

errors for delays scp longer than a few milliseconds.

Data were collected for pulse intervals scp = 1.0, 1.5,

2.0, 4.0, 6.6, 10.8 and 21.6 ms, corresponding to

1/scp = 1000, 667, 500, 250, 152, 93 and 46 Hz. For each

t1 increment in the 2D experiments, 32 scans were

accumulated for fast repetition rates 1/scp ‡ 250 Hz

while 64 scans were necessary to obtain a sufficient

signal-to-noise ratio for experiments with 1/scp <

250 Hz. Data processing has been performed using the

GNU Package NMRPipe/NMRDraw/NlinLS (Dela-

glio et al. 1995). Relaxation rates were obtained by

least-squares fitting of the decays to mono-exponential

functions (Matlab 1992, Matlab Reference Guide,

Natick, Massachusetts). Errors of the decay rates

were estimated by a Monte-Carlo analysis using 200

synthetic data points. All experiments on APO- and

HOLO-rMUP have been repeated twice. The corre-

sponding data can be found in Supplementary Material,

tables S1–S4. Relaxation dispersion plots have

been interpolated using either the general formula of

Eq. 1, or the simplified formula of Eq. 2 applicable for

skewed populations, i.e., for pa » pb (Ishima and Torchia

1999). Errors in the fitted parameters were again

estimated using a Monte-Carlo analysis using 200

synthetic data points. Carver and Richards derived a

general equation, which was later the subject of

an erratum (Carver and Richards 1972), and then

cast in a more convenient form (Davis et al. 1994; Jen

1978):

R2

�
1=scp

�
¼ 1

2

�
Ra þ Rb þ kex �

1

scp

�cosh�1 Dþcosh
�
gþ
�
�D�cos g�

�� i�
: ð1Þ

h

where D� ¼ 1=2 �1þ wþ 2Dx2
� �

= w2 þ f2
� �1=2

h i
,

g� ¼ scp=
ffiffiffi
2
p
�wþ w2 þ f2

� �1=2
h i1=2

,

w ¼ Ra � Rb � pakex þ pbkexð Þ2� Dx 2 þ 4papbk2
ex

and f ¼ 2Dx Ra � Rb � pakex þ pbkexð Þ, other symbols

having their usual meanings, i.e., a and b refer to the

two conformations, pi to the populations, Ri is the

transverse relaxation rate of the ith conformation in
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the absence of chemical exchange, Dx is the difference

between the chemical shifts of the two conformations

and kex = kab + kba is the exchange rate constant. Ishima

and Torchia have proposed a simplified equation:

R2 1=scp

� �
¼ R2 1=scp !1

� �
þ papbDx2kex

.

k2
ex þ p2

a Dx4 þ 144=s4
cp

� �1=2
� �

ð2Þ

which is only applicable if the populations are very

unequal, i.e., if pa » pb (Ishima and Torchia 1999).

A recent procedure uses the fitting of all residues

with a common set of kinetic parameters (pa and kex),

in order to reveal the presence of collective motions

(Beach et al. 2005; Mulder et al. 2001b). This analysis

has been performed on our data, and the results

suggest that there are no collective motions. Thus the

parameters reported in Table 1 result from individual

fitting.

It should be noted that pheromone complexation

affects the correlation times (sc = 7.4 and 7.1 ns for

APO-rMUP at 298 and 308 K, respectively, and

sc = 9.2 and 8.9 ns for HOLO-rMUP at 298 and

308 K). This effect, which has yet to be explained, has

no incidence on internal motions as determined by

CPMG dispersion of relaxation rates.

Results and discussion

In the APO form at 308 K, out of a total of 162 amino

acids in rMUP, 92 residues were retained for the

analysis, i.e., the residues that do not suffer from

Table 1 Exchange
parameters for APO-rMUP
at 308 and 298 K, obtained by
fitting the relaxation
dispersion of the rates
R2(1/scp) to Eq. 1, unless
indicated by a superscript a

NR; Residue not retained in
the analysis
a Parameters that were
obtained by fitting the
relaxation dispersion data to
Eq. 2 rather than Eq. 1

Residue T (K) pa kex (s–1) Dx (s–1)

Ser 4 308 NR NR NR
298a 0.80 ± 0.06 161 ± 90 175 ± 50

Glu 18 308 0.78 ± 0.05 1341 ± 68 157 ± 6
298 0.86 ± 0.15 436 ± 31 136 ± 6

Arg 39 308 0.50 ± 0.01 1191 ± 10 184 ± 1
298 0.92 ± 0.01 197 ± 27 165 ± 1

Leu 40 308 0.50 ± 0.15 1661 ± 105 275 ± 10
298 0.80 ± 0.03 800 ± 31 257 ± 18

Phe 41 308 NR NR NR
298a 0.89 ± 0.02 48 ± 20 296 ± 150

Thr 58 308 0.65 ± 0.02 524 ± 39 100 ± 3
298 0.50 ± 0.01 275 ± 29 93 ± 2

Ser 68 308 NR NR NR
298 0.74 ± 0.03 152 ± 26 100 ± 72

Met 69 308a 0.71 ± 0.06 626 ± 150 134 ± 13
298 NR NR NR

Val 70 308 0.50 ± 0.01 675 ± 16 161 ± 2
298 0.76 ± 0.01 335 ± 11 141 ± 2

Ala 71 308 0.72 ± 0.06 889 ± 27 163 ± 5
298 NR NR NR

Asp 72 308 0.50 ± 0.01 1151 ± 19 241 ± 3
298 0.76 ± 0.01 571 ± 32 221 ± 3

Glu 75 308 NR NR NR
298a 0.91 ± 0.13 284 ± 20 130 ± 54

Ser 81 308 0.50 ± 0.01 1475 ± 25 343 ± 4
298 0.76 ± 0.02 823 ± 50 324 ± 4

Val 82 308a 0.93 ± 0.13 633 ± 350 703 ± 190
298 NR NR NR

Thr 89 308 0.50 ± 0.01 1076 ± 55 377 ± 11
298 0.75 ± 0.03 884 ± 68 359 ± 10

Asp 98 308 0.99 ± 0.01 409 ± 100 1389 ± 360
298 NR NR NR

His 104 308 NR NR NR
298 0.50 ± 0.05 318 ± 23 103 ± 2

Leu 105 308 0.79 ± 0.28 2040 ± 343 333 ± 12
298 NR NR NR

Phe 114 308 0.50 ± 0.01 1375 ± 44 165 ± 4
298 0.91 ± 0.01 114 ± 22 145 ± 3

Leu 116 308 0.50 ± 0.01 1965 ± 372 198 ± 30
298 0.73 ± 0.06 35 ± 4 178 ± 30

Gly 118 308 0.90 ± 0.06 519 ± 400 99 ± 24
298 0.63 ± 0.20 20 ± 12 113 ± 21
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spectral overlap or low signal-to-noise ratios. Among

the residues that could be analysed, up to 16 show

detectable presence of chemical exchange, in the sense

that R2 depends on 1/scp. These residues are Glu 18,

Arg 39, Leu 40, Thr 58, Met 69, Val 70, Ala 71, Asp 72,

Ser 81, Val 82, Thr 89, Asp 98, Leu 105, Phe 114, Leu

116 and Gly 118. The exchange parameters obtained by

fitting to Eqs. 1 or 2 are reported in Table 1. In the

HOLO form of rMUP bound to the pheromone IBMP,

at the same temperature of 308 K, 107 residues could

be retained for the analysis, using the same criteria for

discarding residues as in the APO form. None of these

residues show any evidence for chemical exchange,

since R2 does not depend on 1/scp in the HOLO form.

Fig. 1 shows a comparison of R2(1/scp) for two typical

residues Arg 39 and Asp 72. The absence of any

chemical exchange in the HOLO form and its presence

in the APO form is clearly seen.

As discussed elsewhere (Millet et al. 2000; Mulder

et al. 2001a, b; McElheny et al. 2005), chemical

exchange processes cannot be fully characterized by a

single set of experiments at a single magnetic field

and a single temperature. We could not investigate

the field-dependence, but we have repeated the

experiments at a lower temperature of 298 K to At

this temperature, it was possible to retain 96 residues

for the analysis in the HOLO complex and 92 for the

APO form. As many as 18 of the latter show the

presence of chemical exchange. No less than 13 of

these 18 residues were also found to be affected by

chemical exchange at 308 K. The differences in the

numbers of residues that could be characterised at the

two temperatures result from different intensities in

the cross-peaks which can lead to large errors in the

observed rates R2(1/scp), or from spectral overlap at

one of the two temperatures. In the APO form, the

relaxation dispersion curves R2(1/scp) of two repre-

sentative residues at the two temperatures are shown

in Fig. 2. As expected, the values of the exchange rate

constant, kex, decrease with the temperature, see Ta-

ble 1. Once again, the HOLO form of rMUP does not

show any evidence of chemical exchange, in agree-

ment with the behaviour at 308 K. It was not possible

to increase the temperature beyond 308 K because of

the limited stability of the protein. Nevertheless, we

expect motions in the HOLO form connected with

the release of the pheromone. A decrease in the

temperature usually slows down exchange processes;

if they are too fast to be brought to light on the

CPMG time scale at a higher temperature, they might

fall within the range of detectability of this technique

at a lower temperature.

Kinetic theory predicts a decrease in exchange

rates at lower temperatures, since the conforma-

tional exchange processes are slowed down. The

temperature dependence of kex can be described by

the Arrhenius equation, kex ¼ A0 exp �Ea=f kBTð Þg=
1� pað Þ and by the Boltzmann distribution pa ¼ 1þð

exp �DG=kBTf gÞ�1, where A0 is a pre-exponential

factor, Ea the activation energy of the process, kB the

Boltzmann constant and DG the difference in free

energy between the two states a and b (Mandel et al.

1996). To a first approximation the difference in

chemical shifts Dx is considered to remain constant

regardless of temperature (Palmer et al. 2001), so

that the ratio kex/Dx shifts to lower values with

decreasing temperature. The Rex values have been

computed using Eq. 3 (Luz and Meiboom 1963),

which, under the conditions of our experiments

(Mandel et al. 1996), provides an approximation to

within 5% of the exact formulation (Allerhand and

Gutowsky 1965).

Arg 39 Asp 72
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Fig. 1 Relaxation dispersion
plots for APO- (cyan squares)
and HOLO-rMUP (red
diamonds) at 308 K for Arg
39 and Asp 72. For APO-
rMUP, the curve results from
fitting to Eq. 1. The exchange
rates are given in Table 1. For
HOLO-rMUP, the curve
represents the average of the
rates over 1/scp
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Rex ¼
papbDx2

kex
1� 2

kexscp
tanh

kexscp

2

� 	� �
ð3Þ

Using Eq. 3 for a fixed value of scp = 1.2 ms, Mandel

demonstrated that the exchange rate Rex reaches a

maximum when kex = 3.2/scp. For fast exchange

kex » 3.2/scp, Rex ¼ papb D x 2=kex and for slow ex-

change kex « 3.2/scp, Rex tends to zero (Mandel et al.

1996). As seen previously, an increase in the temper-

ature leads to an increase of kex, so that augmenting T

leads to a decrease of Rex if kex > 3.2/scp, and to an

increase of Rex if kex < 3.2/scp. As a consequence, the

sign of the derivative dRex/dT indicates whether the

exchange rate is faster or slower than kex = 3.2/scp. The

temperature dependence of Rex is reported in Table

S5. All of the 13 residues that can be observed in APO-

rMUP at both temperatures have positive derivatives

dRex/dT, indicating that the exchange rate is slower

than kex = 3.2/scp.

A total of 21 residues in APO-rMUP show evidence

of chemical exchange at least at one of the two tem-

peratures (T = 298 or 308 K). Most of these residues

are located in the b-barrel (see Fig. 3), while 5 residues

lie in loops, i.e., in regions where one expects motions.

It is interesting to note that the residues from Ser 68 to

Asp 72, as well as Ser 81 and Val 82, are spatially close,

and constitute the last part of the bD sheet as well as

the centre of the following bE sheet. Although residues

that constitute the a-helix are well represented (79% of

the residues in the helix are detectable, see Supple-

mentary Material), none of them shows any evidence

of chemical exchange. Fig. 3 shows residues for which

Fig. 3 Stereo view of APO-rMUP where residues featuring
chemical exchange have been coloured in red, while residues for
which relaxation rates could be recorded (at either temperature)

are coloured in blue. Residues for which relaxation data are
unavailable at either temperature are coloured in grey
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Fig. 2 Relaxation dispersion
plots for APO-rMUP at 308 K
(cyan squares) and 298 K
(blue circles) for Arg 39 and
for Val 70. The curves were
obtained by fitting to Eq. 1.
The exchange rates are given
in Table 1
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relaxation data could be measured (at either of the two

temperatures) coloured in blue, with residues featuring

chemical exchange (at either of the two temperatures)

coloured in red.

It is clear from Fig. 3 that residues exhibiting con-

formational exchange are located principally adjacent

to the b-turn comprising residues 83–87. To the best of

our knowledge, the mechanism of entry of a ligand into

the occluded binding pocket of APO-rMUP has not

been reported. However, in other members of the

lipocalin family, it has been suggested that slow time-

scale conformational changes in the APO form are

related to ligand entry. For example, Rüterjans and

coworkers (Franzoni et al. 2002) report increased

backbone disorder in the bE-bF turn in NMR structure

calculations of retinol binding protein, which correlates

with a suggested portal for pheromone entry. Simi-

larly, Zhang et al. have reported disorder in the same

region of human intestinal fatty acid binding protein

(Zhang et al. 1997). This region is analogous to resi-

dues 83–87 in rMUP, and suggests that the ligand gains

entry through an equivalent portal. However, the lack

of any obvious correlation between either exchange

rates or populations of ‘excited’ states of residues listed

in Table 1 suggests that there is no concerted large-

scale conformational rearrangement that facilitates

ligand entry. Instead, it is likely that the ligand gains

entry via stochastic ‘breathing’ motions of the protein.

The dramatic and complete loss of conformational

exchange in rMUP upon pheromone binding stands in

stark contrast with a recent study (based on spectral

density mapping) where no significant differences in

slow internal motions on the ls-ms time-scale were

noted between APO and HOLO forms (Krı́žová et al.

2004). It is not possible to determine with certainty the

reasons for this discrepancy from the present study, but

the absence of differences in slow internal motions

between APO and HOLO forms in that study might be

related to the presence of some unknown endogenous

ligand in the APO form. In early work we noted that

over-expressed recombinant MUP contains bound

endogenous ligands from the expression medium, and

we routinely use an ethanol precipitation step during

purification to remove such ligands. MUP is a pro-

miscuous binder of small hydrophobic molecules, and

indeed in our hands it is critical that the protein is only

handled and stored in glass, since it readily binds trace

amounts of plasticizer from polypropylene tubes for

example. The presence of endogenous ligands mani-

fests itself in significant chemical-shift changes of

binding-site residues in 15N–1H HSQC spectra in

comparison with the true APO (ethanol-precipitated)

protein. Previous NMR and thermodynamic studies on

MUP do not report the use of an ethanol precipitation

step (Abbate et al. 1999; Franzoni et al. 2002; Lücke

et al. 1999, Zı́dek et al. 1999a, b). The backbone shift

assignments that we obtain for the ethanol-precipitated

APO protein differ in the binding-site region from

those originally reported by Rüterjans and co-workers

(Abbate et al. 1999; Lücke et al. 1999). These obser-

vations cannot however explain the presence of slow

time-scale motions in the HOLO form of the protein in

the study of Krı́žová compared with a complete loss of

such motions in the present study. This discrepancy

may be related to the influence of different ligands on

slow time-scale dynamics in the respective complexes.
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