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A Note on Almost K~ihler Manifolds 

By D. CATALANO, F. DEFEVER, R. DESZCZ, M. HOTLOS, and Z. OLSZAK 

Abstract. For any n _> 2, we give examples of almost Kiihler conformally flat 
manifolds M 2n which are not K~ihler. We discuss the meaning of these examples 
in the context of the Goldberg conjecture on almost Kiihler manifolds. 

1 Introduction 

Every K~ihler manifold is obviously also an almost K~ihler manifold. However, the 
converse statement does not hold in general, not even for compact manifolds. For 
examples of (compact) almost K~ihler manifolds which are not K~ihler manifolds, 
see e.g. [5]. For precise definitions of the concepts we refer to Section 2, where also 
appropriate references will be given. 

Concerning the relation between K~ihler and almost K~ihler manifolds, GOLD- 
BERG conjectured [3] that a compact almost K~ihler Einstein manifold must be 
Kiihler. This conjecture, which is still open, inspired a lot of work on almost Kiihler 
manifolds. 

OLSZAK proved that there are no properly almost Kiihler manifolds of constant 
sectional curvature of dimension >__ 8. His proof [13] is tensorial and bares an en- 
tirely local character. Using technics from Clifford analysis, BLAIR showed that in 
dimension 4 there are no almost Kiihler manifolds of constant sectional curvature, 
besides the K~ihler manifolds [1]. Finally, OGURO and SEKIGAWA found an argu- 
ment which worked for all dimensions in the particular case of spaces with constant 
sectional curvature. They proved [ 11] that a complete almost Kiihler manifold of 
constant sectional curvature is a fiat K~ihler manifold. 

One may observe that on the subset of the Einstein manifolds which have con- 
stant sectional curvature a stronger version of Goldberg's conjecture has been pro- 
ved. Indeed, besides in 6 dimensions, for spaces with constant sectional curvature 
the result has been shown to hold even entirely local, i.e. without any additional 
global assumption. Now, the Einstein manifolds generalize the spaces of constant 
sectional curvature, but in a certain sense staying 'close' to them. Therefore one 
might wonder if there could be any hope for Goldberg's conjecture to hold locally 
for all Einstein manifolds. Or, if not, to construct (locally) examples of almost 
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K/ihler Einstein spaces which are not K~ihler. However, also the latter question does 
not seem to be so easy to solve immediately. 

Looking for an answer, one may e.g. think of  comparing this question with a 
closely related similar problem, in order to gain more insight. Indeed, the Einstein 
spaces are not the only possible way to generalize the spaces of  constant sectional 
curvature. The conformally flat manifolds do also constitute a set of spaces general- 
izing the spaces of  constant sectional curvature in a different direction, but equally 
staying 'close' to them. 

In the light of the above mentioned discussion, we consider the question whether 
or not an almost K/ihler conformally flat manifold must necessarilly be K/ihler, and 
this from a strictly local point of  view. We construct new explicit examples of 
almost K~ihler conformally flat manifolds m 2n which are not K/ihler, and this for 
every n > 2. After the construction, we discuss the differences between our new 
examples, and already existing ones. 

2 Preliminaries 

An almost complex manifold with a Hermitian metric is called [6], [4] an almost 
Hermitian manifold. For an almost Hermitian manifold (M, J, g) we thus have 

j2  = - 1 ,  

g(JX, JY) = g(X, Y). 

An almost complex stucture J is integrable, and hence the manifold is a complex 
manifold, if and only if its Nijenhuis tensor Nj vanishes; with 

Nj(X,  Y) = [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y]. (1) 

For an almost Hermitian manifold (M, J, g), we define the fundamental K~ihler 
form �9 as: 

�9 (X, Y) = g(X, JY) .  (2) 

(M, J, g) is then called almost Kfihler if qb is closed: d ~  = 0. It can be shown that 
this condition for (M, J, g) to be almost K/ihler is equivalent to 

g((Vx J)Y, Z) + g((Vy J)Z, X) + g((Vz J)X, Y) = O. 

An almost K/ihler manifold with integrable J is called a K/ihler manifold, and thus 
is characterized by the conditions: dqb = 0 and N = 0. One can prove that these 
both conditions combined are equivalent with the single condition 

V J  = 0 .  

Obviously, every K~ihler manifold is also an almost K~ihler manifold. For examples 
of manifolds with almost K~ihler structures which are not K/ihler, see e.g. the recent 
article by JELONEK [5], and references therein, in particular [2] and [14]. 
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3 Conformally flat almost K~ihler spaces 

In the present section, we construct examples of  conformally flat almost K~ihler 
spaces which however are not K~ihler. For every n >__ 2, we consider an n-dimensio- 
nal Riemannian manifold (Ml, gl).  On the Cartesian product M : M1 • ~n, we 
define a conformally fiat metric g and an almost complex structure J.  Manifold 
(M, g, J )  will appear to be almost K~ihler, but not K~ihler. The construction goes as 
follows: 

We define an n-dimensional Riemannian manifold (M1, gl). Let M1 coincide 
with an open connected subset U of R n, equipped with coordinates (x I . . . . .  xn) .  
For a positive and nonconstant function f on U, consider the Riemannian metric gl 
defined on Ml as follows 

~ , ( ~ ,  ~ ) :  s28<,,~, 1 _~ <~,~ _~ ,,. 

In what follows, we are interested in the situation when gi is a flat metric. By 
straightforward calculations, it can be proved that gl is fiat when 

(a) in case of n = 2, the function f satisfies the partial differential equation 

(a-~2 + ~2 ~l~ / = 0 , a v 2 ,  (3) 

where for simplicity it is supposed u = x I , v = x2; 
(b) in case of n > 3, the function f is of the form 

f ( x l  . . . . .  xn ) = a (4) 
(X 1 - -  x l )  2 -'l- �9 " " q "  (X n --  X ~ )  2 '  

where a is a positive constant and (x~ . . . . .  x~) r U is a fixed point; it is clear 
that U # R n in this case. 

We sketch briefly an outline for a proof showing that (4) is indeed nec- 
essary for the vanishing of the sectional curvature. For ( g l ) i j  : fZ~ i j ,  it 
will turn out convenient to calculate in terms of a function h > 0, defined by 
f = ~. A standard calculation, involving the determination of the Christoffel 
symbols, gives the following expression for the components of  the curvature 
tensor R 

R i j l  : 1 ( oZh r~l O2h 61 02h e 02h e \ 
- h t ~  i OxiOx k j - -  ~ ~  + ~ ~  

Oh 2 I 

S 

for the components of the Ricci tensor S 

s .  : ~ (n-  ~, 02h + ~ E 02h o ( n -  ~ b  V ' ~  (6~ 
~J OxJOx k ~ ~  - -  /_...~tOx ~ ! , 

s s 

and for the scalar curvature R 

R 2h(n 1)  Z 02h n(n  ~ - ~ (  2 
= _ -~,_.,,~,. (% 

(Ox.~) 2 
s s 



62 D. Catalano, F. Defever, R. Deszcz, M. Hotlog, and Z. Olszak 

When we assume that (5) has to vanish, then also (6) and (7) should be zero; 
together this yields 

02h _ 1 Z ( ~ - ~ s ) 2 ~ j k .  
axJOx k - -  2-h ( 8 )  

s 

For j # k, a2h -- 0, therefore 
OxJ Oxk - -  

h ( x l ,  . . .  x n) = kl(x 1 ) q ' - ' ' " -q-kn(xn) .  (9) 

From (8) and (9) there also follows that 

oZh _ _  02h . . . .  02h 
- -  -- const. = :  2c.  

Ox 2 - -  ax  2 - -  Ox 2 

By (8) one now deduces that h is of the form 

h c y ~ . ( x  i i 2  
= - -  XO) , 

i 

from where it is clear that f = 1 takes the form (4). 

In the sequel, we assume that f satisfies at least (3) or (4). 
Now, let M = MI • ]I~ n and extend the function f to the whole of M so that f 

depends only on the first n coordinates (x  I . . . . .  x n). Define a Riemannian metric g 
on M in the following explicit way 

OxT+l~ ) = 0 .  

The metric g can be viewed as a conformal deformation of a fiat product metric 

g =  ~ ( g l  x g2), 

where g2 is the standard fiat metric on ]R n. Therefore, g is conformally fiat. We now 
also define an almost complex structure J on M as follows 

j a a 
ax ~ = f ax~+~, 
a 1 a (10) 

J oxn+a - -  f "Ox ~ �9 

We can verify that metric g is compatible with the almost complex structure J .  
Moreover, for the fundamental form �9 defined by formula (2), we have 

qb a a 

O 
~ (Ox-D-w, a Ox,+l~ ) ---- O, 

a a ( o> ,  ) = Oxn+fl 

Hence dqb = 0. Thus, the pair (J, g) realizes an almost K~ihler structure on M. 
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We observe that the pair (J, g) cannot be K~lerian.  Indeed, since f depends 
only of coordinates x I . . . . .  x n, direct computation of the Nijenhuis tensor from (1) 
with using (10), for X = O/Ox '~ and Y = O/Ox ~, gives 

N o a a a a J ( g-~ , ~x~ ) = [ f o-'~-~ , f ~ ] -- ['U~ , ~x~ ] 

_ j [ j_~ , f a ~  ] _ j [ f axaT+~ , a Ox~ ] 

= _ j  af a + J~x 0 
OX a Oxn+fl Oxn+Ot 

1 Of O 1 Of O 
- -  f Ox# Ox ---y + f Ox ~ Ox~" 

If  now (M, g, J)  were to be a Kghler manifold, then Nj should vanish. Conse- 
quently Of/Ox c~ = 0 (1 _< ot _< n), and f would have to be a constant. This is 
however excluded, since we started the construction with nonconstant f .  This fin- 
ishes the proof of  the existence of almost K~ihler conformally flat manifolds M 2n 
(n >_ 2) which are not K~ihler. 

We now discuss the differences between our examples of  conformally flat strictly 
almost K~ihler manifolds, and already existing ones. 

Paper [10] presents examples of  almost K~ihler non-K~ihler structures on the 
products ]HI m X ]I~ 2 n - m  of an m-dimensional hyperbolic space of constant sectional 
curvature - 1  and an (2n - m)-dimensional Euclidean space, which are also locally 
symmetric. 

We remember that, when a manifold M n is locally a product and conformally 
flat, then only one of the following two situations can occur, which are mutually 
exclusive: 

(i) or M n = Mn-l(tr  x JR, with Mn-l(tr  an (n - 1)-dimensional space of  
constant sectional curvature x (x arbitrary), 

(ii) or M n = MP(tr x M q ( - t r  with p + q = n, and p, q > 2, and x > 0. 

The former case (i) occurs when the Ricci operator is algebraically degenerate, the 
latter case (ii) occurs when the Ricci operator is nondegenerate. This theorem may 
be deduced easily from material contained e.g. in [7]; see also [8]. 

Hence, the examples of  [10] are also conformally flat for 2n - m = 1, and they 
are of type (i) in reference to the above mentioned result. [12] gives also examples 
of non-Kfihler almost K~ihler H 3 x ]R which are locally symmetric and conformally 
flat ; they are also of type (i). So, all those examples of conformally flat non-K~le r  
almost K~ihler manifolds are locally symmetric as well. We now consider first the 
'general series' of our examples, for manifolds M 2n, n > 2, with f given by (4). 
This gives examples of conformally flat non-K~ihler almost K~ihler manifolds for any 
n _> 2; the question is, are they also locally symmetric. Since they are conformally 
flat, the condition VR = 0 is equivalent to the condition VS = 0, where R and S 
denote the Riemann-Christoffel curvature tensor and the Ricci tensor, respectively. 
A direct calculation of the Christoffel symbols and the components of the Ricci 
tensor shows that they are locally symmetric indeed. However, a calculation of  the 
determinant of  S, gives 

detS = ( - n ) n + l ( n  - 2) n-I  . 
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Hence, for n > 3, the Ricci operator is nondegenerate and the examples are of type 
(ii), and therefore differ in type from those of  [10]. For n = 2, the Ricci operator is 
degenerated and the examples are also of  type (i), as those in [10] and [12]. 

We now consider our extra examples in the 4-dimensional case. In this particular 
dimension, our construction scheme gives many more examples of conformally fiat 
non-K~ihler almost K~ihler manifolds, than the "general series" for n = 2. Indeed 
any f which solves (3) gives an example. When we write f in the following form 

f .= e h , 

then (3) reduces to the following equation in terms of  h, 

02h O2h : 0 
G~2 + 7~2 �9 

Hence, every harmonic function of  two variables gives by our construction scheme, 
an example of  a 4-dimensional conformally flat non-K~ihler almost K~ihler metric. 
The scalar curvature k of  this metric, with h harmonic, takes the following form 

k - -3eh((ah 2 (8h~2"~ 
= ~ )  + ~0oJ 1" 

Since the scalar curvature is not constant, in general, the corresponding metric g is 
not locally symmetric in general. For example: when f --- a exp(bu), then g is not 
locally symmetric; when f = exp(u 2 - v2), then g is not locally symmetric. When 
f = (u2q-v2) p, with p a parameter, the scalar curvature is k = - 6 p 2 ( u a + v 2 )  - p - I  , 

and for p ~ - 1  the metric is conformally flat but not locally symmetric. For 
p = - 1 ,  the metric is conformally flat and also locally symmetric, as it falls in 
this case in the "general series". We conclude by the observation that for n = 4 all 
examples of  locally symmetric non-K~ihler almost K~ihler are indeed noncompact, 
in agreement with [9], where it was proved that a compact 4-dimensional locally 
symmetric almost K~ihler manifold should be K~ihler. 

References  

[1] D. E. BLAIR, Nonexistence of 4-dimensional almost Kaehler manifolds of constant 
curvature. Proc. Am. Math. Soc. 110 (1990), 1033-1039. 

[2] L. A. CORDERO, M. FERNANDEZ, and M. DE LEON, Examples of compact non- 
K~ihler almost K~ihler manifolds. Proc. Amer. Math. Soc. 95 (1985), 280-286. 

[3] S. I. GOLDBERG, Integrability of almost Kaehler manifolds. Proc. Am. Math. Soc. 21 
(1969), 96-100. 

[4] C. C. HSIUNG, Almost complex and complex structures. Series in Pure Mathematics, 
Vol. 20, World Sci. Publ., Singapore, 1995. 

[5] W. JELONEK, Some simple examples of almost K~ihler non-K~hler structures. Math. 

Ann. 305 (1996), 639-649. 
[6] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry 11. New York, 

Interscience, 1969. 
[7] M. KURITA, On the holonomy group of the conformally fiat Riemannian manifold. 

Nagoya Math. J. 9 (1955), 161-171. 
[8] J. LAFONTAINE, Conformal geometry from the Riemannian viewpoint. In: Confor- 

mal Geometry by R. S. Kulkarni, U. Pinkall (Eds.), Aspects of Math. Vol. El2, 65-91, 
Vieweg 1988. 



A Note on Almost Kihler Manifolds 65 

[9] N. MURAKOSHI, T. OGURO, and K. SEKIGAWA, Four-dimensional almost K~iler lo- 
cally symmetric spaces. Diff. Geom. Appl. 6 (1996), 237-244. 

[10] T. OGURO, Examples of non-K~ler, almost K~ihler symmetric spaces. C.R. Math. Rep. 
Acad. Sci. Canada 18 (1996), 243-246. 

[11 ] T. OGURO and K. SEKIGAWA, Non-existence of almost K~ihler structure on hyperbolic 
spaces of dimension 2n (> 4). Math. Ann. 300 (1994), 317-329. 

[12] , Almost K~ihler structures on the Riemannian product of a 3-dimensional hy- 
perbolic space and a real line. Tsukuba J. Math. 20 (1996), 151-161. 

[13] Z. OLSZAK, A note on almost Kaehler manifolds. Bull. Acad. Polon. Sci., Ser. Sci. 
Math. Astr. Phys. 26 (1978), 139-141. 

[14] B. WATSON, New examples of strictly almost K~hler manifolds. Proc. Am. Math. Soc. 
88 (1983), 541-544. 

Eingegangen am: 27. Miirz 1998 
in revidierter Fassung am: 22. April 1999 

Author's addresses: Domenico Catalano, Mathematisches Institut, ETH Zentrum, R~imi- 
strasse 101, CH-8092 Z/irich. Switzerland. 
E-Maih catalano@math, ethz. ch. 

Filip Defever, Zuivere en Toegepaste Differentiaalmeetkunde, KU Leuven, Celestijnenlaan 
200 B, B-3001 Heverlee (Leuven), Belgium. 
E-Maih Filip. Defever@wis. kuleuven, ac. be. 

Ryszard Deszcz, Department of Mathematics, Agricultural University of Wroc{aw, ul. Grun- 
waldzka 53, PL-50-376 Wroc{aw, Poland. 
E-Mail: rysz@ozi, ar. wroc. pl. 

Marian Hotlog, Institute of Mathematics, Wroc{aw University of Technology, Wybrzeze Wys- 
piafiskiego 27, PL-50-376 Wroctaw, Poland. 
E-Maih h o t l o s @ i m ,  pwr .  w r o c .  p l .  

Zbigniew Olszak, Institute of Mathematics, Wroclaw University of Technology, Wybrzeze 
Wyspiafiskiego 27, PL-50-376 Wroclaw, Poland. 
E-Maih o l s z a k O i m ,  pwr .  w r o c .  t31. 


